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Abstract

This paper addresses the problem of deformable surface

tracking from monocular images. Specifically, we propose

a graph-based approach that effectively explores the struc-

ture information of the surface to enhance tracking perfor-

mance. Our approach solves simultaneously for feature cor-

respondence, outlier rejection and shape reconstruction by

optimizing a single objective function, which is defined by

means of pairwise projection errors between graph struc-

tures instead of unary projection errors between matched

points. Furthermore, an efficient matching algorithm is de-

veloped based on soft matching relaxation. For evaluation,

our approach is extensively compared to state-of-the-art al-

gorithms on a standard dataset of occluded surfaces, as well

as a newly compiled dataset of different surfaces with rich,

weak or repetitive texture. Experimental results reveal that

our approach achieves robust tracking results for surfaces

with different types of texture, and outperforms other algo-

rithms in both accuracy and efficiency.

1. Introduction

This paper addresses the problem of tracking a generic

deformable surface with a known initial 3D shape, name-

ly template, and recovering its 3D shape in a video se-

quence under monocular perspective projection. The tem-

plate could be provided manually in advance or computed

from a few video frames using shape-from-motion [1, 27].

Popular approaches to deformable surface tracking can

be roughly classified as dense approaches (e.g. [12, 25, 31,

48]) or feature-based ones (e.g. [4,9,24,34]). Dense approa-

ches directly use pixel appearance without extracting fea-

tures, and optimize a similarity measure between a tem-

plate and a captured image. This type of approaches is

usually guided by the brightness consistency assumption,

and thus suffers from illumination change, partial occlusion

and motion blur. Besides, most of them cost much com-

putational time due to the large parameter space. Feature-

based approaches perform shape reconstruction based on

point correspondences between the template and an input

image. Once point correspondences can be established,

many shape-from-template approaches [4, 7, 9, 22, 24, 34]

can reconstruct the 3D shape in the input image. These me-

thods rely on the quality of the correspondences, and most

of them establish correspondences based solely on local ap-

pearance without sufficient consideration of the spatial re-

lationships among the feature points and the constraints im-

posed. Therefore, they often fail if the texture quality is

too poor to guarantee reliable correspondences, as happens

in the presence of repetitive patterns, dramatic deformation

between the template and the input image, and environmen-

tal perturbations such as illumination change.

To obtain high quality correspondences between two

images, graph-based methods [13,42,49] are widely used by

constructing graphs that encode the geometric relationships

between feature points and then accomplishing correspon-

dences by means of graph matching. However, these graph-

based methods suffer from several shortages when applied

to deformable surface tracking. Firstly, graph matching

amounts to an NP-hard binary programming problem, and

many graph matching algorithms [47, 49] may take sever-

al minutes to process a few hundred points despite some

approximation strategies are employed. It is therefore diffi-

cult to use them directly in 3D shape reconstruction where

thousands of reliable correspondences are usually required

to compute an accurate 3D shape. Secondly, these graph-

based methods are independent of subsequent steps of out-

lier rejection and shape reconstruction, which may hurt the

accuracy of the reconstructed shape due to lack of informa-

tion about the deformation model.

Addressing the issues discussed above, we propose a no-

vel graph-based method to deformable surface reconstruc-

tion and tracking. Different from traditional methods that

usually treat separately feature correspondence, outlier re-

jection and shape reconstruction, we integrate these proce-

dures into a unified graph-based framework, and propose

to solve optimizations of correspondence and deformation
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iteratively. Considering computational efficiency, we re-

lax the hard matching constraint in the conventional graph

matching problem to soft matching constraint. Such soft re-

laxation allows us to maintain more matching details that re-

sult in more accurate shape, and also benefits greatly to the

computational efficiency through a novel matching algorith-

m developed under the soft matching constraint. Accom-

panied with a well-designed strategy for candidate match

filtering, our graph-based approach is able to process thou-

sands of points in a few seconds, which is much faster than

conventional graph-based algorithms.

For a thorough evaluation, we compare our approach

with several recently proposed approaches [8,24,25] on two

datasets: the tracking surface with occlusion (TSO) bench-

mark [25] containing two video sequences in presence of

occlusions, and a newly collected dataset1 containing 11

sequences involving different surfaces with rich, weak or

repetitive texture under significant deformation. On all se-

quences our approach produces the best or nearly the best

tracking results. Regarding the computational efficiency, it

also outperforms the compared algorithms in general.

In summary, our contribution lies in the new graph-based

approach for deformable surface tracking in three aspects:

(1) we introduce graph model and graph matching into de-

formable surface tracking by a soft matching relaxation and

a well-designed strategy of candidate match filtering; (2) we

design a unified optimization framework to explore full in-

formation about local appearance, spatial relationship and

deformation model to acquire accurate shape reconstruc-

tion; and (3) we construct a new real world dataset with

annotation for evaluating deformable surface tracking algo-

rithms in the context of different types of textures.

2. Related Work

Recovering the nonrigid shape of a surface from input

images usually includes three steps: keypoint correspon-

dence, outlier rejection, and shape reconstruction. In the

following we sample some classical studies or related ones

that inspire our study on deformable surface tracking.

Keypoint correspondence refers to extracting keypoints

from given images and subsequently relating them by some

distance metric to keypoints in a nearest-neighbour fash-

ion. Some popular keypoint detectors and descriptors (e.g.

SIFT [21] and SURF [5]) are designed to be robust against

changes in scale and rotation.Aiming at real-time system-

s, several extremely fast keypoint detectors and binary de-

scriptors [20, 30] were developed as well. A simple way

to establish correspondence between extracted keypoints is

to assign each point to the point with the closest descriptor.

This naive approach suffers from both intrinsic disturbance

1There is a serious lack of deformable tracking benchmarks due to d-

ifficulty in groundtruth annotation, the new dataset is collected for this

reason.

(e.g. repetitive patterns) and extrinsic variation (e.g. light-

ing change). In order to improve the robustness against such

perturbations, some approaches [42,46,49] construct graph-

s to encode the geometric relationship between keypoints,

and reformulate keypoint correspondence as a graph match-

ing problem. Solving graph matching amounts to an NP-

hard binary programming problem, and approximate solu-

tions [19,47] are commonly applied to finding efficient and

tight relaxations.

Outlier rejection works by fitting a deformable model

using the established correspondences and eliminating in-

correct ones that conflict with the fitted model. Existing

methods of outlier detection can be roughly categorized in-

to 3D methods and 2D methods, which use 3D and 2D de-

formable models respectively. The main advantage of 3D

methods [11, 26, 32, 38] lies in that they can use physical-

ly meaningful properties, e.g. isometry, which are invariant

to changes of the camera viewpoint or camera parameters.

On the contrary, 2D methods [28,29,43] cannot exploit sur-

face isometry without involving 3D constraints, and are thus

necessary to impose some general assumptions on the 2D-

2D flowfield. Usually, these methods assume the flowfield

is globally or piecewise smooth.

Shape reconstruction estimates the nonrigid shape of the

surface based on the known template and the established

keypoint correspondence. Such correspondence between

the template and the input image allows one to compute

a 2D warp and then infer a 3D shape in closed form [3].

However, the 2D warp does not take the 3D constraints in-

to account, and thus may hurt the accuracy of the recov-

ered shape. Alternatively, recent methods tend to compute

directly from correspondences to 3D shape, which result

in solving degenerate linear systems [33]. To handle this

ill-conditioned problem, a large number of methods em-

ploy dimensionality reduction techniques, such as princi-

pal component analysis (PCA) [6, 14, 16], free form defor-

mations (FFD) [7], model analysis [22, 23] and Laplacian

formalism [24, 41], to reduce the degree of freedom. In

addition to dimensionality reduction, another popular way

is to impose some additional constraints to make the prob-

lem well-posed. Isometry constraints [2, 8, 9, 22] that in-

volve preserving geodesic distances as the surface deforms

or inextensibility constraints [7, 15, 24, 34, 39, 45] that pre-

vent Euclidean distances between neighboring points from

growing beyond a bound are commonly enforced in recent

approaches. In particular, conformal deformation (angle-

preserving) [4] relaxed from isometric deformation makes

it applicable to some types of extensible surfaces.

Different from the above mentioned algorithms that treat

keypoint correspondence, outlier rejection and shape recon-

struction as separate steps, a few investigations have been

devoted to solving simultaneously these problems by opti-

mizing a single objective function. Examples include [38]
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that formulates these problems jointly in a mixed integer

quadratic form, and [37] that reduces the complexity of the

joint optimization problem by using weak pose and shape

priors, and [40] that encodes 3D shape reconstruction into

an end-to-end deep neural network.

Our approach shares similarity with above algorithms in

the use of geometric context to assist surface tracking, but

differs in the context model (i.e. with graph matching). In

particular, our work falls into the group of structure-aware

tracking, with improvement in two-folds: (1) modeling key-

point correspondence and shape reconstruction in line with

pairwise projection errors between graph structures, instead

of conventional unary projection errors between keypoint

sets, and (2) developing an efficient graph matching algo-

rithm under soft matching relaxation. Our approach aims to

provide accurate and efficient tracking for deformable sur-

faces, as validated in the experiments.

3. The proposed method

We represent a known template shape T as a triangulat-

ed mesh of Nv vertices {vri = [xi, yi, zi]
T , 1 ≤ i ≤ Nv}

connected by a set Emesh of Ne edges. We stack the vertices

into a vector xr ∈ R
3Nv , which is described in the camera

reference frame. The known template T is related to the un-

known deformed shape S by an unknown 3D continuously

differentiable deformation ψ : R
3 → R

3, i.e., ψ maps a

point in T to the corresponding point in S . Similarly, we

can represent S using Nv vertices vi with unknown 3D co-

ordinates and stack them into a vector x ∈ R
3Nv , which is

to be solved in our algorithm. We assume that the camera

is calibrated, with known intrinsic and extrinsic parameters.

That is, we have a known projection function τ : R3 → R
2

maps each 3D mesh point to a 2D image point.

Let P r = {pri }
m
i=1 and P = {pi}

n
i=1 be the two fea-

ture sets extracted from the reference and input images, re-

spectively. For each feature point pri ∈ P r or pj ∈ P ,

we also use the same symbol to indicate its homogeneous

coordinates in the 2D image for simplicity. Since the 3D

surface for the reference image is known, for each feature

point pri ∈ P
r we can compute its 3D mesh point pri ∈ R

3.

The correspondences between points in P r and P are

represented by a matrix C ∈ R
m×n in which each element

Ci,j ∈ [0, 1] indicates the probability of assigning pri to pj .
Note that we use soft correspondences here rather than hard

ones that are commonly adopted in previous approaches.

Soft correspondences allow us to maintain more correspon-

dence details, and thus improve the accuracy of the recov-

ered 3D shape. Another benefit brought by it lies in that the

subsequent quadratic programming problem becomes much

easier to be solved by dropping the discrete constraints.

The optimal shape S to be reconstructed can be obtained

by solving simultaneously for bothC andψ that minimizing

a cost function E(C,ψ):

(C∗, ψ∗) = argmin
C,ψ
E(C,ψ),

s.t.

{

C < 0m×n, C1n 4 1m, C
T
1m 4 1n,

‖ψ(pri )− ψ(p
r
j)‖2 ≤ li,j , ∀(i, j) ∈ Emesh,

(1)

where 0m×n denotes a matrix of m × n zeros, 1n denotes

a column vector of n ones, < (4) are element-wise ≥ (≤),

and li,j represents the constraint of the geodesic distance

between points pri and prj . The constrains on correspon-

dence C guarantee that each point can be matched at most

once, while those on deformation ψ are inextensibility con-

straints that prevent Euclidean distances between neighbor-

ing vertices from growing beyond a bound.

In previous approaches, the cost function E(C,ψ) is usu-

ally defined to accumulate the projection error of each cor-

respondence 〈pri , pj〉 under deformation ψ. In this paper,

we propose a graph-based measure that assembles the pro-

jection errors between graph structures as

E(C,ψ) =
∑

i,j

∑

a,b

d(ψ, i, j, a, b)Ci,aCj,b, (2)

where d(ψ, i, j, a, b) is cost function measuring the pairwise

inconsistence between edges (pri , p
r
j) and (pa, pj) under de-

formation ψ. We define d as combination of an appearance

inconsistence function dapp and a geometric inconsistence

function dgeo, which are specified as

dapp(i, j, a, b) = ‖f
r
i − fa‖2 + ‖f

r
j − fb‖2,

dgeo(ψ, i, j, a, b) = ‖(τ(ψ(p
r
i ))−τ(ψ(p

r
j)))− (pa−pb)‖2,

d(ψ, i, j, a, b) = (1−α)dapp(i, j, a, b)+αdgeo(ψ, i, j, a, b),

(3)

where fri and fa are photometric descriptors of feature

points pri and pa respectively, and α ∈ [0, 1] balances be-

tween local features and graph structures used for shape re-

construction.

For conciseness we can reformulate Eq. (2) in a pairwise

compatibility form

E(C,ψ) = cTK(ψ)c, (4)

where c
.
= vec(C) is the vectorized version of matrixC and

K(ψ) ∈ R
mn×mn is the corresponding affinity matrix:

Kind(i,a),ind(j,b)(ψ) = d(ψ, i, j, a, b)− κ, (5)

where (i, a) denotes a candidate match from point pri in the

reference image to point pa in the input image, and ind(·) is

a bijection that maps a vertex correspondence to an integer

index. Note that κ is chosen to be sufficiently large to ensure

that K(ψ) is nonpositive, of which the purpose is to avoid

the trivial solution in which no correspondence is activated.

To filter outlier correspondences with large projection

errors under deformation ψ, we penalize matched points

by means of projection error term which increases as more

points are matched

E(C,ψ) = cTK(ψ)c + λcT e(ψ), (6)
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where λ > 0 adaptively controls the degree of outlier rejec-

tion, and e(ψ) ∈ R
mn encodes the unary projection error of

each point correspondence as

eind(i,a)(ψ) = ‖τ(ψ(p
r
i ))− pa‖2. (7)

4. Optimization

For each incoming frame, we first predict c and ψ using

the solutions from previous frames, and then refine them

alternatively and iteratively.

4.1. Optimization of correspondence

Given a deformation ψ, problem (1) is reduced to solving

for an optimal correspondence as

c∗ = argmin
c

cTK(ψ)c + λcT e(ψ),

s.t. c < 0mn, Bc 4 1m+n,
(8)

where Bc 4 1m+n encodes the one-to-one matching con-

straints (refer to [47] for details on constructing matrix B).

Problem (8) can be viewed as a relaxed graph matching

problem by dropping the discrete constraints and adding a

penalization term. Some power iteration algorithms [10,19]

for classical graph matching can be extended to solve for

a soft correspondence c, but it is hard apply them for (8)

due to the penalization term. In this section, we propose

an approach based on the Frank-Wolfe algorithm [17] for

minimizing problem (8) with respect to correspondence c,

which is described in Algorithm 1.

4.2. Optimization of deformation

Given a correspondence c (i.e., matrixC in (1)), problem

(1) is reduced to solving for an optimal deformation as

ψ∗ = argmin
ψ

{

∑

i,j

∑

a,b

dgeo(ψ, i, j, a, b)Ci,aCj,b

+λ
∑

i,a

eind(i,a)(ψ)Ci,a

}

,

s.t. ‖ψ(pri )− ψ(p
r
j)‖2 ≤ li,j , ∀(i, j) ∈ Emesh.

(9)

We relax the first term of problem (9) by

dgeo(ψ, i, j, a, b)=‖(τ(ψ(p
r
i ))−τ(ψ(p

r
j)))− (pa − pb)‖2

≤ ‖(τ(ψ(pri ))− pa‖2 + ‖τ(ψ(p
r
j))− pb‖2.

Problem (9) is thus relaxed as a linear fitting

ψ∗ = argmin
ψ

∑

i,a

ωi,a‖(τ(ψ(p
r
i ))− pa‖2,

s.t. ‖ψ(pri )− ψ(p
r
j)‖2 ≤ li,j , ∀(i, j) ∈ Emesh,

(10)

Algorithm 1 Frank-Wolfe for correspondence c

% ψ0: given a deformation.

% Ω: solution space of feasible c.

1: Initialization: compute matrixK(ψ0) and vector e(ψ0).
2: Initialization: initialize correspondence c as trivial.

3: while c not converged do

4: g = 2K(ψ0)c + e(ψ0) % gradient

5: y = argminy gT y, s.t. y ∈ Ω
6: β = argminβ Eλ(c + β(y− c)), s.t. 0 ≤ β ≤ 1
7: c← c + β(y− c)
8: end while

9: return c

where ωi,a = Ci,a(
∑

j Cj,a +
∑

b Ci,b) + λ is the weight

for each sample.

As described in [24], this problem can be further refor-

mulated to a well-conditioned linear system with respect to

the coordinates of the mesh vertices as

x∗ = argmin
x
‖Mx‖22 + r‖Ax‖22, s.t. ‖x‖2 = 1, (11)

where M is a coefficient matrix, A a regularization matrix,

and r a scalar coefficient defining how much we regular-

ize the solution. More details about this conditioned linear

system can be found in [24].

5. Implementation details

5.1. Graph construction

An undirected graph of n vertices can be represented by

G = (V,E), where V = {v1, . . . , vn} and E ⊆ V× V de-

note the vertex and edge sets, respectively. Given the initial

region R of the surface of interest in the reference image,

we construct a model graph G
r for the surface as follows.

Vertex generation. It is common to extract keypoints

from the image to represent local parts, and then model

them as vertices of the graph. Many approaches obtain the

keypoints as local extremes of cross-scale DoG images, e.g.

SIFT. However, the number of the keypoints extracted using

such methods may vary drastically depending on detectors

and frame content. Moreover, they are often sensitive to

environmental variations, such as illumination changes and

motion blurs, and thus hurt the tracking accuracy.

We adopt a more robust and flexible way to address these

issues. We first divide R evenly into N grids, and compute

the SIFT response for each pixel in each grid. After that, we

select the keypoint with maximum response from each grid,

and treat such keypoints as graph vertices. Specifically, for

vertex generation of a nonrectangular shape, we first divide

its minimum bounding rectangle into even grids and extract

a candidate vertex from each grid, and then remove invalid

vertices lying outside the shape. Finally, the SIFT descrip-

tors of these keypoints are recorded as vertex attributes.
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Edge generation. There are several widely-used me-

thods for edge generation, including the fully connected

graph, the ε-neighborhood graph and the k-nearest neighbor

graph. The fully connected graph suffers from high compu-

tational complexity and is thus not suitable for graphs with

large size. Meanwhile, the ε-neighborhood graph is sensi-

tive to the selected parameter ε, and suffers from the scale

changes of the object. Instead, we adopt Delaunay triangu-

lation [18] for edge generation so as to build stable graph

structures invariant to scaling, translation and rotation.

For each incoming frame t, we construct a candidate

graph G
t in the same way, and then formulate the feature

correspondence problem by means of graph matching.

5.2. Candidate match filtering

There are N vertices in both model graph G
r and can-

didate graph G
t, and thus in total N2 candidate matches

between vertices of Gr and G
t. The size of the affinity ma-

trixK(ψ) is, therefore, as large asN4, which results in high

costs in not only storage space but also computational time.

In order to improve the computational efficiency, we re-

duce the size of K(ψ) by filtering candidate matches under

a reasonable continuity assumption. In particular, unreliable

matches that cause leaps between consecutive frames are e-

liminated from the candidate match set. For an incoming

frame t, we construct a candidate match set for each vertex

vri ∈ V
r by applying geometric and photometric constraints

Dt
i={(i, a)|‖p

t
a − τ(ψt−1(p

r
i ))‖2 ≤ ǫg, cos(f

r
i , f

t
a) ≥ ǫa},

where ǫg and ǫa are tolerances of geometric and appearance

changes respectively. We further remove redundant match-

es from Dt
i and keep at most nc matches with maximum

appearance similarity. The final set of candidate matches

Dt is constructed by combining candidate match sets over

all vertices Dt = ∪iD
t
i .

The constructed Dt is then used to condense the affinity

matrix K(ψ) by removing the corresponding row and col-

umn for each (i, a) /∈ Dt. The size of the affinity matrix

K(ψ) is thus reduced to n2
cN

2 at most. We set empirically

ǫg = 20, ǫa = 0.6 and nc = 5 throughout our experiments.

5.3. Self­adaptive outlier rejection

Our approach fuses keypoint correspondence, outlier re-

jection and shape deformation into a unified optimization

framework as Eq. (6) that drives outlier rejection through

the penalization item λcT e(ψ), where λ > 0 controls the

degree of outlier rejection. It is usually hard to choose a

proper λ for outlier rejection in practice. A too small λ can-

not get the effect of denoising, while a too large one may

reject many correct correspondences as outliers.

To address this issue, we propose to use self-adaptive

outlier rejection by adjusting λ in line with affinity matrix

campus cobble scene

newspaper1 newspaper2 cushion1

(a) well textured surfaces

brick cloth cushion2

(b) repetitively textured surfaces

stone sunset

(c) weakly texture

Figure 1. The proposed DeSurT dataset of surfaces with (a) well

textured, (b) repetitive textured, and (c) weakly textured.

K(ψ) and project error e(ψ) as

λ =
N

∑

i,j |Ki,j(ψ)|

|Dt|
∑

i ei(ψ)
, (12)

where |Dt| denotes the size of the candidate match set

Dt. The motivation of this self-adaptive strategy is that we

choose a proper λ to avoid either of the two items in Eq. (6)

dominating the optimization.

6. Experiments

Our experiments consist of two parts. The first one

(Sec. 6.2) studies how the graph size affects tracking ac-

curacy and computational time of the proposed algorithm.

The second one (Sec. 6.3) compares the proposed algorithm

with state-of-the-arts on two benchmarks.

6.1. The proposed benchmark

Recently, several datasets [25, 32, 35, 36, 44] have been

provided for evaluating deformable surface tracking. How-

ever, most of them lack of annotated ground-truth mesh ver-

tices. Furthermore, these datasets are collected with limited

types of surfaces and may be insufficient to evaluate the ef-

fectiveness of deformable surface tracking algorithms.

For a thorough evaluation of the proposed algorithm in

comparison with the baseline algorithms, we collect a new

dataset and name it Deformable Surface Tracking (DeSurT).
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tracking error computational time

(a) the curves with respect to N

(b) the curves with respect to α

Figure 2. Tracking error and computational time of our algorithm

with respect to (a) keypoint number N , and (b) balance factor α.

DeSurt is collected using a Kinect camera to evaluate track-

ing performance under various deformations and lighting

conditions. It consists of 11 video streams and 3,361 frames

showing various deformations of different types of surfaces,

including seven printed pictures with different contents, two

newspapers and two cushions. As illustrated in Fig. 1, these

surfaces are roughly categorized into three classes: well-

textured (campus, cobble, scene, newspaper1, newspaper2

and cushion1), repetitively textured (brick, cloth and cush-

ion2), and weakly textured (stone and sunset).

To evaluate the reconstruction accuracy, we use the

Kinect point cloud to build ground truth meshes, and com-

pute the average vertex-to-vertex distance (as that in [25])

from the reconstructed mesh to the ground truth mesh.

Therefore, in addition to the depth information of each

frame, all videos come with manually annotated ground-

truth mesh vertices (130 vertices for printed pictures and

newspapers, and 121 vertices for cushions) across frames.

To test the robustness of the proposed algorithm against

occlusion, we also report results on a public dataset, track-

ing surface with occlusion (TSO) [25], which comprises

two video streams displaying well and poorly textured de-

formable surfaces respectively with a total of 394 frames, in

presence of both artificial and realistic occlusions.

6.2. Parameter analysis

The parameter N described in Sec. 5.1 decides the num-

ber of extracted keypoints and hence the size of the graphs.

It is the most crucial parameter in the proposed algorith-

Table 1. Comparison in the average tracking error (mm). The best

result for each row is in bold.

video
FSD LM LLS DIR TDA JRR ours (#N)

[29] [24] [8] [25] [48] [31] 1000 2000

D
eS

u
rT

campus 27.36 35.51 38.41 35.27 48.68 48.59 28.05 22.02

brick 31.05 31.24 37.28 37.33 54.75 55.07 33.82 27.61

scene 29.19 30.35 27.65 32.81 69.93 73.56 24.08 22.19

cloth 298.5 247.2 361.7 175.9 92.58 98.74 71.29 47.17

cobble 23.82 25.97 33.06 266.5 74.57 76.80 24.45 22.39

stone 254.8 361.8 310.9 77.18 129.9 118.3 42.20 36.09

sunset 85.8 117.1 94.69 44.08 76.17 74.30 51.60 30.93

news.1 26.04 33.55 65.35 27.15 58.42 60.94 26.94 23.05

news.2 32.99 34.15 45.39 76.34 55.73 55.78 28.84 25.93

cush.1 46.16 49.45 56.38 92.49 98.93 99.68 71.08 45.05

cush.2 172.0 136.2 203.2 99.18 77.20 75.91 43.73 40.26

AVG 93.43 100.2 115.8 87.65 76.07 76.15 40.55 31.15

T
S

O

classrm 5.26 2.62 12.40 2.52 39.60 39.48 3.48 2.75

white 38.63 49.27 58.61 7.17 60.60 60.49 8.75 6.12

AVG 21.95 25.95 35.51 4.85 50.10 49.99 5.62 4.44

Table 2. Comparison in the average computational time (s).

video
FDS LM LLS DIR TDA JRR ours (#N)

[29] [24] [8] [25] [48] [31] 1000 2000

D
eS

u
rT

campus 13.81 2.46 12.96 13.67 8.12 44.73 1.02 4.20

brick 13.07 2.08 12.58 13.43 26.24 24.69 0.68 1.95

scene 13.77 2.45 12.87 11.69 14.77 18.30 0.80 3.12

cloth 9.34 2.88 13.24 14.28 8.99 8.61 1.27 6.46

cobble 13.75 2.77 14.90 18.47 23.01 21.60 2.37 10.39

stone 14.52 2.12 11.99 17.16 9.64 8.36 1.92 8.18

sunset 12.60 2.21 12.38 16.27 13.80 13.25 2.41 9.55

news.1 12.84 2.59 13.24 20.31 21.03 20.81 1.37 5.13

news.2 13.24 2.54 14.89 21.78 12.94 12.74 0.84 3.18

cush.1 12.68 2.42 12.59 16.07 7.31 7.90 1.18 3.08

cush.2 14.19 2.32 12.10 20.80 9.58 9.51 0.68 2.43

AVG 12.98 2.44 13.07 16.72 14.13 15.32 1.32 5.24

T
S

O

classrm 18.06 3.69 12.38 22.06 6.53 6.23 1.11 4.02

white 12.24 1.68 12.20 52.59 24.83 24.75 1.39 4.32

AVG 15.16 2.69 12.29 37.33 15.68 15.49 1.25 4.17

m and directly affects tracking accuracy and computational

time. In addition, α defined in Eq. 3 controls the degree of

structure information integrated into our algorithm. In this

section, we report the average tracking error and computa-

tional time with respect to N and α respectively.

As shown in Fig. 2(a), the tracking error is reduced sig-

nificantly for all types of surfaces with increasing N when

N is smaller than 1500, and saturate afterwards. The com-

putational time is roughly quadratic in N because the size

of the affinity matrix K is quadratic in N .

Fig. 2(b) illustrates how our algorithm is influenced by

α, where α = 0 indicates sole local appearances being used

and α = 1 means integrating fully structure information. It

is shown that the tracking error is reduced remarkably for

surfaces with rich, weak or repetitive texture when we fuse

certain degrees of structure information (e.g. 0.3 ≤ α ≤
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Figure 3. Examples of surface with rich texture.

0.8). Meanwhile, occluded surfaces are less benefited from

the integrated structure information.

6.3. Comparison with state­of­the­art algorithms

In this section, we report experimental results of the pro-

posed algorithm in comparison with several state-of-the-art

baselines, including FSD [29], LM [24], LLS [8], DIR [25],

TDA [48] and JRR [31], of which the first three algorithm-

s are feature-based approaches and the last three ones are

dense approaches. For our algorithm we fix α = 0.7 for all

trials, and report two groups of results with N = 1000 and

2000 respectively.

As shown in Table 1, our algorithm is robust to diffe-

rent types of surfaces with rich, weak or repetitive texture,

and outperforms all baseline algorithms significantly even

when relatively less keypoints (N = 1000) are extract-

ed from each surface. As for occluded surfaces (the TSO
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Figure 4. Examples of surface with weak texture.

dataset), DIR achieves satisfactory tracking results with the

assistance of a well-designed strategy for occlusion detec-

tion. Interestingly, without any specified process for oc-

cluded surfaces, our algorithm provides comparable results

with DIR on the TSO dataset, and outperforms other base-

line algorithms in general. When we rise N up to 2000,

the tracking accuracy of our algorithm is further improved

remarkably on all video sequences of both datasets.

Considering computational time (Table 2), the feature-

based methods (FSD, LM, LLS and ours) cost less than the

dense methods (DIR, TDA and JRR). In particular, our al-

gorithm beats not only the dense methods but also the com-

pared feature-based ones on both datasets with N = 1000.

When we increase the number of keypoints to 2000, our al-

gorithm needs more computational time and becomes slow-

er than LM, but it is still more efficient than other baseline

algorithms on both datasets.
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Figure 5. Examples of surface with repetitive texture.

Fig. 3 to Fig. 6 illustrate several representative samples

of various types of surfaces provided by the compared al-

gorithms. For well-textured surfaces (Fig. 3), TDA and JR-

R fail to catch the object due to drastic deformation of the

surface, while other algorithms achieve reasonable track-

ing results. As illustrated in Figs. 4 and 5, all the com-

pared baseline algorithms suffer from weakly-textured and

repetitively-textured surfaces, but our algorithms is able to

provide accurate tracking results across frames. Further-

more, our algorithm, as well as DIR, is robust to partial oc-

clusion (Fig. 6), while other algorithms may fail to catch the

object in presence of some degree of occlusion.

7. Conclusion

In this paper, we proposed a novel graph-based approach

to deformable surface tracking aiming to improve the track-
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Figure 6. Examples of surface with occluded texture.

ing performance and efficiency. The proposed approach

solves for feature correspondence and shape recovery by

means of pairwise projection errors between graph struc-

tures, and employs soft matching relaxation to improve the

computational efficiency. Experimental results reveal that

our algorithm gains accurate and robust tracking perfor-

mance against various types of surfaces and outperforms re-

cent state-of-the-art algorithms in both accuracy and speed.
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