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Figure 1. The perception-distortion trade-off of image super-resolution (1st row) and the trade-off between noise reduction and detail

preservation (2nd row). At test-time, when using CFSNet, users can easily adjust an input control variable αin to attain the most satisfactory

result according to personal preferences. In contrast, the fixed methods (e.g., EDSR, DnCNN-B) can not always guarantee the optimal

visual quality.

Abstract

Deep learning methods have witnessed the great

progress in image restoration with specific metrics (e.g.,

PSNR, SSIM). However, the perceptual quality of the re-

stored image is relatively subjective, and it is necessary for

users to control the reconstruction result according to per-

sonal preferences or image characteristics, which cannot

be done using existing deterministic networks. This moti-

vates us to exquisitely design a unified interactive frame-

work for general image restoration tasks. Under this frame-

work, users can control continuous transition of different

objectives, e.g., the perception-distortion trade-off of im-

age super-resolution, the trade-off between noise reduction

and detail preservation. We achieve this goal by control-

ling the latent features of the designed network. To be spe-

cific, our proposed framework, named Controllable Fea-

ture Space Network (CFSNet), is entangled by two branches

based on different objectives. Our framework can adap-

tively learn the coupling coefficients of different layers and

channels, which provides finer control of the restored im-

*Denotes equal contribution.
†Denotes corresponding author.

age quality. Experiments on several typical image restora-

tion tasks fully validate the effective benefits of the proposed

method. Code is available at https://github.com/

qibao77/CFSNet.

1. Introduction

Image restoration is a classic ill-posed inverse problem

that aims to recover high-quality images from damaged im-

ages affected by various kinds of degradations. According

to the types of degradation, it can be categorized into differ-

ent subtasks such as image super-resolution, image denois-

ing, JPEG image deblocking, etc.

The rise of deep learning has greatly facilitated the de-

velopment of these subtasks. But these methods are often

goal-specific, and we need to retrain the network when we

deal with images different from the training dataset. Fur-

thermore, most methods usually aim to pursue high recon-

struction accuracy in terms of PSNR or SSIM. However, im-

age quality assessment from personal opinion is relatively

subjective, and low reconstruction distortion is not always

consistent with high visual quality [4]. In addition, in many
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practical applications (e.g., mobile), it is often challenging

to obtain user's preference and the real degradation level of

the corrupted images. All of these appeal to an interactive

image restoration framework which can be applied to a wide

variety of subtasks. However, to the best of our knowledge,

currently there are few available networks which can satisfy

both interactivity and generality requirements.

Some designs have been proposed to improve the flexi-

bility of deep methods. Take image denoising for example,

data augmentation is widely used to improve the general-

ization of a model. Training with the dataset which con-

tains a series of noise levels, a single model can be applied

to blind denoising task [37]. However, this method still pro-

duces a fixed reconstruction result of the input, which does

not necessarily guarantee satisfactory perceptual quality (as

shown in Fig. 1). An alternative choice, Zhang et al. [39]

concatenated a tunable noise level map with degraded im-

ages as input to handle blind image denoising task. Though

this scheme is also user-friendly, it can not be generalized

to other tasks. In image super-resolution, [24] added noise

to the input to control the compromise between perceptual

quality and distortion. However, this scheme is specific for

image super-resolution and cannot guarantee smooth and

continuous control.

In this paper, to rectify these weaknesses, we propose

a novel framework equipped with controllability for hu-

man perception-oriented interactive image restoration. To

be more specific, we realize the interactive control of the re-

construction result by tuning the features of each unit block,

called coupling module. Each coupling module consists of

a main block and a tuning block. The parameters of two

blocks are obtained under two endpoint optimization ob-

jectives. Taking image super-resolution as an example, the

main block is optimized for low distortion while the tuning

block is optimized for high perceptual quality. Besides, as

a key to achieving fine feature control, we assign the high-

degree-of-freedom coupling coefficients adaptively learned

from a control scalar to each coupling module.

Our main contributions can be summarized as follows:

◮ We propose a novel controllable end-to-end framework

for interactive image restoration in a fine-grained way.

◮ We propose a coupling module and an adaptive learn-

ing strategy of coupling coefficients to improve recon-

struction performance.

◮ Our CFSNet outperforms the state-of-the-art methods

on super-resolution, JPEG image deblocking and im-

age denoising in terms of flexibility and visual quality.

2. Related Work

Image Restoration. Deep learning methods have been

widely used in image restoration. [15, 18, 29, 30, 35, 40, 41]

continuously deepen, widen or lighten the network struc-

ture, aiming at improving the super-resolution accuracy as

much as possible. While [13, 17, 23, 26] paid more atten-

tion to the design of loss function to improve visual quality.

Besides, [4,20,33] explored the perception-distortion trade-

off. In [8], Dong et al. adopted ARCNN built with several

stacked convolutional layers for JPEG image deblocking.

Zhang et al. [39] proposed FFDNet to make image denois-

ing more flexible and effective. Guo et al. [11] designed

CBDNet to handle blind denoising of real images. Different

from these task-specific methods, [19, 20, 37, 38] proposed

some unified schemes that can be employed to different im-

age restoration tasks. However, these fixed networks are not

flexible enough to deal with volatile user needs and appli-

cation requirements.

Controllable Image Transformation. In high-level

vision task, many technologies have been explored to im-

plement controllable image transformation. [21] and [36]

incorporated facial attribute vector into network to con-

trol facial appearance (e.g., gender, age, beard). In [31],

deep feature interpolation was adopt to implement auto-

matic high-resolution image transformation. [14] also pro-

posed a scheme that controls adaptive instance normaliza-

tion (AdaIN) in feature space to adjust high-level attributes.

Shoshan et al. [28] inserted some tuning blocks in the main

network to allow modification of the network. However, all

of these methods are designed for high-level vision tasks

and can not be directly applied to image restoration. To

apply controllable image transformation to low-level vision

tasks, Wang et al. [32] performed interpolation in the pa-

rameter space, but this method can not guarantee the opti-

mality of the outputs, which inspires us to further explore

fine-grain control of image restoration.

3. Proposed Method

In this section, we first provide an overview of the pro-

posed framework, called CFSNet and then, present the

modeling process inspired by the image super-resolution

problem. Instead of specializing for the specific super-

resolution task, we finally generalize our CFSNet to mul-

tiple image restoration tasks, including denoising and de-

blocking. Moreover, we give the explicit model interpreta-

tion based on the manifold learning to show the intrinsic ra-

tionality of the proposed network. At the end of this section,

we show the superiority and improvements of the proposed

CFSNet through the detailed comparison with the current

typical related methods.

3.1. Basic Network Architecture

As shown in Fig. 2, our CFSNet consists of a main

branch and a tuning branch. The main branch contains M

main blocks (residual blocks [18]) while the tuning branch

contains M tuning blocks with additional 2 ∗ M + 3 fully
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Figure 2. The framework of our proposed controllable feature space network (CFSNet).

connected layers. A pair of main block and tuning block

constitute a coupling module by using a coupling operation

to combine the features of the two branches effectively. We

take the original degraded image Iin and the control scalar

αin as the input and output the restored image Irec as the

final result.

In the beginning, we first use a 3× 3 convolutional layer

to extract features from the degraded image Iin,

B0 = Fin(Iin), (1)

where Fin(·) represents the feature extraction function and

B0 serves as the input of next stage. Here, together with

the input image Iin, we introduce a control scalar αin to

balance the different optimization goals. To be more spe-

cific, there are 3 shared fully connected layers to transform

the input scalar αin into multi-channels vectors and 2 inde-

pendent fully connected layers to learn the optimal coupling

coefficient for each coupling module:

αm = F ind
m (F sha

m (αin)), (2)

where both F sha
m (·) and F ind

m (·) denote the function of the

shared and independent fully connected layers, and αm is

the coupling coefficient vector of the m-th coupling mod-

ule. Each coupling module couples the output of a main

block and a tuning block as follows:

Bm = Fm(Rm, Tm)

= Fm(Fmain
m (Bm−1), F

tun
m (Bm−1)),

(3)

where Fm(·) represents the m-th coupling operation, Rm

and Tm denote the output features of m-th main block and

m-th tuning block respectively, Fmain
m (·) and F tun

m (·) are

the m-th main block function and m-th tuning block func-

tion respectively. To address the image super-resolution

task, we add an extra coupling module consisting of the up-

scaling block before the last convolutional layer, as shown

in Fig. 2. Specifically, we utilize sub-pixel convolutional

operation (convolution + pixel shuffle) [27] to upscale fea-

ture maps. Finally, we use a 3×3 convolutional layer to get

the reconstructed image,

Irec = Fout(BM +B0) or Irec = Fout(BM+1), (4)

where Fout(·) denotes convolution operation. The overall

reconstruction process can be expressed as

Irec = FCFSN (Iin, αin; θmain, θtun, θα), (5)

where FCFSN (·) represents the function of our proposed

CFSNet. θmain, θtun and θα represent the parameters of

main branch, all tuning blocks and all fully connected layers

respectively.

Since the two branches of our framework are based on

different optimization objectives, in further detail, our train-

ing process can be divided into two steps:

Step 1 Set the control variable αin as 0. Train the main

branch with the loss function L1(Irec, Ig; θmain),
where Ig is the corresponding ground truth image.

Step 2 Set the control variable αin as 1. Map the con-

trol variable αin to different coupling coefficients

{αm}, fix parameters of the main branch and

train the tuning branch with another loss function

L2(Irec, Ig; θtun, θα).

3.2. Coupling module

We now present the details of our coupling module. We

mainly introduce our design from the perspective of image

super-resolution. In order to balance the trade-off between

perceptual quality and distortion, we usually realize it by

modifying the penality parameter λ of the loss terms [4],

Lgen = Ldistortion + λLadv, (6)
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where Ldistortion denotes distortion loss (e.g., MSE and

MAE), Ladv contains GAN loss [10, 33] and perceptual

loss [13], λ is a scalar. We usually pre-train the network

with Ldistortion loss, then we fine-tune the network with

combined loss Lgen to reach a different working point for

the trade-off determined by the value of λ. That is to say, if

we regard pre-trained results as a reference point, then we

can start from the reference point and gradually convert it

to the result of another optimization goal.

However, it is not efficient to train a network for each

different value of λ. In order to address this issue, we con-

vert the control scalar λ to the input and directly control

the offset of the reference point in latent feature space. For

this purpose, we implement a controllable coupling module

to couple reference features learned with Ldistortion and

new features learned with Lgen together. We set the fea-

ture based on distortion optimization as the reference point

which is denoted as Rm. In the process of optimization

based on perceptual quality, we keep the reference point un-

changed and set Tm − Rm as direction of change. In other

words, in a coupling module, part of features are provided

by reference information, and the other part are obtained

from new exploration:

Bm = Rm+αm(Tm−Rm) = (1−αm)Rm+αmTm, (7)

where Tm ∈ R
W×H×C , Rm ∈ R

W×H×C , αm ∈ R
C de-

notes the m-th coefficient, and C is the number of channels.

It is worth noting that different main blocks provide dif-

ferent reference information, so we should treat them differ-

ently. We expect to endow each coupling module a different

coupling coefficient to make full use of reference informa-

tion. Therefore, our control coefficients {αm} are learned

from optimization process. To be more specific, we use

some fully connected layers to map a single input control

scalar αin into different coupling coefficients (Eq. 2). The

proposed network will find the optimal coupling mode since

our control coefficients {αm} are adaptive not fixed.

Thanks to the coupling module and adaptive learning

strategy, we can realize continuous and smooth transition by

a single control variable αin. Moreover, if this framework

achieves an excellent trade-off between perceptual quality

and distortion for super-resolution, then can we generalize

this model to other restoration tasks? After the theoretical

analysis and experimental tests, we find that this framework

is applicable to a wide variety of image restoration tasks. In

the next section, we will provide a more general theoretical

explanation of our model.

3.3. Theoretical analysis

Suppose there is a high-dimensional space containing all

natural images. The degradation process of a natural image

can be regarded as continuous in the space. So approxi-

mately, these degraded images are adjacent in the space. It

Figure 3. Neural network mapping gradually disentangles data

manifolds. We can represent unknown point with known point

in latent space.

is possible to approximate the reconstruction result of un-

known degradation level with the results of known degrada-

tion levels. Unfortunately, natural images lie on an approx-

imate non-linear manifold [34]. As a result, simple image

interpolation tends to introduce some ghosting artifacts or

other unexpected details to final results.

Instead of operating in the pixel space, we naturally turn

our attention to the feature space. Some literatures indicate

that the data manifold can be flattened by neural network

mapping and we can approximate the mapped manifold as

a Euclidean space [2, 5, 28]. Based on this hypothesis, as

shown in Fig. 3, we denote Xi and Yi in the latent space as

two endpoints respectively, and we can represent unknown

point Zi as a affine combination of Xi and Yi:

Zi ≈ αiXi + (1− αi)Yi, (8)

where αi is the i-th combination coefficient. This is ex-

actly the formula of the controllable coupling module Eq.

7. However, we should also note that this hypothesis is in-

fluenced by the depth and width of CNN. In other words, we

do not know the degree of flattening that can be achieved by

different channels and different layers. Thus the combina-

tion coefficients of different channels and different layers

should be discrepant. Besides, we hope to find the optimal

combination coefficients through the optimization process:

α∗ = argmin
αij

M∑

i=1

C∑

j=1

[Zij − (αijXij + (1− αij)Yij)] ,

(9)

where α∗ = {αi,j |i = 1 · · ·M, j = 1 · · ·C} represents the

optimal solution. However, it is difficult to directly obtain

the optimal α∗, because the unknown working point Zij

cannot in general be computed tractably. So we solve Eq.

9 in an implicit way. Specifically, we map the input con-

trol variable αin to different combination coefficients with

some stacked fully connected layers, and then, we can ap-

proximate the above process into optimizing the parameters

of the linear mapping network:

α∗ ≈ α̂ = Falpha(αin; θα), (10)
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where Falpha denotes mapping function of αin, α̂ is the ap-

proximated solution of the optimal α∗. Fortunately, this net-

work can be embedded into our framework. Therefore, we

can optimize the parameters of the linear mapping network

and the tuning blocks in one shot. The entire optimization

process (corresponding to Step 2) can be expressed as

θtun, θα = argmin
θtun,θα

L2(FCFSN (Iin, αin; θtun, θα), Ig),

(11)

3.4. Discussions

Difference to Dynamic-Net Recently, Dynamic-Net

[28] realized interactive control of continuous image con-

version. In contrast, there are two main differences between

Dynamic-Net and our CFSNet. First of all, Dynamic-Net is

mainly designed for image transformation tasks, like style

transfer. It's difficult to achieve the desirable results when

we use Dynamic-Net directly for image restoration tasks.

While motivated by super-resolution, we design the pro-

posed CFSNet for low-level image restoration. Secondly,

in Dynamic-Net, as shown in Fig. 4, they directly tune

multiple scalars {αm} to get different outputs. While, in

our framework coupling coefficient αm is a vector and is

learned adaptively from the input scalar αin through the

optimization process. This is more user-friendly and we

explain the reasonability of this design in Sec. 3.3.

Figure 4. Basic module. Yellow and orange bar represent main

block and tuning block respectively.

Difference to Deep Network Interpolation Deep Net-

work Interpolation (DNI) is another choice to control the

compromise between perceptual quality and distortion [32,

33]. DNI also can be applied to many low-level vision

tasks [32]. However, this method needs to train two net-

works with the same architecture but different losses and

will generate a third network to control. In contrast, our

framework can achieve better interactive control with a uni-

fied end-to-end network. Moreover, our framework makes

better use of reference information using coupling module.

DNI performs interpolation in the parameter space to gen-

erate continuous transition effects, and interpolation coeffi-

cients are kept the same in the whole parameter space. How-

ever, this simple strategy can not guarantee the optimality of

the outputs. While in our CFSNet, we perform the interpo-

lation in the feature space and the continuous transition of

the reconstruction effect is consistent with the variation of

the control variable αin. We can produce a better approx-

imation of the unknown working point. See Sec. 4.3 for

more experimental comparisons.

4. Experiments

In this section, we first demonstrate implementation de-

tails of our framework. Then we validate the control mech-

anism of our CFSNet. Finally, we apply our CFSNet to

three classic tasks: image super-resolution, image denois-

ing, JPEG image deblocking. All experiments validate the

effectiveness of our model. Due to space limitations, more

examples and analyses are provided in the appendix.

4.1. Implement Details

For image super-resolution task, our framework contains

30 main blocks and 30 tuning blocks (i.e., M = 30). As

for the other two tasks, the main branch parameters of our

CFSNet are kept similar to that of the compared method

[37] (i.e., M = 10) for a fair comparison. Furthermore, we

first generate a 512-dimensional vector with values of all 1.

Then we multiply it by the control scalar αin to produce a

control input. All convolutional layers have 64 filters and

the kernel size of each convolutional layer is 3× 3. We use

the method in [12] to perform weight initialization. For both

training stage of all tasks, we use the ADAM optimizer [16]

by setting β1 = 0.9, β2 = 0.999, and ε = 10−8 with the

initial learning rate 1e-4. We adopt 128 as the minibatch

size in image denoising task and set it as 16 in the other

three tasks. We use PyTorch to implement our network and

perform all experiments on GTX 1080Ti GPU.

For image denoising and JPEG image deblocking, we

follow the settings as in [37] and [8] respectively. The

training loss function in Step 1 and Step 2 remains un-

changed: L1(Irec, Ig) = L2(Irec, Ig). In particular, for

image denoising, we input the degraded images of noise

level 25 when we train the main branch in Step 1 and we

input the degraded images of noise level 50 when we train

the tuning branch in Step 2. Training images are cut into

40 × 40 patches with a stride of 10. And the learning

rate is reduced by 10 times every 50000 steps. For JPEG

deblocking, we set quality factor as 10 in the first train-

ing stage and change it to 40 in the second training stage.

Besides, we choose 48 × 48 as patch size and the learn-

ing rate is divided by 10 every 100000 steps. For image

super-resolution, we first train the main branch with objec-

tive MAE loss, then we train the tuning branch with ob-

jective L2 = Lmae + 0.01Lgan + 0.01Lper, where Lmae

denotes mean absolute error (MAE), Lgan represents wgan-

gp loss [10] and Lper is a variant of perceptual loss [33]. We

set HR patch size as 128×128 and we multiply the learning

rate by 0.6 every 400000 steps.
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(a) image denoising (b) JPEG image deblocking

Figure 5. Average PSNR curve for noise level 30 on the BSD68

dataset and same curve for quality factor 20 on the LIVE1 dataset.

4.2. Ablation Study

Fig. 5 presents the ablation study on the effects of adap-

tive learning coupling coefficients strategy. We directly set

the coupling coefficients of different channels and differ-

ent layers as the same αin in CFSNet-SA. That is, com-

pared with CFSNet, CFSNet-SA removes the linear map-

ping network of control variable αin. Otherwise, we keep

the training process of CFSNet-SA consistent with CFSNet.

We can find that, no matter in denoising task or in deblock-

ing task, the best restored result of CFSNet is better than

that of CFSNet-SA for unseen degradation level. In partic-

ular, the curve of CFSNet is concave-shaped, which means

that there is a bijective relationship between the reconstruc-

tion effect and the control variable. In contrast, there is no

obvious change law in the curve of CFSNet-SA. The reason

is that adaptive coupling coefficients help to produce bet-

ter intermediate features. This merit provides more friendly

interaction control. What's more, JPEG deblocking task is

more robust to control variable than image denoising task,

we speculate that this is because JPEG images of different

degradation levels are closer in the latent space.

4.3. Image Superresolution

For image super-resolution, we adopt a widely used

DIV2K training dataset [1] that contains 800 images. We

down-sample the high resolution image using MATLAB

bicubic kernel with a scaling factor of 4. Following [24,33],

we evaluate our models on PIRM test dataset provided in

the PIRM-SR Challenge [3]. We use the perception in-

dex (PI) to measure perceptual quality and use RMSE to

measure distortion. Similar to the PIRM-SR challenge, we

choose EDSR [18], CX [23] and EnhanceNet [26] as base-

line methods. Furthermore, we also compare our CFSNet

with another popular trade-off method, deep network inter-

polation [32, 33]. We directly use source code from ESR-

GAN [33] to produce SR results with different perceptual

quality, namely ESRGAN-I.

Fig. 7 and Fig. 1 show the visual comparison between

our results and the baselines. We can observe that CFSNet

can achieve a mild transition from low distortion results to

high perceptual quality results without unpleasant artifacts.

Figure 6. Perception-distortion plane on PIRM test dataset. We

gradually increase αin from 0 to 1 to generate different results

from distortion point to perception point.

In addition, it can be found that our CFSNet outperforms

the baselines on edges and shapes. Due to different user

preferences, it is necessary to allow users to adjust the re-

construction results freely.

We also provide quantitative comparisons on PIRM test

dataset. Fig. 6 shows the perception-distortion plane. As

we can see, CFSNet improves the baseline (EnhanceNet)

in both perceptual quality and reconstruction accuracy.

The blue curve shows that our perception-distortion func-

tion is steeper than ESRGAN-I (orange curve). Mean-

while, CFSNet performs better than ESRGAN-I in most re-

gions, although our network is lighter than ESRGAN. This

means that our result is closer to the theoretical bound of

perception-distortion.

4.4. Image Denoising

In image denoising experiments, we follow [37] to use

400 images from the Berkeley Segmentation Dataset (BSD)

[22] as the training set. We test our model on BSD68 [22]

using the mean PSNR as the quantitative metric. Both train-

ing set and test set are converted to gray images. We gen-

erate the degraded images by adding Gaussian noise of dif-

ferent levels (e.g., 15, 25, 30, 40, and 50) to clean images.

We provide visual comparison in Fig. 8 and Fig. 1. As

we can see, users can easily control αin to balance noise re-

duction and detail preservation. It is worth noting that, our

highest PSNR results (αin = 0.5) have similar visual qual-

ity with other methods, but it does not necessarily mean the

best visual effects, for example, the sky patch of ‘test017”

enjoys a smoother result when αin = 0.6. Users can per-

sonalize each picture and choose their favorite results by

controlling αin at test-time.

In addition to perceptual comparisons, we also provide

objective quantitative comparisons. We change αin from

0 to 1 with an interval of 0.1 for preset noise range (σ ∈
[25, 30, 40, 50]). Then we choose the final result according
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Figure 7. Perceptual and distortion balance of “215”, “211” and “268” (PIRM test dataset) for 4× image super-resolution.

Figure 8. Gray image denoising results of “test051” “test017” and “test001” (BSD68) with unknown noise level σ = 40. αin = 0.5

corresponds to the highest PSNR results, and the best visual results are marked with red boxes.
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Figure 9. JPEG image artifacts removal results of “house” and “ocean” (LIVE1) with unknown quality factor 20. αin = 0.5 corresponds

to the highest PSNR results, and the best visual results are marked with red boxes.

Table 1. Benchmark image denoising results. The average

PSNR(dB) for various noise levels on (gray) BSD68. ∗denotes

unseen noise levels for our CFSNet in the training stage.

methods σ = 15∗ σ = 25 σ = 30∗ σ = 50

BM3D 31.08 28.57 27.76 25.62

TNRD 31.42 28.92 27.66 25.97

DnCNN-B 31.61 29.16 28.36 26.23

IRCNN 31.63 29.15 28.26 26.19

FFDNet 31.63 29.19 28.39 26.29

CFSNet 31.29 29.24 28.39 26.28

to the highest PSNR. We compare our CFSNet with several

state-of-the-art denoising methods: BM3D [7], TNRD [6],

DnCNN [37], IRCNN [38], FFDNet [39]. More interest-

ingly, as shown in Tab. 1, our CFSNet is comparable with

FFDNet on the endpoint (σ = 25 and σ = 50), but our CFS-

Net still achieves the best performance on the noise level 30

which is not contained in the training process. Moreover,

our CFSNet can even deal with unseen outlier (σ = 15).

This further verifies that we can obtain a good approxima-

tion of the unknown working point.

4.5. JPEG Image Deblocking

We also apply our framework to reduce image compres-

sion artifacts. As in [8, 20, 37], we adopt LIVE1 [25] as

the test dataset and use the BSDS500 dataset [22] as base

training set. For a fair comparison, we perform training and

evaluating both on the luminance component of the YCbCr

color space. We use the MATLAB JPEG encoder to gener-

ate JPEG deblocking input with four JPEG quality settings

q = 10, 20, 30, 40.

We select the deblocking result in the same way as the

image denoising task. We select SA-DCT [9], ARCNN [8],

TNRD [6] and DnCNN [37] for comparisons. Tab. 2

shows the JPEG deblocking results on LIVE1. Our CF-

SNet achieves the best PSNR results on all compression

quality factors. Especially, our CFSNet does not degrade

too much and still achieves 0.12 dB and 0.18 dB improve-

Table 2. Benchmark JPEG deblocking results. The average

PSNR(dB) on the LIVE1 dataset. ∗ denotes unseen quality fac-

tors for our CFSNet in the training stage.

methods q = 10 q = 20∗ q = 30∗ q = 40

JPEG 27.77 30.07 31.41 32.35

SA-DCT 28.65 30.81 32.08 32.99

ARCNN 28.98 31.29 32.69 33.63

TNRD 29.15 31.46 32.84 N/A

DnCNN-3 29.19 31.59 32.98 33.96

CFSNet 29.36 31.71 33.16 34.16

ments over DnCNN-3 on quality 20 and 30 respectively, al-

though JPEG images of quality 20 and 30 never appear in

training process. Fig. 9 shows visual results of different

methods on LIVE1. Too small αin produces too smooth re-

sults, while too large αin leads to incomplete artifacts elim-

ination. Compared to ARCNN [8] and DnCNN [37], our

CFSNet can make a better compromise between artifacts

removal and details preservation.

5. Conclusion

In this paper, we introduce a new well-designed frame-

work which equipped with flexible controllability for image

restoration. The reconstruction results can be finely con-

trolled using a single input variable with an adaptive learn-

ing strategy of coupling coefficients. Besides that, it is capa-

ble of producing high quality images on image restoration

tasks such as image super-resolution, image blind denoising

and image blind deblocking, and it outperforms the existing

state-of-the-art methods in terms of user-control flexibility

and visual quality. Future works will focus on the expansion

of the multiple degraded image restoration tasks.
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