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Abstract

Human attribute analysis is a challenging task in the

field of computer vision. One of the significant difficulties

is brought from largely imbalance-distributed data. Con-

ventional techniques such as re-sampling and cost-sensitive

learning require prior-knowledge to train the system. To ad-

dress this problem, we propose a unified framework called

Dynamic Curriculum Learning (DCL) to adaptively ad-

just the sampling strategy and loss weight in each batch,

which results in better ability of generalization and dis-

crimination. Inspired by curriculum learning, DCL consists

of two-level curriculum schedulers: (1) sampling sched-

uler which manages the data distribution not only from im-

balance to balance but also from easy to hard; (2) loss

scheduler which controls the learning importance between

classification and metric learning loss. With these two

schedulers, we achieve state-of-the-art performance on the

widely used face attribute dataset CelebA and pedestrian

attribute dataset RAP.

1. Introduction

Human attribute analysis, including facial characteristics

and clothing categories, has facilitated the society in vari-

ous aspects, such as tracking and identification. However,

different from the general image classification problem like

ImageNet challenge [28], human attribute analysis naturally

involves largely imbalanced data distribution. For example,

when collecting the face data of attribute ‘Bald’, most of

them would be labeled as ‘No Bald’ and its imbalanced ra-

tio to the ‘Bald’ class would be relatively high. Training the

classification model with equal importance for samples in

different classes may result in a bias to the majority class

of the data and poor accuracy for the minority class. There-

fore, it is of great importance to handle the imbalanced data

learning problem, especially in human attribute analysis.

Impressive results have been achieved for the general im-

balanced data learning in the past years. One intuitive moti-

∗Equal contribution.

vation is resampling [2, 9, 13, 16, 36, 15], which either over-

samples the minority class data or downsamples the major-

ity class data, to balance the data distribution. However,

oversampling could easily cause overfitting problem due

to repeatedly visiting duplicated minority samples, while

downsampling may discards much useful information in the

majority samples. Another kind of approach called cost-

sensitive learning is also exploited to handle the imbalanced

data learning problem, which directly imposes heavier cost

on the misclassified minority class [48, 50, 55, 57] . How-

ever, it is difficult to determine the exact cost for different

samples in various distributions. Hand et al. [14] proposed

a batch-wise method that selects part of the majority sam-

ples and increases the weight of minority samples to match

a pre-defined target distribution. Besides the standard cross

entropy classification loss, Dong et al. [7, 8] proposed to

add another class rectification loss (CRL) to avoid the domi-

nant effect of majority classes. A specific metric is proposed

for imbalanced datasets by above methods. For the general

classification problem, class-biased accuracy is defined as

the number of correctly predicted samples divided by the

number of the whole test data. While for imbalanced data

classification, class-balanced accuracy is defined as the

average of the accuracy in each class for evaluation.

Our proposed Dynamic Curriculum Learning (DCL)

method is motivated by the following two considerations.

(1) Sampling is an acceptable strategy for the problem, but

keeping targeting at a balanced distribution in the whole

process would hurt the generalization ability, particularly

for a largely imbalanced task. For example, in the early

stage of learning with balanced target distribution, the sys-

tem discards lots of majority samples and emphasizes too

much on the minority samples, tending to learn the valid

representation of the minority class but the bad/unstable

representation of the majority one. However, what we ex-

pect is to make the system first learn the appropriate gen-

eral representations for both of the classes on the target at-

tributes and then classify the samples into correct labels,

which results in a favorable balance between the class bias

accuracy and class balanced accuracy. (2) It is reasonable

to combine cross entropy loss (CE) and metric learning loss
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(ML) since the appropriate feature representation could be

helpful for classification. However, we think those two

components contribute to different emphasis. Treating them

equally in the training process cannot fully utilize the dis-

criminative power of deep CNN. Specifically, CE pays more

attention to the classification task by assigning specific la-

bels, while ML focuses more on learning a soft feature em-

bedding to separate different samples in feature space with-

out assigning labels. Similarly to the previous point, we

expect the system first to learn the appropriate feature rep-

resentation and then classify the samples into the correct

labels.

In the spirit of the curriculum learning [1], we propose

Dynamic Curriculum Learning (DCL) framework for im-

balanced data learning. Specifically, we design two-level

curriculum schedulers: (1) sampling scheduler: it aims to

find the most meaningful samples in one batch to train

the model dynamically from imbalanced to balanced and

from easy to hard; (2) loss scheduler: it controls the learn-

ing weights between classification loss and metric learning

loss. These two components can be defined by the sched-

uler function, which reflects the model learning status. To

summarize our contributions:

• For the first time, we introduce the curriculum learn-

ing idea into imbalanced data learning problem. Based

on the designed scheduler function, two curriculum

schedulers are proposed for dynamic sampling oper-

ation and loss backward propagation.

• The proposed DCL framework is a unified representa-

tion, which can generalize to several existing state-of-

the-art methods with corresponding setups.

• We achieve the new state-of-the-art performance on

the commonly used face attribute dataset CelebA [35]

and pedestrian attribute dataset RAP [31].

2. Related Work

Imbalanced data learning. There are several groups

of methods trying to address the imbalanced learning prob-

lem in literature. (1) Data-level: considering the imbal-

anced distribution of the data, one intuitive way to do is

resampling the data [2, 9, 13, 16, 36, 38, 17, 10] into a

balanced distribution, which could oversample the minority

class data and downsample the majority class data. One ad-

vanced sampling method called SMOTE [2, 3] augments ar-

tificial examples created by interpolating neighboring data

points. Some extensions of this technique were proposed

[13, 36]. However, oversampling can easily cause overfit-

ting problem due to repeatedly visiting duplicated minority

samples. While downsampling usually discards many use-

ful information in majority samples. (2) Algorithm-level:

cost-sensitive learning aims to avoid above issues by di-

rectly imposing a heavier cost on misclassifying the minor-

ity class [48, 50, 55, 57, 53, 49]. However, how to deter-

mine the cost representation in different problem settings

or environments is still an open question. Besides of the

cost-sensitive learning, another option is to change the de-

cision threshold during testing, which is called threshold-

adjustment technique [5, 54, 57]. (3) Hybrid: this is an

approach that combines multiple techniques from one or

both abovementioned categories. Widely used example is

ensembling idea. EasyEnsemble and BalanceCascade are

methods that train a committee of classifiers on undersam-

pled subsets [34]. SMOTEBoost, on the other hand, is

a combination of boosting and SMOTE oversampling [4].

Some methods like [37, 26, 44, 51, 56, 39] also pays atten-

tion to the noisy samples in the imbalanced dataset.

Deep imbalanced learning. Recently, several deep

methods have been proposed for imbalanced data learning

[7, 8, 14, 19, 20, 22, 24, 25, 45, 57, 42, 6]. One major direc-

tion is to integrate the sampling idea and cost-learning into

an efficient end-to-end deep learning framework. Jeatrakul

et al. [22] treated the Complementary Neural Network as an

under-sampling technique, and combined it with SMOTE-

based over-sampling to rebalance the data. Zhou et al. [57]

studied data resampling for training cost-sensitive neural

networks. In [24, 6], the cost-sensitive deep features and

the cost parameter are jointly optimized. Oquab et al. [38]

resampled the number of foreground and background image

patches for learning a convolutional neural network (CNN)

for object classification. Hand et al. [14] proposed a se-

lective learning(SL) method to manage the sample distribu-

tion in one batch to a target distribution and assign larger

weight for minority classes for backward propagation. An-

other recent direction of the problem involves the metric

learning into the system. Dong et al. [7, 8] proposed a class

rectification loss (CRL) regularising algorithm to avoid the

dominant effect of majority classes by discovering sparsely

sampled boundaries of minority classes. More recently,

LMLE/CLMLE [19, 20] are proposed to preserve the local

class structures by enforcing large margins between intra-

class and inter-class clusters.

Curriculum learning. The idea of curriculum learning

was originally proposed in [1], it demonstrates that the strat-

egy of learning from easy to hard significantly improves the

generalization of the deep model. Up to now, works been

done via curriculum learning mainly focus on visual cate-

gory discovery [29, 41], object tracking [47], semi-/weakly-

supervised learning [11, 12, 23, 40], etc. [40] proposed

an approach that processes multiple tasks in a sequence

with sharing between subsequent tasks instead of solving all

tasks jointly by finding the best order of tasks to be learned.

Very few works approach the imbalanced learning. Guo et

al. [12] developed a principled learning strategy by leverag-

ing curriculum learning in a weakly supervised framework,

with the goal of effectively learning from imbalanced data.
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3. Method

We propose a Dynamic Curriculum Learning (DCL)

framework for imbalanced data classification problem, con-

sisting of two-level curriculum schedulers. The first one

is a sampling scheduler of which the key idea is to find the

most significant samples in one batch to train the model dy-

namically making data distribution from imbalanced to bal-

anced and from easy to hard. This scheduler determines

the sampling strategy for the proposed Dynamic Selective

Learning (DSL) loss function. The second one is the loss

scheduler, which controls the learning importance between

two losses: the DSL loss and the metric learning loss (triplet

loss). Therefore, in the early stage of the training process,

the system focuses more on the soft feature space embed-

ding, while later on, it pays more attention to the task of

classification.

3.1. Scheduler Function Design

Most of the traditional curriculum learning methods

manually define different training strategies. While in our

proposed DCL framework for imbalanced data learning, we

formulate the key idea of curriculum scheduling with differ-

ent groups of functions, as we called Scheduler Function.

We show the semantic interpretation for those functions.

The scheduler function SF (l) is a function which returns

value monotonically decreasing from 1 to 0 with the input

variable l, which represents the current training epoch. It

reflects the model learning status and measures the curricu-

lum learning speed. We explore several function classes as

following (illustrated in Figure 1):

• Convex function: indicating the learning speed from
slow to fast. For example:

SFcos(l) = cos(
l

L
∗
π

2
) (1)

• Linear function: indicating the constant learning
speed. For example:

SFlinear(l) = 1−
l

L
(2)

• Concave function: indicating the learning speed from
fast to slow. For example:

SFexp(l) = λl (3)

• Composite function: indicating the learning speed
from slow to fast and then slow again. For example:

SFcomposite(l) =
1

2
cos(

l

L
π) +

1

2
(4)

where L refers to expected total training epochs and λ is an

independent hyperparameter that in the range of (0, 1).
Different classes of SF (l) represent different curricu-

lum learning styles. Based on the above-introduced sched-

uler functions, we propose Dynamic Curriculum Learning

framework for imbalanced data classification.

Figure 1. Four types of designed scheduler functions.

3.2. Sampling Scheduler

Sampling is one of the most commonly used techniques

to deal with imbalanced data learning. In this section, we

introduce the proposed Dynamic Selective Learning (DSL)

component, which is based on our sampling scheduler. The

sampling scheduler dynamically adapts the target distribu-

tion in a batch from imbalanced to balanced during the

training process.

Explicitly, for each attribute, we define jth element of

the data distribution D as the number of jth class samples

divided by the number of minority samples (the least one).

Sorting them in ascending order, then we have:

D = 1 :
#C1

#Cmin

:
#C2

#Cmin

: ... :
#CK−1

#Cmin

(5)

where K is the number of classes and #Ci is the number of

samples in class i. Each attribute has its training distribution

Dtrain, which is a global statistic.

Sampling scheduler determines the target data distribu-

tion of the attributes in each batch. Initially, the target distri-

bution of one attribute Dtarget(0) in a batch is set to Dtrain,

which is imbalanced distributed. During the training pro-

cess, it gradually transfers to a balanced distribution with

the following function (each element is powered by g(l)):

Dtarget(l) = Dtrain
g(l) (6)

where l refers to current training epoch and g(l) is the sam-

pling scheduler function, which can be any choice in Sec-

tion 3.1. According to target distribution Dtarget(l) , the

majority class samples are dynamically selected and the mi-

nority class samples are re-weighted in different epochs to

confirm different target distributions in one batch. There-

fore, the DSL loss is defined as:

LDSL = −
1

N

M
∑

j=1

Nj
∑

i=1

wj ∗ log (p(yi,j = ȳi,j |xi,j)) (7)

wj =

{

Dtarget,j(l)

Dcurrent,j
if

Dtarget,j(l)

Dcurrent,j
≥ 1

0/1 if
Dtarget,j(l)

Dcurrent,j
< 1

(8)
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where N is batch size, Nj is the number of samples of

jth class in current batch, M is number of classes, ȳi,j
is the ground truth label. wj is the cost weight for class

j. Dtarget,j(l) is the jth class target distribution in cur-

rent epoch l. Dcurrent,j is the jth class distribution in cur-

rent batch before sampling. If
Dtarget,j(l)
Dcurrent,j

< 1, we sample

Dtarget,j(l)
Dcurrent,j

percentage of jth class data with original weight

1 and the remainings with 0. If not, then jth class is a mi-

nority class and a larger weight is assigned to the samples.

With different sampling scheduler functions (four types

in the previous section), the batch target distribution

changes from the training set biased distribution to balanced

distribution. At the beginning epoch, g(0) = 1, the target

distribution D equals to the train set distribution; in other

words, the real-world distribution. At the final epoch, g(l)
is close to 0, so all the element in target distribution D is

close to 1 (power of 0). In other words, it is a balanced

distribution.

The learning rate is usually set conforming to a decay

function. At the early stage of the training process, with a

large learning rate and biased distribution, the curriculum

scheduler manages the model to learn more on whole train-

ing data. Usually, the system learns lots of easy samples in

this stage. Going further with the training process, the tar-

get distribution is gradually getting balanced. With the se-

lected majority samples and re-weighted minority samples,

the system focuses more on the harder situation.

3.3. Metric Learning with Easy Anchors

Besides of the loss functionLDSL, we also involve a met-

ric learning loss to learn a better feature embedding for im-

balance data classification.

A typical selection of the metric learning loss is triplet

loss, which was introduced by CRL[8] with hard mining.

Define the samples with high prediction score on the wrong

class as hard samples. Then we build triplet pairs from the

anchors and some hard positive and negative samples. The

loss function in CRL is defined as following:

Lcrl =

∑

T
max

(

0, mj + d(xall,j , x+,j)− d(xall,j , x−,j)
)

|T |
(9)

where mj refers to the margin of class j in triplet loss and

d(·) denotes the feature distance between two samples. In

current batch, xall,j represents all the samples in class j,

x+,j and x−,j represents positive samples and negative sam-

ples respectively. T refers to the number of triplet pairs. In

CRL[8], all the minority class samples are selected as an-

chors.

We define easy sample as the correctly predicted sam-

ple. Choosing all the minority samples as anchors is not

stable for model to learn, since it may cause problems such

Figure 2. This figure visualizes a case of Triplet Loss in CRL[8]

that hard positive sample is chosen as the anchor. Assuming mi-

nority class as the positive class, the triplet pair shown in the figure

is trying to push both the positive sample and the negative sample

across the border, which is pushing the positive sample closer to

the negative side. It can cause the features of positive samples to

be more chaotic.

Figure 3. This figure visualizes a case of our proposed Triplet Loss

with only easy positive samples as the anchor. Since easy positive

samples’ features can be grouped easily, the hard positive sample

can be pulled closer to all the easy positive samples. Our proposed

method can avoid the situation in Figure 2.

as pulling easy positive samples to the negative side. Exam-

ples are illustrated in Figure 2.

We propose a method to improve the sampling operation

of Triplet loss with Easy Anchors LTEA, defined as follow:

LTEA =

∑

T
max

(

0, mj + d(xeasy,j , x+,j)− d(xeasy,j , x−,j)
)

|T |
(10)

where xeasy,j refers to easy minority samples in class j,

others are similar to equation 9. Easy anchors are defined

as high-confident correctly predicted minority samples. The

number of hard positives, hard negatives and easy anchors

to be selected is determined by the hyper-parameter k.

With LTEA loss, only easy samples in minority class are

chosen as anchors, which pulls the hard positive samples

closer and pushes hard negative samples further. As illus-

trated in Figure 3. Different from CRL choosing all mi-

nority samples as anchors to make rectification on feature

space, our proposed method selects easy anchors based on

the result of the classifier and pull all the samples to well-
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classified side. Also, we adopt the hard sample mining for

those selected easy anchors to build the triplet loss.

3.4. Loss Scheduler

To train the model better, we analyze the different char-

acteristics of the two proposed losses. Generally speaking,

triplet loss targets at learning a soft feature embedding to

separate different samples in feature space without assign-

ing labels, while cross entropy loss aims to classify the sam-

ples by assigning specific labels.

Particularly for imbalanced data learning, what we want

is that the system first learns an appropriate feature repre-

sentation then benefits the classification. Therefore, in or-

der to fully utilize these two properties, we design a loss

curriculum scheduler f(l) to manage these two losses.

Even though we can choose any one of the schedule

functions in Section 3.1, we use the composite function

(Equation 4) as an example here. The model learns with

the following scheduler:

LDCL = LDSL + f(l) ∗ LTEA (11)

f(l) =

{

1
2
cos( l

L
π) + 1

2
+ ǫ if l < pL

ǫ if l ≥ pL
(12)

where l refers to current training epoch, L refers to expected

total training epochs. Small modifications including a hy-

perparameter p ranging in [0, 1], which is defined as ad-

vanced self-learning point. Moreover, ǫ is the self-learning

ratio. The reason why we have a non-zero ǫ here is that

even though in self-learning stage, the model still needs to

maintain the feature structure learned from in the previous

stages.

In the early stage of training, a large weight is initialized

to the triplet loss LTEA for learning soft feature embedding

and decreases through time in respect to the scheduler func-

tion. In the later stage, the scheduler assigns a small impact

on LTEA and system emphasizes more on the Dynamic Se-

lective Loss LDSL to learn the classification. Finally, when

it reaches the self-learning point, no ‘teacher’ curriculum

scheduler is needed. The model automatically finetunes the

parameters until convergence.

3.5. Generalization of DCL Framework

To handle the imbalanced data learning problem, we pro-

pose the Dynamic Curriculum Learning framework. Revis-

iting the overall system, DCL consists of two-level curricu-

lum schedulers. One is for sampling g(l), and another is for

loss learning f(l). We can find that several state-of-the-art

imbalanced learning methods can be generalized from the

framework with different setups for the schedulers. The cor-

respondings are listed in Table 1. Selective Learning [14]

does not contain metric learning and only uses a fixed tar-

get distribution. CRL-I[7] does not contain a re-weight or

Method g(x) f(x)

Cross Entropy 1 0

Selective Learning[14] 0/1 0

CRL-I[7] 1 ǫ

DCL(Ours) Sampling scheduler Loss scheduler

Table 1. Generalization of proposed Dynamic Curriculum Learn-

ing method to other non-clustering imbalanced learning methods

with corresponding setups.

re-sample operation and only uses a fixed weight for metric

learning.

4. Experiments

4.1. Datasets

CelebA [35] is a human facial attribute dataset with annota-

tions of 40 binary classifications. CelebA is an imbalanced

dataset, specifically on some attributes, where the sample

imbalance level (majority class rate-50%) could be up to 48.

The dataset contains 202,599 images from 10,177 different

people.

RAP [31] is a richly annotated dataset for pedestrian at-

tribute recognition in real surveillance scenario. It contains

41,585 images from 26 indoor cameras, with 72 different

attributes. RAP is a highly imbalanced dataset with the im-

balance ratio (minority samples to majority samples) up to

1:1800.

CIFAR-100 [27] is a natural image classification dataset

with 32 × 32 pixels. It contains 50,000 images for training

and 10,000 images for testing. It is a balanced dataset with

100 classes. Each class holds the same number of images.

4.2. Evaluation Metric

For CelebA dataset and RAP dataset, following the stan-

dard profile, we apply the class-balanced accuracy (binary

classification) on every single task, and then compute the

mean accuracy of all tasks as the overall metric. It can be

formulated as following:

mAi =
1

2
(
TPi

Pi

+
TNi

Ni

) (13)

mA =
Σ

|C|
i=1mAi

|C|
(14)

where mAi indicates the class-balanced mean accuracy of

the i-th task, with TPi and Pi indicating the count of pre-

dicted true positive samples and positive samples in the

ground truth for the i-th task while TNi and Ni refers to

the opposite. |C| is the number of tasks.

For CIFAR-100 dataset, since each class holds the same

number of instances, class-balanced accuracy equals to

class-biased accuracy.
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Table 2. Class-balanced Mean Accuracy (mA) for each class (%) and class imbalance level (majority class rate-50%) of each of the

attributes on CelebA dataset. The 1st/2nd best results are highlighted in red/blue.
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LMLE [19] 88 96 99 99 92 99 98 83 68 72 79 92 60 80 87 73 87 73 83 96 98

CLMLE [20] 90 97 99 98 94 99 98 87 72 78 86 95 66 85 90 80 89 82 86 98 99

DCL (ours) 83 93 93 95 88 98 92 81 70 73 82 89 69 80 86 76 86 82 85 95 96
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DeepID2(CE) [46] 90 78 70 64 85 81 83 92 86 90 81 89 74 90 83 81 90 88 93 81.17

Over-Sampling [9] 90 80 71 65 85 82 79 91 90 89 83 90 76 89 84 82 90 90 92 81.48

Down-Sampling [9] 85 75 66 61 82 79 80 85 82 85 78 80 68 90 80 78 88 60 79 77.45

Cost-Sensitive [16] 89 79 71 65 84 81 82 91 92 86 82 90 76 90 84 80 90 88 93 81.60

Selective-Learning [14] 93 85 73 74 89 87 92 97 90 94 87 94 86 96 89 92 94 92 95 85.93

CRL-I [7] 95 84 74 72 90 87 88 96 88 96 87 92 85 98 89 92 95 94 97 86.60

LMLE [19] 99 82 59 59 82 76 90 98 78 95 79 88 59 99 74 80 91 73 90 83.83

CLMLE [20] 99 88 69 71 91 82 96 99 86 98 85 94 72 99 87 94 96 82 95 88.78

DCL (ours) 95 87 76 79 93 90 95 99 92 97 93 97 93 99 94 96 99 97 99 89.05

4.3. Experiments on CelebA Face Dataset

4.3.1 Implementation Details

Network Architecture We use DeepID2[46] as the back-

bone for experiments on CelebA for a fair comparison.

DeepID2[46] is a CNN of 4 convolution layers. All the ex-

periments listed on table 2 set DeepID2[46] as backbone.

The baseline is trained with a simple Cross-Entropy loss.

Since CelebA is a multi-task dataset, we set an indepen-

dent 64D feature layer and a final output layer for each task

branch. For each branch, it considers its own current and

target distribution and generates single attribute loss (Equa-

tion 12). Then we sum them up for backpropagation in a

joint-learn fashion.

Hyper-Parameter Settings We train DCL at learning rate

of 0.003, batch size at 512, training epoch at 300 and weight

decay at 0.0005. Horizontal Flip is applied during training.

Specifically, we set sampling scheduler to convex function

in Equation 1, loss scheduler to composite function in Equa-

tion 12 with advanced self-learning point p to 0.3, and k in

LTEA (Equation 10) to 25. The margin is set to 0.2.

Time Performance We train all the models with TITAN XP

GPU. Compared to the baseline DeepID2 which takes 20

hours to train, DCL training framework spends 20.5 hours

to converge (only 0.5 hour more on sampling and loss cal-

culation) under the same 300 epochs.

4.3.2 Overall Performance

We compared our proposed method DCL with DeepID2

[46], Over-Sampling and Down-Sampling in [9], Cost-

Sensitive [16], Selective Learning (SL) [14], CRL[7],

LMLE[19] and CLMLE[20].

Table 2 shows the overall results on CelebA. The base-

line of our evaluation is the general face classification

framework DeepID2[46] with standard cross entropy loss,

where we achieve around 8% performance improvement.

Compared to the recent advanced method, our method

outperforms 3.12% to Selective Learning[14], 2.45% to

CRL-I[7], 5.22% to LMLE[19] and 0.27% to CLMLE[20],

respectively. Specifically, LMLE/CLMLE methods are

sample-clustering based methods. However, one sample

is usually bundled with multiple different attributes. It is

challenging to handle all the aspects of different attributes
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Figure 4. Comparison of performance gain to the DeepID2 for

DCL, CRL and CLMLE with respect to the imbalance ratio.

Method SS TL LS Performance

1: Baseline (DeepID2) 0 0 0 81.17

2: 1 + SS 1 0 0 86.58

3: 2 + TL 1 1 0 87.55

4: 3 + LS 1 1 1 89.05

Table 3. Ablation study of each component: SS-Sampling Sched-

uler, TL-Triplet Loss with Easy Anchor, LS-Loss Scheduler.

Method Performance

1: DeepID2 81.17

2: DeepID2 + Convex 86.58

3: DeepID2 + Linear 86.36

4: DeepID2 + Concave (λ = 0.99) 85.90

5: DeepID2 + Composite 86.07

*: DeepID2 + Linear Decreasing Imbalance 85.11

Table 4. Performance comparison between different scheduler

functions selection. Method 2 in this table is corresponding to

the method 2 in Table 3.

in constructing quintuplet (four-samples). In our proposed

DCL method, it treats different attributes individually based

on their own distributions and the triplet loss is also defined

in attribute-level so that it can be easily expanded to mul-

tiple attributes learning problem. Besides, our method is

computational efficient with minimal extra time cost com-

pared to the cross-entropy loss. In LMLE/CLMLE, a com-

putational expensive data pre-processing (including cluster-

ing and quintuplet construction) is required for each round

of deep model learning. To create a quintuplet for each data

sample, four cluster- and class-level searches are needed.

4.3.3 Effect of Data Imbalance Level

In this part, we show the performance gain of each attribute

respecting to the data imbalance level compared with the

baseline method DeepID2 in Figure 4. In the figure, red,

blue, green curves indicate DCL, CRL, CLMLE respec-

tively. The horizontal axis indicates the imbalance level

and the vertical axis is the performance gain to the base-

line for each method. We can observe that our proposed

DCL method stably improves the performance across all

the attributes while others degrade in some. Specifically,

CRL is poor on attribute ‘Heavy Makeup’(-4%: level-11)

and CLMLE is poor on attributes ‘Wear Necklace’(-1%:

level-43)/‘Blurry’(-2%: level-45)/‘Mustache’(-6%: level-

46). Our method achieves remarkable performance over

the other two methods when the data is largely imbalanced,

which results from the target distribution transition from

imbalanced to balanced in sampling strategy. In the later

stage of learning, the model focuses more on minority class

while still keeps an appropriate memory for the majority

class. The most significantly improved attribute is ‘Blurry’,

with imbalance ratio 45 (8% performance gain to CRL, 21%
to CLMLE). Considering all these three methods adopt the

same backbone, results show the advantage of the DCL

training framework.

4.3.4 Ablation Study

There are several important parts in the proposed DCL

framework, including the sampling scheduler, design of the

triplet loss with easy anchor and loss scheduler. We provide

the ablation study in Table 3 to illustrate the advantages of

each component. Sampling scheduler (SS) aims to dynam-

ically manage the target data distribution from imbalanced

to balanced (easy to hard) and the weight of each sample

in LDSL (Equation 7). Triplet loss with easy anchors (TL)

modifies the anchor selection of triplet pair for better learn-

ing (LTEA). Loss scheduler (LS) controls the learning im-

portance between LDSL loss and LTEA loss. From the table,

we can see that our two important curriculum schedulers

contribute a lot with performance gain to the whole system.

4.3.5 Effect of Scheduler Function Selection

Since we design several scheduler functions with different

properties, we also include an analysis of them. The experi-

ment setup is that we only include the selection variation for

sampling scheduler, disable the metric learning with easy

anchor and loss scheduler to avoid the mutual effect. In Ta-

ble 4, remember that the target distribution of methods (2-5)

is nonlinearly adjusted by the power operation (Eq. 6) of the

scheduler function value. For method (*), the distribution is

simple linearly decreasing to 1 at the end of the training.

We can observe that method (*) is much worse than others.

Also, the convex function is a better selection for sampling

scheduler. According to the definition of scheduler function

which indicates the learning speed, it interprets that it is bet-

ter for the system to learn the imbalanced data slowly at the

very beginning of training and then speed up for balanced

data learning.
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Method Deep-Mar[30] Inception-v2[21] HP-net[33] JRL[52] VeSPA[43] LG-Net [32] DCL(ours)

mA 73.8 75.4 76.1 77.8 77.7 78.7 83.7

Table 5. Comaprison with the state-of-the-art methods on RAP[31] dataset. The 1st/2nd best results are highlighted in red/blue.

Imbalance Ratio (1:x) 1∼25 25∼50 >50

Baseline 79.3 68.9 68.0

DCL 83.1 83.9 85.5

Table 6. Average balanced mean accuracy (mA) in different groups

of imbalance ratios. Baseline is a ResNet-50 model trained with

cross entropy loss.

4.4. Experiments on RAP Pedestrian Dataset

4.4.1 Implementation Details

Network Architecture We use ResNet-50[18] as the back-

bone for our proposed method. For each attribute, we set an

extra feature layer of 64-dimension and a final output layer.

Our baseline in table 6 is a ResNet-50 model trained with

Cross Entropy loss in a multi-task learning framework.

Hyper-Parameter Settings We train DCL with batch size

512, learning rate 0.003, decay at 0.0005 and the epoch at

300. Horizontal Flip is applied during training. Specifically,

we set sampling scheduler to convex function in Equation

1, loss scheduler to composite function in Equation 12 with

advanced self-learning point p to 0.3, and k in LTEA (Equa-

tion 10) to 25.

4.4.2 Overall Evaluation

For overall evaluation, we include several the state-of-the-

art methods that been evaluated in this dataset, including

Deep-Mar [30], Inception-v2 [21], HP-net [33], JRL [52],

VeSPA [43] and LG-Net [32]. Table 5 indicates the aver-

age class-balanced mean accuracy (mA) for each method

in RAP dataset. The 1st/2nd best results are highlighted in

red/blue, respectively. We can see that our proposed DCL

method outperforms the previous best one (LG-Net) with

a large performance gain (5%). In term of computational

complexity, methods like LG-Net and HP-net apply class-

wise attention to their model, so their methods take more

resource in training and inference. Our proposed method is

an end-to-end framework with small extra cost.

4.4.3 Effect of Data Imbalance Ratio

Different from the definition of imbalance level (majority

class rate-50%) in CelebA, imbalance ratio (1:x) in RAP is

the ratio of minority samples to majority samples. As we

mentioned, there are 70 attributes in this dataset and the im-

balance ratio is up to 1:1800. Therefore, to show the advan-

tage of our method for imbalanced data learning, we group

attributes into three categories concerning imbalance ratio

and compare the average mA with the baseline method. The

Cross Entropy CRL[7] DCL(ours)

Accuracy 68.1 69.3 (+1.2) 71.5(+3.4)

Table 7. Results on CIFAR100 dataset (to baseline improvement).

baseline is a ResNet-50 model trained with cross-entropy

loss. From Table 6, we can observe that for group 1 with at-

tribute imbalance ratio from 1∼25, our method outperforms

3.8% to the baseline. When the data is more imbalance

distributed in group 2 with ratio 25∼50 and group 3 with

ratio >50, DCL achieves 15.0% and 17.5% performance

gain, respectively. This result demonstrates that our pro-

posed DCL method indeed works effectively for extremely

imbalanced data learning.

4.5. Experiments on CIFAR­100 Dataset

To validate the generalization ability of our method, we

conduct the experiment on a balanced dataset CIFAR-100

with our learning framework. In this balanced case, meth-

ods [9, 16, 14] in Table 2 are the same to the baseline

method with cross-entropy loss. Also, there is no perfor-

mance report of LMLE/CLMLE for generalization check.

Therefore, we compare the results with the baseline and

CRL[7] in Table 7. From the result, we can see our DCL

method outperforms the baseline and CRL with +3.4%
and +2.2%, respectively. Compared to CRL, our proposed

triplet loss with easy anchor stabilizes the training process.

Combined with the loss learning scheduler, DCL makes a

better rectification on feature space to provide a better rep-

resentation for the general classification.

5. Conclusion

In this work, a unified framework for imbalanced data

learning, called Dynamic Curriculum Learning (DCL) is

proposed. For the first time, we introduce the idea of cur-

riculum learning into the system by designing two curricu-

lum schedulers for sampling and loss backward propaga-

tion. Similar to teachers, these two schedulers dynami-

cally manage the model to learn from imbalance to balance

and easy to hard. Also, a metric learning triplet loss with

easy anchor is designed for better feature embedding. We

evaluate our method on two widely used attribute analysis

datasets (CelebA and RAP) and achieve the new state-of-

the-art performance, which demonstrates the generalization

and discriminative power of our model. Particularly, DCL

shows a strong ability for classification when data is largely

imbalance-distributed.
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