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Abstract

Hyperspectral image fusion (HIF) reconstructs high spa-

tial resolution hyperspectral images from low spatial res-

olution hyperspectral images and high spatial resolution

multispectral images. Previous works usually assume that

the linear mapping between the point spread functions of

the hyperspectral camera and the spectral response func-

tions of the conventional camera is known. This is unre-

alistic in many scenarios. We propose a method for blind

HIF problem based on deep learning, where the estimation

of the observation model and fusion process are optimized

iteratively and alternatingly during the super-resolution re-

construction. In addition, the proposed framework enforces

simultaneous spatial and spectral accuracy. Using three

public datasets, the experimental results demonstrate that

the proposed algorithm outperforms existing blind and non-

blind methods.

1. Introduction

Hyperspectral image (HSI) analysis has a wide range of

applications for object classification and recognition [13, 9,

33, 17], segmentation [22], tracking [23, 24] and environ-

mental monitoring [18] in both computer vision and remote

sensing. While HSI facilitates these tasks through informa-

tion across a large number of spectra, these many additional

dimensions of information means that the potential spatial

resolution of HSI systems is severely limited compared with

RGB cameras. HIF addresses this challenge by using the

jointly measured high resolution multispectral image (HR-

MSI)—often simply RGB—to improve the low resolution

HSI (LR-HSI) by approximating its high resolution version

(HR-HSI).

Generally, most state-of-the art methods formulate the
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Figure 1: The 31st band of a reconstructed high resolu-

tion hyperspectral image (HR-HSI) with unknown spectral

response function. (a) ground-truth HR-HSI, (b) result of

HySure [20], (c) our result.

observation model through the linear functions [28, 7, 20]

Y = XBS, (1)

Z = RX, (2)

where X is the HR-HSI, Y is the LR-HSI and Z is the HR-

MSI. The linear operators B and S perform the appropriate

transformations to map X to the measured values; B repre-

sents a convolution between the point spread function of the

sensor and the HR-HSI bands, S is a downsampling opera-

tion, and R is the spectral response function of the multi-

spectral imaging sensor. The spectral response functions

and point spread functions are often assumed to be at least

partly known. A common way to learn X is through opti-

mizing an objective function of the form

min
X

‖Y − XBS‖
2
F
+ λ1‖Z − RX‖

2
F
+ λ2ϕ(X), (3)

where the first and second terms enforce agreement with

the data and the third term is a regularization [12, 15, 6, 7].

However, this assumed relationship between X,Y,Z is not

always true, and because the information available about the

sensor is incomplete, it is unknowable [26]. In other words,

this non-blind fusion is often only an approximation, and
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therefore performance depends on approximation quality.

Additionally, how to preserve both spectral and spatial in-

formation simultaneously is unresolved due to the trade-off

between the two data fidelity terms.

Previous works usually assumed that the linear map-

ping between the point spread functions of the hyperspec-

tral camera and the spectral response functions of the con-

ventional camera is known, which is unrealistic in many

scenarios. In this paper, we instead perform blind hyper-

spectral image fusion. We treat the problem as a low-level

inverse problem with bias between the training and testing

data. We address the problem by estimating the degra-

dation process with additional regularization to improve

model generalization. Compared with the latest blind and

non-blind methods, experimental results on both simulated

and real data demonstrate state-of-art performance and ro-

bustness. Although this is not a general inverse framework,

with appropriate modifications the proposed work can ben-

efit other low-level inverse problems with data bias, where

the assumed degradation procedure is different from the true

value.

2. Related Work

There have been numerous methods specifically de-

signed for HSI super-resolution, including penalty based

approaches [3, 20, 29, 28, 34], matrix factorization ap-

proaches [12, 15, 8, 14, 2], tensor factorization ap-

proaches [6, 16], and deep learning approaches [7]. Most

relevant to our work is HySure [20], which attempts to es-

timates B and R from data via convex optimization based

on two quadratic data-fitting terms and total variation reg-

ularization. To simplify the problem, HySure assumes that

these two operators are linear. HySure also minimize an

objective function similar to Eq. 3). Our model is based

on an iterative back-projection refinement procedure simi-

lar to ideas used for other image processing problems. For

example, [19] proposed a general iterative regularization

framework for image denoising by iteratively refining a cost

function. Recently, [21] proposed an iterative scheme for

Reverse Filtering, which updates recovered images accord-

ing to the filtering effect. In image super-resolution, itera-

tive back-projection (IBP) refinement was proposed by [19].

Our approach is similarly motivated.

3. Motivation

Given a LR-HSI and HR-MSI image pair, the goal of

the HSI fusion problem is to obtain an HR-HSI image

X ∈ R(W×H×B) that has both high spatial and high spec-

tral resolution, with W, H and B the image width, image

height and number of spectral bands, respectively. This can

be formulated as

X̂ = f(Y,Z), (4)

Figure 2: Illustration of our algorithm. This is the detailed

operation process in one iteration

where Y ∈ R(w×h×B) stands for the LR-HSI, Z ∈
R(W×H×b) stands for the HR-MSI and X̂ stands for esti-

mated HR-HSI. Generally HIF is highly under-constrained

and difficult to solve because the total number of observa-

tions obtained from HR-MSI and LR-HSI is is much smaller

than the unknowns (whB + WHb ≪ WHB). For non-

blind hyperspectral image fusion, given the parameters B,

R, most methods learn the mapping function f in Eq. 4 by

optimizing the objective function in Eq. 3. However, for

the blind fusion of hyperspectral images, the parameters B

and R are unknown, and so it is difficult to directly solve the

objective function in Eq. 3. To address this problem, the ob-

servation model should also be learned. We formulate this

process as

(Ŷ, Ẑ) = g(X), (5)

where g stands for the observation model to be learned. For

example, HySure first learns this mapping, estimating the

parameters B and R of the observation model from the data.

Then they introduce the learned parameters B and R into

Eq. 3 to solve the forward fusion problem.

If the hyperspectral image blind fusion problem is per-

fectly solved, using X̂ obtained by the fusion function f in

the function g, the resulting Ŷ and Ẑ should be the same as

the inputs Y and Z. But in practice there will be an error

in the estimation of these two values. We thus propose an

iterative fusion framework that iteratively learns these two

functions by letting them correct each other. The proposed

framework is formulated as

Xn+1 = Xn + f(∆Yn,∆Zn), (6)

where Xn stands for the HR-HSI in the nth iteration, and

∆Yn and ∆Zn stand for the back-projection error. The cal-
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culation of ∆Yn and ∆Zn can be written as

(∆Yn,∆Zn) = (Y,Z)− (Yn,Zn)

= (Y,Z)− g(Xn),
(7)

where Yn and Zn represent the learned LR-HSI and HR-

MSI in the nth iteration. Therefore, we both learn the fusion

function f and the observation model g as in other blind

methods. However, the recovered image X̂ will still suffer

from spatial and spectral distortion. We therefore iteratively

correct the result of the fusion process done by the observa-

tion model. To describe our algorithm, we use the illustra-

tion in Fig. 2. We start from HR-HSI Xn, which is the fused

image in the nth iteration. After applying the (unknown)

back-projection function g to Xn, we obtain (Yn,Zn). We

then calculate the residual (Y,Z)− (Yn,Zn), which con-

tains both spectral and structural distortion. Finally, we fuse

the residual with the (unknown) HSI fusion function f , and

add this to correct Xn. Then we perform another iteration

with similar steps. Empirically, Xn with increasing n better

approximates the ground truth X.

4. Deep Blind Iterative Fusion Network

(DBIN)

Using the above algorithm, we create a deep neural net-

work for HSI fusion by unfolding all steps of the algorithm

as network layers. The proposed network is a structure of

n stages implemented in n iterations using Eq. (6). The

reason we chose the convolutional neural network to imple-

ment this framework is twofold. First, while the objective

function of most methods contains two data fidelity terms

that must trade off between spectral and structural quality,

for convolutional neural networks it is easy to construct an

objective function that contains only one data fidelity term,

which avoids this trade-off. Second, matrix factorization-

based methods cannot fully exploit the spatial-spectral cor-

relation of the HSIs since they need to unfold the three-

dimensional HSI into matrices, while convolutional neu-

ral networks are very suitable for extracting spatial-spectral

correlations. Furthermore, deep learning is much faster to

optimize than traditional iterative algorithms in this area.

The pipeline of the proposed model is illustrated in Fig. 3

(top). The model takes initialized HR-HSI X0 as input and

refines this initialized value with the “iterative refinement

unit” (IRU) according to

Xn+1 = Xn + fθ(Y,Z, gθ(X
n)), (8)

where θ denotes the trainable parameter set of the CNN.

The initialized HR-HSI X0 was learned together with the

IRU. This can be formulate as

X0 = fθ(Y,Z), (9)

In order to simulate the iterative optimization process

shown in Eq. (6), all parameters of the IRU are shared. Fi-

nally, we combine the fused images HR-HSI Xn produced

in each of the intermediate stages to obtain the final result,

which we call dense fusion. The core of our network is

the iterative refinement unit. Next we discuss the IRU and

dense fusion mechanisms in more detail.

4.1. Iterative Refinement Unit (IRU)

To make up for information loss during fusion, each

stage the IRU takes the output of the previous stage, Xn,

plus the HR-MSI image Z and LR-HSI image Y as input to

obtain an refined Xn+1. This output becomes one input of

the next layer according to Eq. (8). As the number of it-

erations increase, spectral and structural distortion reduces.

We show the detailed structure of the IRU in Fig. 3 (bot-

tom). The IRU consists of a measuring module and a fusion

module. The measurement module is responsible for learn-

ing the observation model, while the fusion module extracts

useful spatial and spectra information.

Measurement module The observation model has previ-

ously been used as a constraint [35, 11]. In the proposed

work, we apply a similar idea to constrain the blind fusion

of hyperspectral image. Referring to Eq. (5), this process

can be written as

(Yn,Zn) = gθ(X
n), (10)

where θ denotes the trainable network parameter. For Eq.

(1) in the observation model, many algorithms assume that

B is a convolution operator and S is a down-sampling op-

erator. Similarly, we model this process with a single-layer

convolution with stride. For Eq. (2), many algorithms treat

R as a matrix. Since our model is based on the convolutional

neural network, which is particularly good at processing 3D

tensors, we also use single layer convolution models Eq.

(2) without resorting to matrix representations. In addition

to using convolution to simulate the three parameters B, S

and R, we also apply nonlinear activation functions after

the convolution based on our nonlinear assumptions of the

observation model.

Fusion Module We use this module to extract spatial

structure and spectral information from the residuals to re-

fine the previous results. Following Eq. (6), this process can

be written as

Xn+1 = Xn + fθ(∆Yn,∆Zn). (11)

The fusion module is built using ResNet [10] since our net-

work is very deep and may suffer from gradient vanishing

during training. We first concatenate the upsampled resid-

uals of the LR-HSI with the residuals of the multi-spectral
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Figure 3: Detailed structure of the proposed network. (top) Overall network structure. (bottom) Detailed structure of the

iterative refinement unit (IRU).

image. Then we apply several ResBlocks to extract fea-

tures. These features will be used to refine the HR-HSI out-

put at the last iteration.

4.2. Dense Fusion

When training the network we fuse the outputs of each

iteration phase using convolution for the final output. We

call this mechanism “dense fusion.” This is illustrated in

Fig. 3. This is motivated by the fact that deep neural net-

works extract features having different information at differ-

ent depths. Similarly, in our network hyperspectral images

generated in different iterations may have different spatial

or spectral information, and the results can be combined to

further improve the performance of the network. We will

verify the effectiveness of deep fusion in the experiments

section.

Therefore, the final generated HR-HSI can be written as

X̂ = Conv(Concat(X0,X1, ...,Xn, ...)), (12)

where “Conv” represents the convolution operator and

“Concat” represents the concatenation operator. We use

pixel-wise L1 reconstruction loss for X̂ during training. The

L1 loss can better preserve the edges of an image, which is

desired in our task. The overall loss function is defined as

follows:

L = ‖X̂ − X‖1, (13)

where X are ground truth HR-HSI, while X̂ is the corre-

sponding output HR-HSI.

5. Experiments

5.1. Data and Experimental Setup

We use three publicly available hyperspectral databases

for our simulation experiments: CAVE [30] ,Harvard [30],

and NTIRE2018 [1]. For real data experiments, we use

WV2.1

The Harvard database contains 50 indoor and outdoor

images recorded under daylight illumination, and 27 images

under artificial or mixed illumination. We only use the 50

indoor images for our experiments. We use the first 30 HSI

for training, and the last 20 HSI for testing.

The CAVE database includes 32 indoor images captured

under controlled illumination. We use the first 20 HSI for

training and the last 12 HSI for testing. The CAVE dataset

is generally considered to be more challenging than the

Harvard dataset because the Harvard images have higher

spatial resolution, while pixels in close range usually have

similar spectral reflectance and therefore typically contain

smoother reflections.

The NTIRE2018 database was built for the NTIRE2018

1https://www.harrisgeospatial.com/Data-Imagery/

Satellite-Imagery/High-Resolution/WorldView-2
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challenge on spectral reconstruction from RGB images.

This dataset contains two parts: “Train1” includes 201 im-

ages from the ICVL dataset [4], which consists of RGB im-

ages created by applying a known spectral response func-

tion to ground truth hyperspectral images. “Train2” has

53 RGB images created by applying an unknown response

function to ground truth hyperspectral information. We use

Train1 for training, and Train2 for testing.

The WV2 database contains an 8-band LR-MSI and

RGB image pair. We use the upper part as the training set

and the lower part as the test set. Since the ground truth

HR-MSI is not available in the real dataset, we use Wald’s

protocol [32] to generate the training data.

We use several non-blind state-of-art methods for com-

parison: sparse fusion (SPARTF) [28], coupled sparse ten-

sor factorization (CSTF) [16], coupled spectral unmix-

ing (CSU) [15], nonnegative-structured sparse representa-

tion (NSSR) [8], and DHSIS [7]. We also compare with

HySure [20] and DTV [5], which are blind HIF methods.

For quantitative comparison, PSNR, structural similarity in-

dex (SSIM [27]), spectral angle mapper index (SAM [31])

and erreur relative globale adimensionnelle de synth`ese

(ERGAS [25]) are used for evaluation. SAM is a spectral

evaluation method used in remote sensing, which measures

the angular difference between the estimated image and the

ground truth [31]. SSIM is an indicator of the spatial struc-

tures preservation of the estimated image. ERGAS reflects

the overall quality of the fused image.

5.2. Model verification with CAVE dataset

We first conduct simulated experiments to verify our

deep blind iterative fusion network (DBIN) quantitatively.

We compare the performance of the proposed DBIN with

different stages number n. We also denote our model with

dense fusion “DBIN+.”

Table 1 shows the average results over 12 testing HSI

images. We observe that DBIN with more stages has bet-

ter performance, while the parameter size in the network

has not increased. This shows that our network can indeed

iteratively refine the target. We further observe that dense

fusion can significantly improve the model. In the following

experiments, we will use “DBIN+” to compare with other

methods.

5.2.1 Can our model learn the observation model?

To investigate this question, we visualize low-resolution

multispectral images generated from different iterations in

Fig. 4. We only show the residuals of the first three itera-

tions because the subsequent residuals are small enough to

be ignored. It can be seen from the residual image of the

first iteration that the reconstruction error is large, indicat-

ing that the HR-HSI learned by the network has very serious

Table 1: Model analysis on the CAVE dataset. n represents

the number of iterations of the network. “+” indicates that

the network has a dense fusion structure.

Method PSNR SSIM SAM ERGAS

Best Values +∞ 1 0 0

DBIN (n=1) 45.58 0.9927 3.55 0.74

DBIN (n=3) 45.69 0.9925 3.55 0.69

DBIN (n=5) 46.32 0.9930 3.41 0.66

DBIN+ (n=5) 47.51 0.9934 3.18 0.58

spatial and spectral distortion. The residual images in the

second iteration are small, and only contain a small amount

of spectral information, indicating that the network has been

able to preserve this information, but there is still spatial

information distortion. At the third iteration, the residuals

are already small and the network has learned the obser-

vation model. In fact, we should use multiple convolution

kernels of different sizes to learn the observation model as

we do not know its size, but we found in our experiments

that adopting this strategy did not lead to performance gain.

Therefore, for all following experiments we use single layer

12 × 12 convolution with stride 8 to simulate B, S, and an-

other single layer 3 × 3 convolution with stride 1 to learn

R.

(a) Z (b) Z1 (c) Z2 (d) Z3

(e) Z − Z
1 (f) Z − Z

2 (g) Z − Z
3

Figure 4: HR-MSI learned by the network in different iter-

ations. (a) The ground truth HR-MSI. (b)-(c) Learned HR-

MSI at nth (n=1,2,3) iteration. (d)-(f) The residual corre-

sponding to (a)-(c). For better visual quality, we have mag-

nified these residual by a factor of three.

5.3. Non­blind fusion on CAVE and Harvard data

We follow the same setting as [7]. First we apply an 8×8
Gaussian filter with a mean of 0 and a standard deviation of

2, and then downsample every 8 pixels in both the vertical

and horizontal directions for each band of the reference to

simulate the LR-HSI. The RGB images Z were simulated
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(a) gt and RGB (b) HySure (c) CSU (d) NSSR

‘

(e) DHSIS (f) Ours

Figure 5: Qualitative results of the CAVE dataset at band 31. Top row: reconstructed images. Bottom row: reconstruction

errors – light color indicates less error, dark color indicates larger error.

Table 2: Average quantitative results of various methods on

the CAVE test dataset.

Method PSNR SSIM SAM ERGAS

Non-blind

methods

SPARTF 39.51 0.946 10.2 1.28

CSTF 42.66 0.971 6.68 0.98

CSU 41.86 0.982 6.30 1.14

NSSR 43.82 0.987 4.07 0.84

DHSIS 45.59 0.990 3.91 0.73

Blind

methods

HySure 37.35 0.945 9.84 2.01

DBIN+ 47.51 0.993 3.18 0.58

by integrating over the original spectral channels using the

spectral response R of a Nikon D700 camera.2 For this set-

ting, the parameters B and R are known.

The average quantitative values across the two datasets

are shown in Table 2 and Table 3. The experimental re-

sults demonstrate that the proposed approach achieves sig-

nificantly better results than other methods on the CAVE

dataset according to all index measures, suggesting that our

method can better preserve both spatial and spectral infor-

mation. As the Harvard dataset is less challenging than the

CAVE dataset, all the compared methods achieve good re-

sults, but the proposed algorithm still performs better. This

demonstrates that DBIN+ can handle challenging scenarios

much better than state-of-the-art. (Actually these experi-

ments are “unfair” for our method, since we do not use the

knowledge of B, R unlike these other methods.)

We also show qualitative results of both datasets in Fig. 5

and Fig. 6. (Since SPARTF and CSTF perform worse that

other non-blind methods, we do not provide the qualitative

2http://www.maxmax.com/spectral_response.htm

Table 3: Average quantitative results of various methods on

the Harvard test dataset.

Method PSNR SSIM SAM ERGAS

Non-blind

methods

SPARTF 41.08 0.943 5.29 2.93

CSTF 40.10 0.942 4.92 3.08

CSU 45.10 0.981 3.68 1.40

NSSR 46.31 0.982 3.46 1.20

DHSIS 46.02 0.981 3.54 1.17

Blind

methods

HySure 43.88 0.975 4.20 1.56

DBIN+ 46.67 0.983 3.42 1.15

results of these two methods.) Both of the output images

of HySure and DHSIS suffer from grid-like structural dis-

tortion, and NSSR and CSU have ring shaped distortion.

Meanwhile, our results are almost identical in visual qual-

ity to the ground-truth images. We also achieve minimal

reconstruction error at both the edges and smooth areas of

the image. This indicates that our algorithm has less struc-

tural and spectral distortion than other methods.

5.4. Semi­blind fusion on NTIRE2018 data

As with the previous experiments we need to simulate a

LR-HSI, but we use the RGB image of this dataset directly

for training and testing. For this set of experiments, the

parameter B is known and the parameter R is unknown. We

thus call this experiment semi-blind fusion. For the non-

blind methods with which we compare, we directly use the

R matrix built into their code to test.

Table 4 shows the average performance over 53 test im-

ages of the competing methods. We observe that the pro-

posed method significantly outperforms other methods with
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(a) gt and RGB (b) HySure (c) CSU (d) NSSR (e) DHSIS (f) Ours

Figure 6: Qualitative results of the Harvard dataset at band 31. Top row: reconstructed images. Bottom row: reconstruction

errors – light color indicates less error, dark color indicates larger error.

Table 4: Average quantitative results of the test methods on

the NTIRE 2018 dataset.

Method PSNR SSIM SAM ERGAS

Non-blind

methods

SPARTF 23.6 0.59 7.18 6.94

CSTF 9.41 0.24 15.4 29.2

CSU 19.7 0.76 9.36 8.19

NSSR 22.9 0.41 17.4 9.78

DHSIS 1.13 0.19 20.4 257

Blind

methods

HySure 37.3 0.94 5.14 2.13

DBIN+ 46.4 0.98 2.41 0.71

respect to all evaluation measures by a great margin. While

those non-blind methods use a predefined R matrix, thus

achieving better results on the non-blind experiments, they

generate worse results on this experiment. In fact, DHSIS

do not work at all in this set of experiments since they first

use the preset R matrix to solve the optimization problem

for the initial value. Since the R matrix is inaccurate, the ini-

tial results obtained are not very good. When they then use

neural networks to optimize this initial result the network

does not converge, leading to worse performance. Hysure,

while performing worse than the CSU and NSSR without

knowing the exact R and B, still achieved similar perfor-

mance to the previous two sets of experiments when the R

is unknown.

We also show the images of two test samples obtained

by our method and HySure (band 31) in Fig 7. It is seen

that the image obtained by DBIN+ is closest to the ground-

truth, while the results of HySure usually contain obvious

incorrect structure and suffer from spectral distortion. This

is due to various reasons. First, although HySure attempts

to estimate the observation model from the data, they do

the estimation only once, but our model learns the observa-

tion model and the fusion process through an iterative al-

ternating manner, allowing the alternative optimization be-

tween the two processes so the results of both estimation

and fusion are more accurate. Second, the linear assump-

tions of HySure about the observation model may be limit-

ing in real-world scenarios. Third, the two data fitting terms

cause HySure to make trade-off between spectral and spa-

tial preservation.

5.5. Real blind fusion on WV2 data

Here we provide the results on a public dataset of real

multispectral images called WV2. Multispectral image fu-

sion (MIF) aims to fuse a RGB (or PAN) image with an LR-

MSI image to reconstruct a HR-MSI image. The slight dif-

ference between MIF and HIF is that hyperspectral images

have many more bands than multispectral images. Other

non-blind methods require a degradation matrix which is

unknown in this case, thus we only provide the compar-

isons with blind methods. DTV [5] is the state-of-art blind

method, so we only report the result of DTV for real ex-

periments (see Fig. 8) since it runs very slowly and takes a

few days to fuse a single image. Experiments demonstrate

that HySure suffers from grid distortion, and DTV produces

over-smooth effect while our method achieves the most sat-

isfactory result.

5.6. Extension: Single Image Super Resolution

Finally, our network can be directly extended to other

ill-posed inverse problems. Fig. 9 shows the experimen-

tal results of single image super-resolution. Compared with

MDSR (Winner of NTIRE2017 Super-Resolution Chal-
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(a) gt and RGB (b) HySure (c) Ours

Figure 7: Qualitative results of the NTIRE 2018 dataset at

band 31. Top: reconstructed images. Bottom: reconstruc-

tion errors – light color indicates less error, dark color indi-

cates larger error.

(a) RGB (b) LR-MSI (c) HySure

(d) DTV (e) Ours

Figure 8: (a) and (b) are the real RGB and LR-MSI image

acquired by World View-2. (c)-(e) The fused HR-MSI im-

age. We only show band 3 of the MSI for simplicity

(a) LR (b) MDSR (c) Ours

Figure 9: Experimental results for ×4 single image super

resolution. (a) The bicubic downsampling low resolution

image.(b) The result obtained by MDSR [20]. (c) The result

of our method, DBIN+.

lenge) [20], our model achieves similar visual effects, de-

spite not being specifically designed for this task. This

demonstrates that the proposed network is more general and

may by applied to other image processing tasks.

5.7. Conclusion

In this work, we proposed an iterative fusion framework

for blind hyperspectral image fusion. We are able to itera-

tively and alternatingly estimate the observation model and

predict the fusion model. We apply deep neural networks in

this framework and design the entire iterative procedure as

an end-to-end system. The proposed DBIN+ blindly fuses

the LR-HSI with the HR-MSI without any prior knowledge

about the observation model and preserves spectral and spa-

tial information at the same time. Evaluations on four pub-

lic datasets demonstrate that the proposed model achieves

state-of-the-art performance in terms of quantitative result

and visual quality.
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