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Abstract

Feature upsampling is a key operation in a number of

modern convolutional network architectures, e.g. feature

pyramids. Its design is critical for dense prediction tasks

such as object detection and semantic/instance segmenta-

tion. In this work, we propose Content-Aware ReAssembly

of FEatures (CARAFE), a universal, lightweight and highly

effective operator to fulfill this goal. CARAFE has several

appealing properties: (1) Large field of view. Unlike previ-

ous works (e.g. bilinear interpolation) that only exploit sub-

pixel neighborhood, CARAFE can aggregate contextual in-

formation within a large receptive field. (2) Content-aware

handling. Instead of using a fixed kernel for all samples

(e.g. deconvolution), CARAFE enables instance-specific

content-aware handling, which generates adaptive kernels

on-the-fly. (3) Lightweight and fast to compute. CARAFE

introduces little computational overhead and can be read-

ily integrated into modern network architectures. We con-

duct comprehensive evaluations on standard benchmarks

in object detection, instance/semantic segmentation and in-

painting. CARAFE shows consistent and substantial gains

across all the tasks (1.2% AP, 1.3% AP, 1.8% mIoU, 1.1dB

respectively) with negligible computational overhead. It

has great potential to serve as a strong building block for

future research. Code and models are available at https:

//github.com/open-mmlab/mmdetection.

1. Introduction

Feature upsampling is one of the most fundamental op-

erations in deep neural networks. On the one hand, for

the decoders in dense prediction tasks (e.g. super resolu-

tion [6, 17], inpainting [11, 29] and semantic segmenta-

tion [39, 4]), the high-level/low-res feature map is upsam-

pled to match the high-resolution supervision. On the other

hand, feature upsampling is also involved in fusing a high-

level/low-res feature map with a low-level/high-res feature

map, which is widely adopted in many state-of-the-art ar-

chitectures, e.g., Feature Pyramid Network [18], U-Net [31]

Reassembly Center Reassembled Region Upsample

Figure 1: Illustration of CARAFE working mechanism. Left:

Multi-level FPN features from Mask R-CNN (left to dotted line)

and Right: Mask R-CNN with CARAFE (right to dotted line). For

sampled locations, this figure shows the accumulated reassembled

regions in the top-down pathway of FPN. Information inside such

a region is reassembled into the corresponding reassembly center.

and Stacked Hourglass [26]. Therefore, designing effective

feature upsampling operator becomes a critical issue.

The most widely used feature upsampling operators

are the nearest neighbor and bilinear interpolations, which

adopt spatial distance between pixels to guide the upsam-

pling process. However, nearest neighbor and bilinear in-

terpolations only consider sub-pixel neighborhood, failing

to capture the rich semantic information required by dense

prediction tasks. Another route toward adaptive upsampling

is deconvolution [27]. A deconvolution layer works as an

inverse operator of a convolution layer, which learns a set

of instance-agnostic upsampling kernels. However, it has

two major drawbacks. Firstly, a deconvolution operator ap-

plies the same kernel across the entire image, regardless of

the underlying content. This restricts its capability of re-

sponding to local variations. Second, it comes with a large
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number of parameters and thus heavy computational work-

load when a large kernel size is used. This makes it difficult

to cover a larger region that goes beyond a small neighbor-

hood, thus limiting its expressive power and performance.

In this work, we move beyond these limitations, and seek

a feature upsampling operator that is capable of 1) aggre-

gating information within large receptive field, 2) adapt-

ing to instance-specific contents on-the-fly, and 3) main-

taining computation efficiency. To this end, we propose a

lightweight yet highly effective operator, called Content-

Aware ReAssembly of Features (CARAFE). Specifically,

CARAFE reassembles the features inside a predefined re-

gion centered at each location via a weighted combination,

where the weights are generated in a content-aware manner.

Furthermore, there are multiple groups of such upsampling

weights for each location. Feature upsampling is then ac-

complished by rearranging the generated features as a spa-

tial block.

Note that these spatially adaptive weights are not learned

as network parameters. Instead, they are predicted on-the-

fly, using a lightweight fully-convolutional module with

softmax activation. Figure 1 reveals the working mecha-

nism of CARAFE. After upsampled by CARAFE , a feature

map can represent the shape of an object more accurately,

so that the model can predict better instance segmentation

results. Our CARAFE not only upsamples the feature map

spatially, but also learns to enhance its discrimination.

To demonstrate the universal effectiveness of CARAFE ,

we conduct comprehensive evaluations across a wide range

of dense prediction tasks, i.e., object detection, instance

segmentation, semantic segmentation, image inpainting,

with mainstream architectures. CARAFE can boost the

performance of Faster RCNN [30] by 1.2% AP in ob-

ject detection and Mask RCNN [8] by 1.3% AP in in-

stance segmentation on MS COCO [19] test-dev 2018.

CARAFE further improves UperNet [35] by 1.8% mIoU

on ADE20k [43, 44] val in semantic segmentation, and

improves Global&Local [11] by 1.1 dB of PSNR on

Places [42] val in image inpainting. When upsampling an

H ×W feature map with 256 channels by a factor of two,

the introduced computational overhead by CARAFE is only

H ∗W ∗199k FLOPs, vs., H ∗W ∗1180k FLOPs of decon-

volution. The substantial gains on all the tasks demonstrate

that CARAFE is an effective and efficient feature upsam-

pling operator that has great potential to serve as a strong

building block for future research.

2. Related Work

Upsampling Operators. The most commonly used upsam-

pling methods are nearest neighbor and bilinear interpola-

tions. These interpolations leverage distances to measure

the correlations between pixels, and hand-crafted upsam-

pling kernels are used in them. In deep learning era, sev-

eral methods are proposed to upsample a feature map us-

ing learnable operators. For example, deconvolution [27],

which is an inverse operator of a convolution, is the most fa-

mous among those learnable upsamplers. Pixel Shuffle [32]

proposes a different upsampler which reshapes depth on the

channel space into width and height on the spatial space.

Recently, [23] proposed guided upsampling (GUM), which

performs interpolation by sampling pixels with learnable

offsets. However, these methods either exploit contextual

information in a small neighborhood, or require expen-

sive computation to perform adaptive interpolation. Within

the realms of super-resolution and denoising, some other

works [24, 14, 9] also explore using learnable kernels spa-

tially in low-level vision. With a similar design spirit, here

we demonstrate the effectiveness and working mechanism

of content-aware feature reassembly for upsampling in sev-

eral visual perception tasks, and provide a lightweight solu-

tion.

Dense Prediction Tasks. Object detection is the task of

localizing objects with bounding-boxes, instance segmenta-

tion further requires the prediction of instance-wise masks.

Faster-RCNN [30] introduces Region Proposal Network

(RPN) for end-to-end training, which is further improved

by the guided anchoring scheme [34]. [18, 21, 15, 41, 28]

exploits multi-scale feature pyramids to deal with objects at

different scales. By adding extra mask prediction branches,

Mask-RCNN [8] and its variants [1, 10] yield promising

pixel-level results. Semantic segmentation [22, 16] requires

pixel-wise semantic prediction for given images. PSP-

Net [39] introduces spatial pooling at multiple grid scales.

and UperNet [35] designs a more generalized framework

based on PSPNet. Image or Video inpainting [38, 37, 36]

is a classical problem to fill in the missing regions of

the input pictures. U-net [31] is popular among recent

works [11, 33], and adopts multiple upsampling operators.

Liu et al. [20] introduce partial convolution layer to alleviate

the influence of missing regions on the convolution layers.

Our CARAFE demonstrates universal effectiveness across

a wide range of dense prediction tasks.

3. Content-Aware ReAssembly of FEatures

Feature upsampling is a key operator in many modern

convolutional network architectures developed for tasks in-

cluding object detection, instance segmentation, and scene

parsing. In this work, we propose the content-aware re-

assembly of features (CARAFE) to upsample a feature map.

On each location, CARAFE can leverage the underlying

content information to predict reassembly kernels and re-

assemble the features inside a predefined nearby region.

Thanks to the content information, CARAFE can use an

adaptive and optimized reassembly kernel in different loca-

tions and achieve better performance than mainstream up-

sampling operators, e.g. interpolations or deconvolution.
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Figure 2: The overall framework of CARAFE. CARAFE is composed of two key components, i.e., kernel prediction module and

content-aware reassembly module. A feature map with size C ×H ×W is upsampled by a factor of σ(= 2) in this figure.

3.1. Formulation

CARAFE works as a reassembly operator with content-

aware kernels. It consists of two steps. The first step is to

predict a reassembly kernel for each target location accord-

ing to its content, and the second step is to reassemble the

features with predicted kernels. Given a feature map X of

size C ×H ×W and an upsample ratio σ (supposing σ is

an integer), CARAFE will produce a new feature map X ′

of size C × σH × σW . For any target location l′ = (i′, j′)
of the output X ′, there is a corresponding source location

l = (i, j) at the input X , where i = ⌊i′/σ⌋ , j = ⌊j′/σ⌋.

Here we denote N(Xl, k) as the k×k sub-region of X cen-

tered at the location l, i.e., the neighbor of Xl.

In the first step, the kernel prediction module ψ predicts

a location-wise kernel Wl′ for each location l′, based on

the neighbor of Xl, as shown in Eqn. (1). The reassembly

step is formulated as Eqn. (2), where φ is the content-aware

reassembly module that reassembles the neighbor of Xl with

the kernel Wl′ :

Wl′ = ψ(N(Xl, kencoder)). (1)

X ′

l′ = φ(N(Xl, kup),Wl′). (2)

We specify the details of ψ and φ in the following parts.

3.2. Kernel Prediction Module

The kernel prediction module is responsible for generat-

ing the reassembly kernels in a content-aware manner. Each

source location on X corresponds to σ2 target locations on

X ′. Each target locations requires a kup × kup reassem-

bly kernel, where kup is the reassembly kernel size. There-

fore, this module will output the reassembly kernels of size

Cup ×H ×W , where Cup = σ2k2up.

The kernel prediction module is composed of three sub-

modules, i.e., channel compressor, content encoder and

kernel normalizer, as shown in Figure 2. The channel com-

pressor reduces the channel of the input feature map. The

content encoder then takes the compressed feature map as

input and encodes the content to generate reassembly ker-

nels. Lastly, the kernel normalizer applies a softmax func-

tion to each reassembly kernel. The three submodules are

explained in detail as follows.

Channel Compressor. We adopt a 1× 1 convolution layer

to compress the input feature channel from C to Cm. Re-

ducing the channel of input feature map leads to less param-

eters and computational cost in the following steps, making

CARAFE more efficient. It is also possible to use larger

kernel sizes for the content encoder under the same budget.

Experimental results show that reducing the feature channel

in an acceptable range will not harm the performance.

Content Encoder. We use a convolution layer of kernel

size kencoder to generate reassembly kernels based on the

content of input features. The parameters of the encoder

is kencoder × kencoder × Cm × Cup. Intuitively, increas-

ing kencoder can enlarge the receptive field of the encoder,

and exploits the contextual information within a larger re-

gion, which is important for predicting the reassembly ker-

nels. However, the computational complexity grows with

the square of the kernel size, while the benefits from a larger

kernel size do not. An empirical formula kencoder = kup−2
is a good trade-off between performance and efficiency

through our study in Section 5.3.

Kernel Normalizer. Before being applied to the input fea-
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ture map, each kup × kup reassembly kernel is normalized

with a softmax function spatially. The normalization step

forces the sum of kernel values to 1, which is a soft selec-

tion across a local region. Due to the kernel normalizer,

CARAFE does not perform any rescaling and change the

mean values of the feature map, that is why our proposed

operator is named the reassembly of features.

3.3. Content­aware Reassembly Module

With each reassembly kernel Wl′ , the content-aware re-

assembly module will reassemble the features within a lo-

cal region via the function φ. We adopt a simple form of φ
which is just a weighted sum operator. For a target location

l′ and the corresponding square region N(Xl, kup) centered

at l = (i, j), the reassembly is shown in Eqn. (3), where

r = ⌊kup/2⌋:

X ′

l′ =

r∑

n=−r

r∑

m=−r

Wl′(n,m) · X(i+n,j+m). (3)

With the reassembly kernel, each pixel in the region of

N(Xl, kup) contributes to the upsampled pixel l′ differently,

based on the content of features instead of distance of loca-

tions. The semantics of the reassembled feature map can be

stronger than the original one, since the information from

relevant points in a local region can be more attended.

3.4. Relation to Previous Operators

Here we discuss the relations between CARAFE and

dynamic filter [13], spatial attention [3], spatial trans-

former [12] and deformable convolution [5], which share

similar design philosophy but with different focuses.

Dynamic Filter. Dynamic filter generates instance-specific

convolutional filters conditioned on the input of the net-

work, and then applies the predicted filter on the input. Both

dynamic filter and CARAFE are content-aware operators,

but a fundamental difference between them lies at their ker-

nel generation process. Specifically, dynamic filter works

as a two-step convolution, where the additional filter predic-

tion layer and filtering layer require heavy computation. On

the contrary, CARAFE is simply a reassembly of features

in local regions, without learning the feature transformation

across channels. Supposing the channels of input feature

map isC and kernel size of the filter isK, then the predicted

kernel parameters for each location is C × C ×K ×K in

dynamic filter. For CARAFE, the kernel parameter is only

K ×K. Thus, it is more efficient in memory and speed.

Spatial Attention. Spatial attention predicts an attention

map with the same size as the input feature, and then

rescales the feature map on each location. Our CARAFE re-

assembles the features in a local region by weighted sum.

In summary, spatial attention is a rescaling operator with

point-wise guidance while CARAFE is a reassembly oper-

ator with region-wise local guidance. Spatial attention can

be seen as a special case of CARAFE where the reassembly

kernel size is 1, regardless of the kernel normalizer.

Spatial Transformer Networks (STN). STN predicts a

global parametric transformation conditioned on the input

feature map and warps the feature via the transformation.

However, this global parametric transformation assumption

is too strong to represent complex spatial variance; and STN

is known to be hard to train. Here, CARAFE uses the

location-specific reassembly to handle the spatial relations,

which enables more flexible local geometry modeling.

Deformable Convolutional Networks (DCN). DCN also

adopts the idea of learning geometric transformation and

combines it with the regular convolution layers. It predicts

kernel offsets other than using grid convolution kernels.

Similar to dynamic filter, it is also a heavy parametric oper-

ator with 24 times more computational cost than CARAFE.

It is also known to be sensitive to parameter initialization.

4. Applications of CARAFE

CARAFE can be seamlessly integrated into existing

frameworks where upsampling operators are needed. Here

we present some applications in mainstream dense pre-

diction tasks. With negligible additional parameters,

CARAFE benefits state-of-the-art methods in both high-

level and low-level tasks, such as object detection, instance

segmentation, semantic segmentation and image inpainting.

4.1. Object Detection and Instance Segmentation

Feature Pyramid Network (FPN) is an important and ef-

fective architecture in the field of object detection and in-

stance segmentation. It significantly improves the perfor-

mance of popular frameworks like Faster R-CNN and Mask

R-CNN. FPN constructs feature pyramids of strong seman-

tics with the top-down pathway and lateral connections.

In the top-down pathway, a low-resolution feature map is

firstly upsampled by 2x with the nearest neighbor interpo-

lation and then fused with a high-resolution one, as shown

in Figure 3.

We propose to substitute the nearest neighbor interpola-

tion in all the feature levels with CARAFE. This modifica-

tion is smooth and no extra change is required. In addition

to the FPN structure, Mask R-CNN adopts a deconvolution

layer at the end of mask head. It is used to upsample the pre-

dicted digits from 14× 14 to 28× 28, to obtain finer mask

predictions. We can also use CARAFE to replace the de-

convolution layer, resulting in even less computational cost.

4.2. Semantic Segmentation

Semantic segmentation requires the model to output per-

pixel level predictions on the whole image, so that high-

resolution feature maps are usually preferred. Upsampling

is widely adopted to enlarge feature maps and fuse the se-
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Figure 3: FPN architecture with CARAFE. CARAFE upsam-

ples a feature map by a factor of 2 in the top-down pathway. It is

integrated into FPN by seamlessly substituting the nearest neigh-

bor interpolation.

mantic information of different levels in this task. Uper-

Net is a strong baseline for semantic segmentation. It uses

upsampling in the following three components, i.e., PPM,

FPN, FUSE. We adopt CARAFE instead of their original

upsamplers.

Pyramid Pooling Module (PPM). PPM is the key compo-

nent in PSPNet that hierarchically down-samples an input

feature map into multiple scales {1×1, 2×2, 3×3, 6×6},

and then upsamples them back to the original sizes with

bilinear interpolation. The features are finally fused with

the original feature by concatenation. Since the upsam-

pling ratio is very large, we adopt a two-step strategy with

CARAFE as a trade-off between performance and effi-

ciency. Firstly we upsamples the {1×1, 2×2, 3×3, 6×6}
features to half the size of the original feature map with

bilinear interpolation, and then use CARAFE to further up-

sample them by 2x.

Feature Pyramid Network (FPN). Similar to detection

models, UperNet also adopts FPN to enrich the feature se-

mantics. It only has four different feature levels {P2, P3, P4,

P5} with strides {4, 8, 16, 32}. We replace the upsampling

operators in the same way as Section 4.1.

Multi-level Feature Fusion (FUSE). UperNet proposes a

multi-level feature fusion module after the FPN. It upsam-

ples P3, P4, P5 to the same size as P2 by bilinear inter-

polation and then fuses these features from different levels

by concatenation. The process is equivalent to a sequential

upsampling-concatenation that first upsamples P5 to P4 and

concatenates them, and then upsamples the concatenated

feature map to P3 and so on. We replace the sequential

bilinear upsampling here with CARAFE.

4.3. Image Inpainting

The U-net architecture is popular among recent proposed

image inpainting methods, such as Global&Local [11] and

Partial Conv [20]. There are two upsampling operators in

the second half of the network. We simply replace the two

upsampling layers with CARAFE and evaluate the perfor-

mance. As for Partial Conv, we can conveniently keep the

mask propagation in CARAFE by updating the mask with

our content-aware reassembly kernels.

5. Experiments

5.1. Experimental Settings

Datasets & Evaluation Metrics. We evaluate CARAFE on

several important dense prediction benchmarks. We use the

train split for training and evaluate the performance on the

val split for all these datasets by default.

Object Detection and Instance Segmentation. We perform

experiments on the challenging MS COCO 2017 dataset.

Results are evaluated with the standard COCO metric, i.e.

mAP of IoUs from 0.5 to 0.95.

Semantic Segmentation. We adopt the ADE20k benchmark

to evaluate our method in the semantic segmentation task.

Results are measured with mean IoU (mIoU) and Pixel Ac-

curacy (P.A.), which respectively indicates the average IoU

between predictions and ground truth masks and per-pixel

classification accuracy.

Image Inpainting. Places dataset is adopted for image in-

painting. We use L1 error (lower is better) and PSNR

(higher is better) as evaluation metrics.

Implementation Details. If not otherwise specified,

CARAFE adopts a fixed set of hyper-parameters in exper-

iments, where Cm is 64 for the channel compressor and

kencoder = 3, kup = 5 for the content encoder. See more

implementation details in supplementary materials.

Object Detection and Instance Segmentation. We evalu-

ate CARAFE on Faster RCNN and Mask RCNN with the

ResNet-50 w/ FPN backbone, and follow the 1x training

schedule settings as Detectron [7] and MMDetection [2].

Semantic Segmentation. We use the official implementation

of UperNet1 and adopt the same experiment settings.

Image Inpainting We adopt Global&Local [11] and Paritial

Conv [20] as baseline methods to evaluate CARAFE.

5.2. Benchmarking Results

Object Detection & Instance Segmentation. We first eval-

uate our method by substituting the nearest neighbor inter-

polation in FPN with CARAFE for both Faster RCNN and

Mask RCNN, and the deconvolution layer in the mask head

for Mask RCNN. As shown in Table 1, CARAFE improves

Faster RCNN by 1.2% on bbox AP, and Mask RCNN by

1.3% on mask AP. The improvements of APS , APM , APL

are all above 1% AP, which suggests that it is beneficial for

various object scales.

1https://github.com/CSAILVision/semantic-segmentation-pytorch
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Table 1: Detection and Instance Segmentation results on MS COCO 2018 test-dev.

Method Backbone Task AP AP50 AP75 APS APM APL

Faster R-CNN ResNet-50 BBox 36.9 59.1 39.7 21.5 40.0 45.6

Faster R-CNN w/ CARAFE ResNet-50 BBox 38.1 60.7 41.0 22.8 41.2 46.9

Mask R-CNN
ResNet-50 BBox 37.8 59.7 40.8 22.2 40.7 46.8

ResNet-50 Segm 34.6 56.5 36.8 18.7 37.3 45.1

Mask R-CNN w/ CARAFE
ResNet-50 BBox 38.8 61.2 42.1 23.2 41.7 47.9

ResNet-50 Segm 35.9 58.1 38.2 19.8 38.6 46.5

Table 2: Detection results with Faster RCNN. Various upsam-

pling methods are used in FPN. N.C., B.C., P.S. and S.A. indicate

Nearest + Conv, Bilinear + Conv, Pixel Shuffle and Spatial Atten-

tion, respectively.

Method AP AP50 AP75 APS APM APL FLOPs Params

Nearest 36.5 58.4 39.3 21.3 40.3 47.2 0 0

Bilinear 36.7 58.7 39.7 21.0 40.5 47.5 8k 0

N.C. 36.6 58.6 39.5 21.4 40.3 46.4 4.7M 590k

B.C. 36.6 58.7 39.4 21.6 40.6 46.8 4.7M 590k

Deconv [27] 36.4 58.2 39.2 21.3 39.9 46.5 1.2M 590k

P.S.[32] 36.5 58.8 39.1 20.9 40.4 46.7 4.7M 2.4M

GUM[23] 36.9 58.9 39.7 21.5 40.6 48.1 1.1M 132k

S.A.[3] 36.9 58.8 39.8 21.7 40.8 47.0 28k 2.3k

CARAFE 37.8 60.1 40.8 23.1 41.7 48.5 199k 74k

Our encouraging performance is supported by the qual-

itative results as shown in Figure 1. We visualize the fea-

ture maps in the top-down pathway of FPN and compare

CARAFE with the baseline, i.e., nearest neighbor interpo-

lation. It is obvious that with the content-aware reassembly,

the feature maps are more discriminative and a more accu-

rate mask for the object is predicted. In Figure 4, we show

some examples of instance segmentation results comparing

the baseline and CARAFE.

To investigate the effectiveness of different upsampling

operators, we perform extensive experiments on Faster

RCNN by using different operators to perform upsam-

pling in FPN. Results are illustrated in Table 2. For

‘N.C.’ and ‘B.C.’, which respectively indicate ‘Nearest +

Conv’ and ‘Bilinear + Conv’, we add an extra 3 × 3 con-

volution layer after the corresponding upsampling. ‘De-

conv’, ‘Pixel Shuffle’ (indicated as ‘P.S.’), ‘GUM’ are three

representative learning based upsampling methods. We

also compare ‘Spatial Attention’ here, indicated as ‘S.A.’.

CARAFE achieves the best AP among all these upsampling

operators, the FLOPs and parameters are relatively small,

which proves it is both effective and efficient. The results

of ‘Nearest + Conv’ and ‘Bilinear + Conv’ show that ex-

tra parameters do not lead to a significant gain. ‘Deconv’,

‘Pixel Shuffle’, ‘GUM’ and ‘Spatial Attention’ obtain infe-

rior performance to CARAFE, indicating that the design of

effective upsampling operators is critical.

Besides FPN which is a pyramid feature fusion struc-

Table 3: Instance Segmentation results with Mask RCNN. Vari-

ous upsampling methods are used in mask head.

Method AP AP50 AP75 APS APM APL

Nearest 32.7 55.0 34.8 17.7 35.9 44.4

Bilinear 34.2 55.9 36.4 18.5 37.5 46.2

Deconv 34.2 55.5 36.3 17.6 37.8 46.7

Pixel Shuffle 34.4 56.0 36.6 18.5 37.6 47.5

GUM 34.3 55.7 36.5 17.6 37.6 46.9

S.A. 34.1 55.6 36.5 17.6 37.4 46.6

CARAFE 34.7 56.2 37.1 18.2 37.9 47.5

Table 4: Detection and Instance Segmentation results with Mask

RCNN via adopting CARAFE in FPN and mask head respectively.

M.H. indicates using CARAFE in mask head.

FPN M.H. Task AP AP50 AP75 APS APM APL

Bbox 37.4 59.1 40.3 21.2 41.2 48.5

Segm 34.2 55.5 36.3 17.6 37.8 46.7

X
Bbox 38.6 60.7 42.2 23.2 42.1 49.5

Segm 35.2 57.2 37.5 19.3 38.3 47.6

X
Bbox 37.3 59.0 40.2 21.8 40.8 48.6

Segm 34.7 56.2 37.1 18.2 37.9 47.5

X X
Bbox 38.6 60.9 41.9 23.4 42.3 49.8

Segm 35.7 57.6 38.1 19.4 39.0 48.7

ture, we also explore different upsampling operators in the

mask head. In typical Mask R-CNN, a deconvolution layer

is adopted to upsample the RoI features by 2x. For a fair

comparison, we do not make any changes to FPN, and

only replace the deconvolution layer with various operators.

Since we only modify the mask prediction branch, perfor-

mance is reported in terms of mask AP, as shown in Ta-

ble 3. CARAFE achieves the best performance in instance

segmentation among these methods.

In Table 4, we report the object detection and instance

segmentation results of adopting CARAFE in FPN and

mask head on Mask RCNN respectively. Consistent im-

provements are achieved in these experiments.

Semantic Segmentation. We replace the upsamplers

in UperNet with CARAFE and evaluate the results on

ADE20k benchmark. As shown in Table 5, CARAFE im-

proves the mIoU by a large margin from 40.44% to

42.23% with single scale testing. Note that UperNet with
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Figure 4: Comparison of instance segmentation results between baseline (top row) and CARAFE (bottom row) on COCO 2017 val.

Table 5: Semantic Segmentation results on ADE20k val. Sin-

gle scale testing is used in our experiments. P.A. indicates Pixel

Accuracy.

Method Backbone mIoU P.A.

PSPNet ResNet-50 41.68 80.04

PSANet ResNet-50 41.92 80.17

UperNet2 ResNet-50 40.44 79.80

UperNet w/ CARAFE ResNet-50 42.23 80.34

Table 6: Effects of adopting CARAFE in each component of

UperNet.

PPM FPN FUSE mIoU P.A.

X 40.85 79.97

X 40.79 80.01

X 41.06 80.23

X X 41.55 80.30

X X 42.01 80.11

X X 41.93 80.34

X X X 42.23 80.34

CARAFE also achieves better performance than recent

strong baselines such as PSPNet[39] and PSANet[40].

We perform a step-by-step study to inspect the effec-

tiveness of modifying different components in UperNet, as

described in Section 4.2. Results in Table 6 show that

CARAFE is helpful for all the three components and the

combination of them results in further gains.

Image Inpainting. We show that CARAFE is also effec-

tive in low-level tasks such as image inpainting. By replac-

ing the upsampling operators with CARAFE in two strong

baselines Global&Local [11] and Partial Conv [20], we ob-

serve significant improvements for both methods. As shown

in Table 7, our method improves two baselines by 1.1 dB

and 0.2 dB on the PSNR metric.

5.3. Ablation Study & Further Analysis

Model Design & Hyper-parameters. We investigate the

influence of hyper-parameters in the model design, i.e., the

2We report the performance in model zoo of the official implementation.

Table 7: Image inpainting results on Places val.

Method L1(%) PSNR(dB)

Global&Local 6.78 19.58

Partial Conv 5.96 20.78

Global&Local w/ CARAFE 6.00 20.71

Partial Conv w/ CARAFE 5.72 20.98

compressed channels Cm, encoder kernel size kencoder and

reassembly kernel size kup. We also test different normal-

ization methods in the kernel normalizer. We perform the

ablation study of the designs and settings on Faster RCNN

with a ResNet-50 backbone, and evaluate the results on

COCO 2017 val.

Towards an efficient design, we first analyze the com-

putational complexity measured by FLOPs. When upsam-

pling the feature map with input channel Cin by a factor

of σ, the per pixel FLOPs of CARAFE is computed as

2(Cin + 1)Cm + 2(Cmk
2
encoder + 1)σ2k2up + 2σ2k2upCin,

referring to [25].

We experiment with different values of Cm in the chan-

nel compressor. In addition, we also try removing the chan-

nel compressor module, which means the content encoder

directly uses input features to predict reassembly kernels.

Experimental results in Table 8 show that compress Cm

down to 64 leads to no performance decline, while be-

ing more efficient. A further smaller Cm will result in a

slightly drop of the performance. With no channel com-

pressor, it can achieve the same performance, which proves

that the channel compressor can speed up the kernel predic-

tion without harming the performance. Based on the above

results, we set Cm to 64 by default as a trade-off between

performance and efficiency.

We then investigate the influence of kencoder and kup.

Intuitively, increasing kup also requires a larger kencoder,

since the content encoder needs a large receptive field to

predict a large reassembly kernel. As illustrated in Table 9,

increasing kencoder and kup at the same time can boost the

performance, while just enlarging one of them will not. We

summarize an empirical formula that kencoder = kup − 2,
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Example Locations Reassembly Center Reassembled Units

(a) (b)

Figure 5: CARAFE performs content-aware reassembly when upsampling a feature map. Red units are reassembled into the green center

unit by CARAFE in the top-down pathway of a FPN structure.

Table 8: Ablation study of various compressed channels Cm.

N/A means channel compressor is removed.

Cm AP AP50 AP75 APS APM APL

16 37.6 60.1 40.6 22.7 41.6 48.4

32 37.7 60.3 40.7 22.8 41.2 49.0

64 37.8 60.1 40.8 23.1 41.7 48.5

128 37.8 60.1 40.8 22.4 41.7 48.7

256 37.8 60.4 40.8 22.7 41.3 48.8

N/A 37.8 60.3 40.8 22.9 41.5 48.7

Table 9: Detection results with various encoder kernel size

kencoder and reassembly kernel size kup.

kencoder kup AP AP50 AP75 APS APM APL

1 3 37.3 59.6 40.5 22.0 40.7 48.1

1 5 37.3 59.9 40.0 22.3 41.1 47.3

3 3 37.3 59.7 40.4 22.1 40.8 48.3

3 5 37.8 60.1 40.8 23.1 41.7 48.5

3 7 37.7 60.0 40.9 23.0 41.5 48.4

5 5 37.8 60.2 40.7 22.5 41.4 48.6

5 7 38.1 60.4 41.3 23.0 41.6 48.8

7 7 38.0 60.2 41.1 23.0 41.8 48.8

which is a good choice in all the settings. Though adopting

larger kernel size is shown helpful, we set kup = 5 and

kencoder = 3 by default as a trade-off between performance

and efficiency.

Other than the softmax function, we also test other alter-

natives in the kernel normalizer, such as sigmoid or sigmoid

with normalization. As shown in Table 10, ‘Softmax’ and

‘Sigmoid Normalized’ have the same performance and bet-

ter than ‘Sigmoid’, which shows that it is crucial to normal-

ize the reassembly kernel to be summed to 1.

How CARAFE Works. We conduct further qualitative

study to figure out how CARAFE works. With a trained

Mask RCNN model adopting CARAFE as the upsampling

operator, we visualize the reassembling process in Figure 5.

In the FPN structure, the low-resolution feature map will be

consecutively upsampled for several times to a higher reso-

lution, so a pixel in the upsampled feature map reassembles

Table 10: Ablation study of different normalization methods in

kernel normalizer.

Method AP AP50 AP75 APS APM APL

Sigmoid 37.4 59.8 40.2 23.1 40.9 47.4

Sigmoid Normalize 37.8 60.1 40.7 22.6 41.6 48.0

Softmax 37.8 60.1 40.8 23.1 41.7 48.5

information from a more larger region. We sample some

pixels in the high-resolution feature map, and see which

neighbors it is reassembled from. The green circle denotes

example locations and red dots indicates highly weighted

sources during the reassembly. From the figure, we can

clearly learn that CARAFE is content-aware. It tends to

reassemble points with similar semantic information. A lo-

cation at human body prefers other points from the same

human, rather than other objects or nearby background. For

locations in the background regions which has weaker se-

mantics, the reassembly is more uniform or just biased on

points with similar low-level texture features.

6. Conclusion

We have presented Content-Aware ReAssembly of FEa-

tures (CARAFE), a universal, lightweight and highly ef-

fective upsampling operator. It consistently boosts the per-

formances on standard benchmarks in object detection, in-

stance/semantic segmentation and inpainting by 1.2% AP,

1.3% AP, 1.8% mIoU, 1.1dB, respectively. More impor-

tantly, CARAFE introduces little computational overhead

and can be readily integrated into modern network architec-

tures. Future directions include exploring the applicability

of CARAFE in low-level vision tasks such as image restora-

tion and super-resolution.
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