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Abstract

Point cloud registration is a key problem for computer

vision applied to robotics, medical imaging, and other ap-

plications. This problem involves finding a rigid transfor-

mation from one point cloud into another so that they align.

Iterative Closest Point (ICP) and its variants provide sim-

ple and easily-implemented iterative methods for this task,

but these algorithms can converge to spurious local optima.

To address local optima and other difficulties in the ICP

pipeline, we propose a learning-based method, titled Deep

Closest Point (DCP), inspired by recent techniques in com-

puter vision and natural language processing. Our model

consists of three parts: a point cloud embedding network,

an attention-based module combined with a pointer gener-

ation layer to approximate combinatorial matching, and a

differentiable singular value decomposition (SVD) layer to

extract the final rigid transformation. We train our model

end-to-end on the ModelNet40 dataset and show in several

settings that it performs better than ICP, its variants (e.g.,

Go-ICP, FGR), and the recently-proposed learning-based

method PointNetLK. Beyond providing a state-of-the-art reg-

istration technique, we evaluate the suitability of our learned

features transferred to unseen objects. We also provide pre-

liminary analysis of our learned model to help understand

whether domain-specific and/or global features facilitate

rigid registration.

1. Introduction

Geometric registration is a key task in many compu-

tational fields, including medical imaging, robotics, au-

tonomous driving, and computational chemistry. In its most

basic incarnation, registration involves the prediction of a

rigid motion to align one shape to another, potentially obfus-

cated by noise and partiality.

Many modeling and computational challenges hamper the

design of a stable and efficient registration method. Given ex-

act correspondences, singular value decomposition yields the

Figure 1. Left: a moved guitar. Right: rotated human. All methods

work well with small transformation. However, only our method

achieve satisfying alignment for objects with sharp features and

large transformation.

globally optimal alignment; similarly, computing matchings

becomes easier given some global alignment information.

Given these two observations, most algorithms alternate be-

tween these two steps to try to obtain a better result. The re-

sultant iterative optimization algorithms, however, are prone

to local optima.

The most popular example, Iterative Closest Point (ICP)

[5, 40], alternates between estimating the rigid motion based
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on a fixed correspondence estimate and updating the corre-

spondences to their closest matches. Although ICP mono-

tonically decreases a certain objective function measuring

alignment, due to the non-convexity of the problem, ICP

often stalls in suboptimal local minima. Many methods

[37, 13, 55] attempt to alleviate this issue by using heuristics

to improve the matching or by searching larger parts of the

motion space SE(3). These algorithms are typically slower

than ICP and still do not always provide acceptable output.

In this work, we revisit ICP from a deep learning perspec-

tive, addressing key issues in each part of the ICP pipeline us-

ing modern machine learning, computer vision, and natural

language processing tools. We call our resulting algorithm

Deep Closest Point (DCP), a learning-based method that

takes two point clouds and predicts a rigid transformation

aligning them.

Our model consists of three parts: (1) We map the input

point clouds to permutation/rigid-invariant embeddings that

help identify matching pairs of points (we compare PointNet

[33] and DGCNN [50] for this step); then, (2) an attention-

based module combining pointer network [48, 46] predicts

a soft matching between the point clouds; and finally, (3) a

differentiable singular value decomposition layer predicts

the rigid transformation. We train and test our model end-

to-end on ModelNet40 [52] in various settings, showing our

model is not only efficient but also outperforms ICP and

its extensions, as well as the recently-proposed PointNetLK

method [18]. Our learned features generalize to unseen

data, suggesting that our model is learning salient geometric

features.

Contributions: Our contributions include the following:

• We identify sub-network architectures designed to address

difficulties in the classical ICP pipeline.

• We propose a simple architecture to predict a rigid trans-

formation aligning two point clouds.

• We evaluate efficiency and performance in several settings

and provide an ablation study to support details of our

construction.

• We analyze whether local or global features are more

useful for registration.

• We release our code to facilitate reproducibility and future

research.

2. Related Work

Point cloud registration methods: ICP [5] is the best-

known algorithm for solving rigid registration problems; it

alternates between finding point cloud correspondences and

solving a least-squares problem to update the alignment. ICP

variants [37, 40, 6] consider issues with the basic method,

like noise, partiality, and sparsity; probabilistic models [2,

15, 19] also can improve resilience to uncertain data. ICP

can be viewed as an optimization algorithm searching jointly

for a matching and a rigid alignment. Hence, [13] propose

using the Levenberg–Marquardt algorithm to optimize the

objective directly, which can yield a better solution. For

more information, [32, 37] summarize ICP and its variants

developed over the last 20 years.

ICP-style methods are prone to local minima due to non-

convexity. To find a good optimum, Go-ICP [55] uses a

branch-and-bound (BnB) method to search the motion space

SE(3). It outperforms local ICP methods when a global

solution is desired but is several orders of magnitude slower

than other ICP variants despite using local ICP to acceler-

ate the search process. Other methods attempt to identify

global optima using Riemannian optimization [36], convex

relaxation [27], and mixed-integer programming [21].

Recently, descriptor learning methods have brought sig-

nificant progress in point cloud registration: 3DMatch [59]

proposes learning a local volumetric patch descriptor to es-

tablish correspondences; 3DFeatNet [56] takes similar ap-

proach to point cloud representation for local regions; PPF-

FoldNet [9] uses a folding-based autoencoder to learn a lo-

cal descriptor; and 3DSmoothNet [14] employs a voxelized

smoothed density value (SDV) representation for descriptor

learning. The critical difference between our algorithm and

these techniques is that we carry out end-to-end registration

prediction while the others target descriptor learning. Also,

these works rely on keypoint detection and outlier removal

using RANSAC. Concurrent work [26] proposes an end-

to-end pipeline for point cloud registration. A significant

difference is that theirs computes loss for each point sample

while ours optimizes the registration objective directly.

Learning on graphs and point sets: A broad class of

deep architectures for geometric data termed geometric deep

learning [7] includes recent methods learning on graphs

[51, 60, 12] and point clouds [33, 34, 50, 57].

The graph neural network (GNN) is introduced in [39];

similarly, [11] defines convolution on graphs (GCN) for

molecular data. [24] uses renormalization to adapt to the

graph structure and applies GCN to semi-supervised learning

on graphs. MoNet [28] learns a dynamic aggregation func-

tion based on the graph structure, generalizing GNN. Finally,

graph attention networks (GAT) [47] incorporate multi-head

attention into GCN. DGCNN [50] (discussed below) can be

regarded as a graph neural network applied to point clouds

with dynamic edges.

Another branch of geometric deep learning includes Point-

Net [33] and other algorithms designed to process point

clouds. PointNet can be seen as applying GCN to graphs

without edges, mapping points in R
3 to high-dimensional

space. PointNet only encodes global features gathered from

the point cloud’s embedding, impeding application to tasks

involving local geometry. To address this issue, PointNet++

[34] applies a shared PointNet to k-nearest neighbor clus-
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(a) Network architecture (b) Transformer module

Figure 2. Network architecture for DCP, including the Transformer module for DCP-v2.

ters to learn local features. As an alternative, DGCNN [50]

explicitly recovers the graph structure in both Euclidean

space and feature space and applies graph neural networks

to the result. PCNN [3] uses an extension operator to define

convolution on point clouds, while PointCNN [25] applies

Euclidean convolution after applying a learned transforma-

tion. Finally, SPLATNet [43] encodes point clouds on a

lattice and performs bilateral convolution. All these works

aim to apply convolution-like operations to point clouds and

extract local geometric features.

Sequence-to-sequence learning and pointer networks:

Many tasks in natural language processing, including ma-

chine translation, language modeling, and question answer-

ing, can be formulated as sequence-to-sequence (seq2seq)

problems. [45] first uses deep neural networks (DNN) to

address seq2seq problems at large scale. Seq2seq, however,

often involves predicting discrete tokens corresponding to

positions in the input sequence. This problem is difficult

because there is an exponential number of possible match-

ings between input and output positions. Similar problems

can be found in optimal transport [41, 31], combinatorial

optimization [20], and graph matching [54]. To address this

issue, in our registration pipeline we use a related method to

Pointer Networks [48], which use attention as a pointer to

select from the input sequence. In each output step, a Pointer

Network predicts a distribution over positions and uses it as

a “soft pointer.” The pointer module is fully differentiable,

and the whole network can be trained end-to-end.

Non-local approaches: To denoise images, non-local

means [8] leverages the simple observation that Gaussian

noise can be removed by non-locally weighted averaging

all pixels in an image. Recently, non-local neural networks

[49] have been proposed to capture long-range dependencies

in video understanding; [53] uses the non-local module to

denoise feature maps to defend against adversarial attacks.

Another instantiation of non-local neural networks, known as

relational networks [38], has shown effectiveness in visual

reasoning [38], meta-learning [44], object detection [17],

and reinforcement learning [58]. Its counterpart in natural

language processing, attention, is arguably the most fruitful

recent advance in this discipline. [46] replaces recurrent neu-

ral networks [22, 16] with a model called the Transformer,

consisting of several stacked multi-head attention modules.

Transformer-based models [10, 35] outperform other recur-

rent models by a considerable amount in natural language

processing. In our work, we also use a Transformer to learn

contextual information of point clouds.

3. Problem Statement

In this section, we formulate the rigid alignment prob-

lem and discuss the ICP algorithm, highlighting key is-

sues in the ICP pipeline. We use X and Y to denote two

point clouds, where X = {x1, . . . ,xi, . . . ,xN} ⊂ R
3 and

Y = {y1, . . . ,yj , . . . ,yM} ⊂ R
3. For ease of notation, we

consider the simplest case, in which M = N . The meth-

ods we describe here extend easily to the M 6= N case

because DGCNN, Transformer, and Softmax treat inputs as

unordered sets. None requires X and Y to have the same

length or a bijective matching.

In the rigid alignment problem, we assume Y is trans-

formed from X by an unknown rigid motion. We denote the

rigid transformation as [RXY , tXY ] where RXY ∈ SO(3)
and tXY ∈ R

3. We want to minimize the mean-squared

error E(RXY , tXY), which—if X and Y are ordered the

same way (meaning xi and yi are paired)—can be written

E(RXY , tXY) =
1

N

N∑

i

‖RXYxi + tXY − yi‖
2. (1)

Define centroids of X and Y as

x =
1

N

N∑

i=1

xi and y =
1

N

N∑

i=1

yi. (2)
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Then the cross-covariance matrix H is given by

H =

N∑

i=1

(xi − x)(yi − y)⊤. (3)

We can use the singular value decomposition (SVD) to de-

compose H = USV ⊤. Then, the alignment minimizing

E(·, ·) in (1) is given in closed-form by

RXY = V U⊤ and tXY = −RXYx+ y. (4)

Here, we take the convention that U ,V ∈ SO(3), while S is

diagonal but potentially signed; this accounts for orientation-

reversing choices of H . This classic orthogonal Procrustes

problem assumes that the point sets are matched to each

other, that is, that xi should be mapped to yi in the final

alignment for all i. If the correspondence is unknown, how-

ever, the objective function E must be revised to account for

matching:

E(RXY , tXY)=
1

N

N∑

i

‖RXYxi + tXY − ym(xi)‖
2. (5)

Here, a mapping m from each point in X to its corresponding

point in Y is given by

m(xi,Y) = argmin
j

‖RXYxi + tXY − yj‖. (6)

Equations (5) and (6) form a classic chicken-and-egg

problem. If we know the optimal rigid transformation

[RXY , tXY ], then the mapping m can be recovered from

(6); conversely, given the optimal mapping m, the transfor-

mation can be computed using (4).

ICP iteratively approaches a stationary point of E in (5),

including the mapping m(·) as one of the variables in the

optimization problem. It alternates between two steps: find-

ing the current optimal transformation based on a previous

mapping mk−1 and finding an optimal mapping mk based

on the current transformation using (6), where k denotes

the current iteration. The algorithm terminates when a fixed

point or stall criterion is reached. This procedure is easy to

implement and relatively efficient, but it is extremely prone

to local optima; a distant initial alignment yields a poor

estimate of the mapping m, quickly leading to a situation

where the algorithm gets stuck. Our goal is to use learned

embeddings to recover a better matching m(·) and to use

this matching to compute a rigid transformation, as we will

detail in the next section.

4. Deep Closest Point

Having established preliminaries about the rigid align-

ment problem, we are now equipped to present our Deep

Closest Point architecture, illustrated in Figure 2. In short,

we embed point clouds into high-dimensional space using

PointNet [33] or DGCNN [50] (§4.1), encode contextual

information using an attention-based module (§4.2), and fi-

nally estimate an alignment using a differentiable SVD layer

(§4.4).

4.1. Initial Features

The first stage of our pipeline embeds the unaligned input

point clouds X and Y into a common space used to find

matching pairs of points between the two clouds. The goal

is to find an embedding that quotients out rigid motion while

remaining sensitive to relevant features for rigid matching.

We evaluate two possible choices of learnable embedding

modules, PointNet [33] and DGCNN [50].

Since we use per-point embeddings of the two input

point clouds to generate a mapping m and recover the

rigid transformation, we seek a feature per point in the

input point clouds rather than one feature per cloud. For

this reason, in these two network architectures, we use the

representations generated before the last aggregation func-

tion, notated FX = {xL
1 ,x

L
2 , ...,x

L
i , ...,x

L
N} and FY =

{yL
1 ,y

L
2 , ...,y

L
i , ...,y

L
N}, assuming a total of L layers.

In more detail, PointNet takes a set of points, embeds each

by a nonlinear function from R
3 into a higher-dimensional

space, and optionally outputs a global feature vector for the

whole point cloud after applying a channel-wise aggregation

function f (e.g., max or
∑

). Let xl
i be the embedding of

point i in the l-th layer, and let hl
θ be a nonlinear function

in the l-th layer parameterized by a shared multilayer per-

ceptron (MLP). Then, the forward mechanism is given by

xl
i = hl

θ(x
l−1
i ).

While PointNet largely extracts information based on the

embedding of each point in the point cloud independently,

DGCNN explicitly incorporates local geometry into its rep-

resentation. In particular, given a set of points X , DGCNN

constructs a k-NN graph G, applies a nonlinearity to the

values at edge endpoints to obtain edgewise values, and per-

forms vertex-wise aggregation (max or
∑

) in each layer.

The forward mechanism of DGCNN is thus

xl
i = f({hl

θ(x
l−1
i ,xl−1

j ) ∀j ∈ Ni}), (7)

where Ni denotes the neighbors of vertex i in graph G. While

PointNet features do not incorporate local neighborhood in-

formation, we find empirically that DGCNN’s local features

are critical for high-quality matching in subsequent steps of

our pipeline (see §6.1).

4.2. Attention

Our transition from PointNet to DGCNN is motivated

by the observation that the most useful features for rigid

alignment are learned jointly from local and global informa-

tion. We additionally can improve our features for matching

43526



by making them task-specific, that is, changing the features

depending on the particularities of X and Y together rather

than embedding X and Y independently. That is, the task

of rigidly aligning, say, organic shapes might require differ-

ent features than those for aligning mechanical parts with

sharp edges. Inspired by the recent success of BERT [10],

non-local neural networks [49], and relational networks [38]

using attention-based models, we design a module to learn

co-contextual information by capturing self-attention and

conditional attention.

Take FX and FY to be the embeddings generated by the

modules in §4.1; these embeddings are computed indepen-

dently of one another. Our attention model learns a function

φ : RN×P × R
N×P → R

N×P , where P is embedding di-

mension, that provides new embeddings of the point clouds

as
ΦX = FX + φ(FX ,FY)

ΦY = FY + φ(FY ,FX )
(8)

Notice we treat φ as a residual term, providing an addi-

tive change to FX and FY depending on the order of its

inputs. The idea here is that the map FX 7→ ΦX modifies

the features associated to the points in X in a fashion that is

knowledgeable about the structure of Y ; the map FY 7→ ΦY

serves a symmetric role. We choose φ as an asymmetric

function given by a Transformer [46]. The Transformer is a

framework to solve sequence-to-sequence problems. It con-

sists of several stacked encoder-decoder layers. The encoder

takes one sequence/set (FX ) and encodes it to an embedding

space by using a self-attention layer and shared multi-layer

perceptron (MLP). The decoder has two parts: The first

part takes another sequence/set (FY ) and encodes it in the

same way as the encoder, and the second part relates two

embedded sequences/sets using co-attention. Therefore, the

output embeddings (ΦX and ΦY ) have contextual informa-

tion from both sequences/sets (FX and FY ). The matching

problem we encounter in rigid alignment is analogous to the

sequence-to-sequence problem that inspired its development,

other than their use of positional embeddings to describe

where words are in a sentence.

4.3. Pointer Generation

The most common failure mode of ICP occurs when the

matching estimate mk is far from optimal. When this occurs,

the rigid motion subsequently estimated using (6) does not

significantly improve alignment, leading to a spurious local

optimum. As an alternative, our learned embeddings are

trained specifically to expose matching pairs of points using

a simple procedure explained below. We term this step

pointer generation, again inspired by terminology in the

attention literature introduced in §4.2.

To avoid choosing non-differentiable hard assignments,

we use a probabilistic approach that generates a (singly-

stochastic) “soft map” from one point cloud into the other.

That is, each xi ∈ X is assigned a probability vector over

elements of Y given by

m(xi,Y) = softmax(ΦYΦ
⊤
xi
). (9)

Here, ΦY ∈ R
N×P denotes the embedding of Y generated

by the attention module, and Φxi
denotes the i-th row of

the matrix ΦX from the attention module. We can think of

m(xi,Y) as a soft pointer from each xi into the elements of

Y .

4.4. SVD Module

The final module in our architecture extracts the rigid

motion from the soft matching computed in §4.3. We use

the soft pointers to generate a matching averaged point in Y
for each point in X :

ŷi = Y ⊤m(xi,Y) ∈ R
3. (10)

Here, we define Y ∈ R
N×3 to be a matrix containing the

points in Y . Then, RXY and tXY are extracted using (4)

based on the pairing xi 7→ ŷi over all i.

To backpropagate gradients through the networks, we

need to differentiate the SVD. [29] describes a standard

means of computing this derivative; versions of this calcula-

tion are included in PyTorch [30] and TensorFlow [1]. Note

we need to solve only 3 × 3 eigenproblems, small enough

to be solved using simple algorithms or even (in principle) a

closed-form formula.

4.5. Loss

Combined, the modules above map from a pair of point

clouds X and Y to a rigid motion [RXY , tXY ] that aligns

them to each other. The initial feature module (§4.1) and

the attention module (§4.2) are both parameterized by a set

of neural network weights, which must be learned during

a training phase. We employ a fairly straightforward strat-

egy for training, measuring the deviation of [RXY , tXY ]
from ground truth for synthetically-generated pairs of point

clouds.

We use the following loss function to measure our model’s

agreement to the ground-truth rigid motions:

Loss = ‖R⊤
XYR

g
XY

− I‖2 + ‖tXY − t
g
XY

‖2 + λ‖θ‖2.

(11)

Here, g denotes ground-truth. The first two terms define a

simple distance on SE(3). The third term denotes Tikhonov

regularization of the DCP parameters θ, which serves to

reduce the complexity of the network.

5. Experiments

We compare our models to ICP, Go-ICP [55], Fast Global

Registration (FGR) [61], and the recently-proposed Point-

NetLK deep learning method [18]. We denote our model
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Figure 3. Top left: input. Top right: result of ICP with random

initialization. Bottom left: initial transformation provided by DCP.

Bottom right: result of ICP initialized with DCP. Using a good

initial transformation provided by DCP, ICP converges to the global

optimum.

without attention (§4.2) as DCP-v1 and the full model with

attention as DCP-v2. Go-ICP is ported from the authors’

released code. For ICP and FGR, we use the implementa-

tions in Intel Open3D [62]. For PointNetLK, we adapt the

code partially released by the authors. Notice that FGR [61]

uses additional geometric features. In all experiments, the

proposed method does not make an assumption that a good

initial pose is given; the test point clouds are generated in the

same way as the training point clouds. ICP and its variants

are initialized with an identity transformation matrix.

The architecture of DCP is shown in Figure 2. We use 5

EdgeConv (denoted as DGCNN [50]) layers for both DCP-

v1 and DCP-v2. The numbers of filters in each layer are

[64, 64, 128, 256, 512]. In the Transformer layer, the number

of heads in multi-head attention is 4 and the embedding

dimension is 1024. We use LayerNorm [4] without Dropout

[42]. Adam [23] is used to optimize the network parameters,

with an initial learning rate of 0.001. We divide the learning

rate by 10 at epochs 75, 150, and 200, training for a total of

250 epochs. DCP-v1 does not use the Transformer module

but rather employs identity mappings ΦX = FX and ΦY =
FY .

We experiment on the ModelNet40 [52] dataset, which

consists of 12,311 meshed CAD models from 40 categories.

Of these, we use 9,843 models for training and 2,468 models

for testing. We follow the experimental settings of PointNet

[33], uniformly sampling 1,024 points from each model’s

outer surface. As in previous work, points are centered and

rescaled to fit in the unit sphere, and no features other than

(x, y, z) coordinates appear in the input.

We measure mean squared error (MSE), root mean

squared error (RMSE), and mean absolute error (MAE) be-

tween ground truth values and predicted values. Ideally, all

of these error metrics should be zero if the rigid alignment is

Model MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)

ICP 894.897339 29.914835 23.544817 0.084643 0.290935 0.248755

Go-ICP [55] 140.477325 11.852313 2.588463 0.000659 0.025665 0.007092

FGR [61] 87.661491 9.362772 1.999290 0.000194 0.013939 0.002839

PointNetLK [18] 227.870331 15.095374 4.225304 0.000487 0.022065 0.005404

DCP-v1 (ours) 6.480572 2.545697 1.505548 0.000003 0.001763 0.001451

DCP-v2 (ours) 1.307329 1.143385 0.770573 0.000003 0.001786 0.001195

Table 1. ModelNet40: Test on unseen point clouds

Model MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)

ICP 892.601135 29.876431 23.626110 0.086005 0.293266 0.251916

Go-ICP [55] 192.258636 13.865736 2.914169 0.000491 0.022154 0.006219

FGR [61] 97.002747 9.848997 1.445460 0.000182 0.013503 0.002231

PointNetLK [18] 306.323975 17.502113 5.280545 0.000784 0.028007 0.007203

DCP-v1 (ours) 19.201385 4.381938 2.680408 0.000025 0.004950 0.003597

DCP-v2 (ours) 9.923701 3.150191 2.007210 0.000025 0.005039 0.003703

Table 2. ModelNet40: Test on unseen categories

perfect. All angular measurements in our results are in units

of degrees.

5.1. ModelNet40: Full Dataset Train & Test

In our first experiment, we randomly divide all the point

clouds in the ModelNet40 dataset into training and test sets,

with no knowledge of the category label; different point

clouds are used during training and during testing. During

training, we sample a point cloud X . Along each axis, we

randomly draw a rigid transformation; the rotation along

each axis is uniformly sampled in [0, 45◦] and translation

is in [−0.5, 0.5]. X and a transformation of X by the rigid

motion are used as input to the network, which is evaluated

against the known ground truth using (11).

Table 1 evaluates the performance of our method and its

peers in this experiment (vanilla ICP nearly fails). DCP-v1

already outperforms other methods under all the performance

metrics, and DCP-v2 exhibits even stronger performance.

5.2. ModelNet40: Category Split

To test the generalizability of different models, we split

ModelNet40 evenly by category into training and testing sets.

We train DCP and PointNetLK on the first 20 categories,

then test them on the held-out categories. ICP, Go-ICP, and

FGR are also tested on the held-out categories. As shown in

Table 2, on unseen categories, FGR behaves more strongly

than other methods. DCP-v1 has much worse performance

than DCP-v2, supporting our use of the attention module.

Although the learned representations are task-dependent,

DCP-v2 exhibits smaller error than others except for FGR,

including the learning-based method PointNetLK.

5.3. ModelNet40: Resilience to Noise

We also experiment with adding noise to each point of

the input point clouds. We sample noise independently from
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Model MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t)

ICP 882.564209 29.707983 23.557217 0.084537 0.290752 0.249092

Go-ICP [55] 131.182495 11.453493 2.534873 0.000531 0.023051 0.004192

FGR [61] 607.694885 24.651468 10.055918 0.011876 0.108977 0.027393

PointNetLK [18] 256.155548 16.004860 4.595617 0.000465 0.021558 0.005652

DCP-v1 (ours) 6.926589 2.631841 1.515879 0.000003 0.001801 0.001697

DCP-v2 (ours) 1.169384 1.081380 0.737479 0.000002 0.001500 0.001053

Table 3. ModelNet40: Test on objects with Gaussian noise

# points ICP Go-ICP FGR PointNetLK DCP-v1 DCP-v2

512 0.003972 15.012375 0.033297 0.043228 0.003197 0.007932

1024 0.004683 15.405995 0.088199 0.055630 0.003300 0.008295

2048 0.044634 15.766001 0.138076 0.146121 0.040397 0.073697

4096 0.044585 15.984596 0.157124 0.162007 0.039984 0.74263

Table 4. Inference time (in seconds)

N (0, 0.01), clip the noise to [−0.05, 0.05], and add it to X
during testing. In this experiment, we use the model from

§5.1 trained on noise-free data from all of ModelNet40.

Table 3 shows the results of this experiment. ICP typically

converges to a far-away fixed point, and FGR is sensitive

to noise. Go-ICP, PointNetLK, and DCP, however, remain

robust to noise.

5.4. DCP Followed By ICP

Since our experiments involve point clouds whose initial

poses are far from aligned, ICP fails nearly every experiment

we have presented so far. In large part, this failure is due to

the lack of a good initial guess. As an alternative, we can

use ICP as a local algorithm by initializing ICP with a rigid

transformation output from our DCP model. Figure 3 shows

an example of this two-step procedure; while ICP fails at

the global alignment task, with better initialization provided

by DCP, it converges to the global optimum. In some sense,

this experiment shows how ICP can be an effective way to

“polish” the alignment generated by DCP.

5.5. Efficiency

We profile the inference time of different methods on a

desktop computer with an Intel I7-7700 CPU, an Nvidia

GTX 1070 GPU, and 32G memory. Computational time

is measured in seconds and is computed by averaging 100

results. As shown in Table 4, DCP-v1 is the fastest method

among our points of comparison, and DCP-v2 is only slower

than vanilla ICP.

6. Ablation Study

We conduct several ablation experiments in this section,

dissecting DCP and replacing each part with an alternative

to understand the value of our construction. All experiments

are done in the same setting as the experiments in §5.1.

Metrics PN+DCP-v1, DGCNN+DCP-v1 PN+DCP-v2 DGCNN+DCP-v2

MSE(R) 17.008427 6.480572 49.863022 1.307329

RMSE(R) 4.124127 2.545697 7.061375 1.143385

MAE(R) 2.800184 1.505548 4.485052 0.770573

MSE(t) 0.000697 0.000003 0.000258 0.000003

RMSE(t) 0.026409 0.001763 0.016051 0.001786

MAE(t) 0.01327 0.001451 0.010546 0.001195

Table 5. Ablation study: PointNet or DGCNN?

Metrics DCP-v1+MLP DCP-v1+SVD DCP-v2+MLP DCP-v2+SVD

MSE(R) 21.115917 6.480572 9.923701 1.307329

RMSE(R) 4.595206 2.545697 3.150191 1.143385

MAE(R) 3.291298 1.505548 2.007210 0.770573

MSE(t) 0.000861 0.000003 0.000025 0.000003

RMSE(t) 0.029343 0.001763 0.005039 0.001786

MAE(t) 0.022501 0.001451 0.003703 0.001195

Table 6. Ablation study: MLP or SVD?

6.1. PointNet or DGCNN?

We first try to answer whether the localized features gath-

ered by DGCNN provide value over the coarser features

that can be measured using the simpler PointNet model. As

discussed in [50], PointNet [33] learns a global descriptor of

the whole shape while DGCNN [50] learns local geometric

features via constructing the k-NN graph. We replace the

DGCNN with PointNet (denoted as PN) and conduct the

experiments in §5.1 on ModelNet40 [52], using DCP-v1 and

DCP-v2. Table 5. Models perform consistently better with

DGCNN than their counterparts with PointNet.

6.2. MLP or SVD?

While MLP is in principle a universal approximator, our

SVD layer is designed to compute a rigid motion specifically.

In this experiment, we examine whether an MLP or a custom-

designed layer is better for registration. We compare MLP

and SVD with both DCP-v1 and DCP-v2 on ModelNet40.

Table 6 shows both DCP-v1 and DCP-v2 perform better

with SVD layer than MLP. This supports our motivation to

compute rigid transformation using SVD.

6.3. Embedding Dimension

[33] remarks that the embedding dimension is an impor-

tant parameter affecting the accuracy of point cloud deep

learning models up to a critical threshold, after which there

is an insignificant difference. To verify our choice of dimen-

sionality, we compare models with embeddings into spaces

of different dimensions. We test models with DCP-v1 and

v2, using DGCNN to embed the point clouds into R
512 or

R
1024. The results in Table 7 show that increasing the em-

bedding dimension from 512 to 1024 does marginally help

DCP-v2, but for DCP-v1 there is small degeneracy. Our

results are consistent with the hypothesis in [33].
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Metrics DCP-v1 (512) DCP-v1 (1024) DCP-v2 (512) DCP-v2 (1024)

MSE(R) 6.480572 7.291216 1.307329 1.217545

RMSE(R) 2.545697 2.700225 1.143385 1.103424

MAE(R) 1.505548 1.616465 0.770573 0.750242

MSE(t) 0.000003 0.000001 0.000003 0.000003

RMSE(t) 0.001763 0.001150 0.001786 0.001696

MAE(t) 0.001451 0.000677 0.001195 0.001170

Table 7. Ablation study: Embedding dimension

7. Conclusion

In some sense, the key observation in our Deep Closest

Point technique is that learned features greatly facilitate rigid

alignment algorithms; by incorporating DGCNN [50] and an

attention module, our model reliably extracts the correspon-

dences needed to find rigid motions aligning two input point

clouds. Our end-to-end trainable model is reliable enough to

extract a high-quality alignment in a single pass, which can

be improved by iteration or “polishing” via classical ICP.

DCP is immediately applicable to rigid alignment prob-

lems as a drop-in replacement for ICP with improved behav-

ior. Beyond its direct usage, our experiments suggest several

avenues for future inquiry. One straightforward extension is

to see if our learned embeddings transfer to other tasks like

classification and segmentation. We could also train DCP to

be applied iteratively (or recursively) to refine the alignment,

rather than attempting to align in a single pass; insight from

reinforcement learning could help refine approaches in this

direction, using mean squared error as a reward to learn a

policy that controls when to stop iterating.

We are also interested in testing on scenes, which often

have up to 300,000 points. Current deep networks, however,

can only handle object-level point clouds (each usually has

around 500 to 5,000 points); this is a common limitation

of recent point cloud learning methods. Testing on scenes,

no matter the task, requires designing an efficient scene-

level point cloud encoding network, which is a promising

but challenging direction for point cloud learning generally.

Finally, we hope our method can be incorporated into larger

pipelines to enable high-accuracy Simultaneous Localization

and Mapping (SLAM) or Structure from Motion (SFM).
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