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Abstract

Despite the significant progress achieved in image de-

raining by training an encoder-decoder network within the

image-to-image translation formulation, blurry results with

missing details indicate the deficiency of the existing models.

By interpreting the de-raining encoder-decoder network as

a conditional generator, within which the decoder acts as

a generator conditioned on the embedding learned by the

encoder, the unsatisfactory output can be attributed to the

low-quality embedding learned by the encoder. In this paper,

we hypothesize that there exists an inherent mapping from the

low-quality embedding to a latent optimal one, with which

the generator (decoder) can produce much better results.

To improve the de-raining results significantly over existing

models, we propose to learn this mapping by formulating

a residual learning branch, that is capable of adaptively

adding residuals to the original low-quality embedding in a

representation entanglement manner. Using an embedding

learned this way, the decoder is able to generate much more

satisfactory de-raining results with better detail recovery and

rain artefacts removal, providing new state-of-the-art results

on four benchmark datasets with considerable improvements

(i.e., on the challenging Rain100H data, an improvement

of 4.19dB on PSNR and 5% on SSIM is obtained). The en-

tanglement can be easily adopted into any encoder-decoder

based image restoration networks. Besides, we propose a

series of evaluation metrics to investigate the specific con-

tribution of the proposed entangled representation learning

mechanism. Codes are available at 〈https://github.com/
RobinCSIRO/ERL-Net-for-Single-Image-Deraining〉.

1. Introduction

To improve the utility of advanced outdoor computer

vision systems, such as smart video surveillance and au-

tonomous driving cars, they have to be designed to deal

with challenging weather conditions including rain, snow or

haze [22, 26, 17, 10]. Recently, benefiting from the inven-

tion of convolutional neural networks, especially the design

of the pix2pix network architecture [15] and the adversar-

ial training strategy [8], the performance of single image

de-raining has experienced significant progress. By train-

ing a rainy-to-clean image translation model with synthetic

rain streak or raindrop datasets, a rainy image can be well

restored removing the artefacts despite the existence of rain

streaks or raindrops with different scales, shapes, and den-

sities. However, the blurry results with missing detail (as

shown in Fig. 1) resulted from existing network formula-

tions [22, 26, 27] leave room for possible improvement with

better formulations or network architectures.

Figure 1: Illustration of the proposed entangled representation

learning mechanism. By combining the embeddings from both

MEN and REN, a better conditional embedding is formed and used

by the MDE to generate a much better de-raining result. ‘REN’,

‘MEN’, and ‘MDE’ denote residual encoder, main encoder, and

main decoder respectively as shown in Fig. 2.

Consider this experiment: Given a rainy dataset (e.g., the

raindrop data from [22]), and an image-to-image translation

network (e.g., U-Net [24]), a comparative experiment was

conducted by training the network for two tasks (rainy-to-

clean translation and clean-to-clean translation) with the ℓ1
reconstruction loss. When calculating the PSNR and SSIM

of these two tasks, the result of the clean-to-clean transla-

tion model (with PSNR=49.51dB and SSIM=0.9948) was

unsurprisingly far better than that of the rainy-to-clean trans-

lation model (with PSNR=31.67dB and SSIM=0.9195) due

to the difference in the input images. By interpreting the

image-to-image translation model as a conditional generator

with the decoder acting as a generator conditioned on the

embedding learned by the encoder, the difference in inputs

can be further interpreted as the difference in the learned

embeddings. For the conditional generator (decoder) which
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is trained to produce the restored output from the learned

embedding, high-quality output can be obtained if the condi-

tional embedding can depict the properties (e.g., texture and

color) of the desired output image as well as possible. For

the encoder taking the clean image as input, the embedding

with such properties can be implicitly learned [3]. For the

encoder taking the rainy image as input, however, such an

embedding cannot be learned well due to the influence from

the rainy pixels in the raindrop images or rain streak images.

In other words, the conditional embedding learned by the

encoder taking the rainy image as input will be biased to-

wards revealing the property of rain-invariance while losing

the other essential properties (e.g., texture and color), thus

being unable to depict the desired output well. With such an

embedding, it is possible to produce an image without the

effect of rains but it is difficult to obtain an output recovering

sharp details well due to the absence of other properties.
Motivated by this observation, better de-raining results

can be obtained by improving the quality of the conditional

embedding. Most of the existing de-raining methods can

also be implicitly interpreted as improving the conditional

embedding by fusing the rain density label with the learned

embedding [27], or introducing the rainy region detection

map [26] or attention map [22] as auxiliary inputs. However,

those formulations are designed to improve the property of

rain-invariance, which can be guaranteed or improved by

simply designing a better network architecture [19]. With-

out any improvement in the embedding for depicting other

essential properties, the results of all existing models can be

further improved with a better formulation.

To this end, we propose an entangled representation learn-

ing model (ERL-Net) consisting of a two-branched encoder

(as shown in Fig. 2). Specifically, the model is first trained to

learn a basic embedding (with the main encoder and decoder)

depicting the property of rain-invariance. We hypothesize

that there exists a smooth connection from the basic em-

bedding to the optimal one in the latent embedding space,

and we should be actually able to learn such a connection

through a mapping function that adds the residuals as shown

in Fig. 1. This argument is supported by the feature equiv-

ariance theory [18], which finds that the representation of

deep layers in a network depends on the transformations of

the input image, and such transformations can be learned

by a mapping function from data and the function can be

subsequently utilized to manipulate the representation (ba-

sic embedding) of an input image to achieve the desired

transformation (from basic embedding to the optimal one).

To learn such a mapping function, another encoder branch

is designed and trained in the second stage for adding the

residuals to the basic embedding such that the rectified em-

bedding represents more complete properties covering both

rain-invariance and other essential factors (e.g., texture and

color). In the third stage, the overall model (two encoders

and one decoder) is fine-tuned to reach better compatibil-

ity among all these three modules, and new state-of-the-art

de-raining results are consequently obtained.

The contribution of this work is four-fold:

1. An entirely new perspective for analyzing a de-raining

network is provided by decomposing the rainy-to-clean

image translation model as a combination of an embed-

ding learning net (encoder) and a conditional generator

(decoder). Based on this interpretation, an entangled rep-

resentation learning mechanism is proposed and realized

with a simple yet effective network for obtaining better

single image de-raining results.

2. The proposed residual learning branch is easy to imple-

ment, and can be integrated into any image-to-image

translation-based image restoration framework for better

performance. It does not alter the original dimensionality

of the embedding, thus can be trained end-to-end after

being stitched to an existing model.

3. A group of evaluation metrics is proposed for dissect-

ing how ERL-Net improves the de-raining results by the

incorporation of the entangled representation learning

mechanism. Such simple metrics could potentially be

used together with the generic metrics (e.g., PSNR and

SSIM) to better analyze the effect of other image de-

raining proposals in future.

4. Extensive experiments are conducted on three rain streak

datasets and one raindrop dataset, and comparisons

against several recent state-of-the-art approaches are car-

ried out to show the significant improvements using the

proposed formulation. On the challenging Rain100H

dataset for example, we achieve a PSNR of 34.57dB,

bringing in a large improvement of 4.19dB over existing

state-of-the-art.

2. Related Work

2.1. Single Image De­raining

Recently, benefiting from the incredible learning capabil-

ity of convolutional neural networks (CNN), the result of

the single image de-raining task was significantly improved

by training a rainy-to-clean image translation model with

synthetic rain streak or raindrop datasets. Fu et al. [6] first

proposed to synthesize a large-scale rain streak dataset and

used it to learn an end-to-end negative residual mapping

network for rain streak removal. To improve the de-raining

results for more challenging scenarios, Yang et al. [26] con-

structed a more diversified dataset, with which a contextual-

ized network was trained and demonstrated to achieve better

results. We argue that the improvement mainly comes from

the introduction of the rain streak detection map, serving as

prior information guiding the network to focus more on the

rain streak regions. Two other similar solutions [22, 27] that

introduced rain region related information for better removal

were proposed: Zhang et al. [27] took advantage of the rain
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density label to guide the learning of the rainy-to-clean map-

ping network. Compared with the utilization of rain density

labels which call for extra annotation efforts, Qian et al. [22]

proposed to directly use the residual between the rainy im-

age and the corresponding clean one to generate the rainy

region related map, and used it as ground truth to train a

recurrent network for generating attention maps to guide

the de-raining network learning. Despite the improvements

achieved by these methods [22, 26, 27, 6], we argue that

the extra information (e.g., density label and attention map)

introduced in their formulation can only help improve the

rain-invariance property of the learned embedding, which

can be obtained instead without using that extra information

by constructing a better network architecture [19]. In other

words, it is possible to improve the results with the exist-

ing formulation by introducing a better latent embedding

learning mechanism such as the proposed entangled repre-

sentation learning network, and the effectiveness of such a

network is demonstrated with better de-raining results.

2.2. Representation Learning and Image­to­Image
Translation

Learning a mapping function to transform a high-

dimensional input image to another high-dimensional output

image is a much more challenging task for CNN [15, 30]

than learning the transformation from an image to a low-

dimensional decision space (e.g., class labels). Thanks to

the invention of the adversarial training strategy [8] and the

pix2pix translation framework [15], image-to-image transla-

tion results have improved drastically. Since then, a series of

frameworks based on the pix2pix network have been built

for learning to perform image-to-image translation tasks

including image manipulation [25], text to image transla-

tion [28], and image restoration (e.g., single image rain

streak removal [19] and raindrop removal [22]). However,

as evidenced in [30, 7], despite obtaining a plausible output

by training a pix2pix network with paired images, the re-

sults are usually different from the ground truth. Motivated

by the argument from InforGAN [3] that the embeddings

naturally decompose into a set of semantically meaningful

factors of variation, it is acceptable to attribute the unsat-

isfactory results to the low-quality semantic embedding if

we decompose the image-to-image translation network into

a combination of a latent embedding learning subnetwork

(encoder) and a conditional generator subnetwork (decoder).

Without a good embedding (covering different variation fac-

tors of the desired output) as the condition, it is no wonder

that the decoder is unable to produce a satisfactory result.

For the case of image de-raining, the reason for the unsatis-

factory results can be interpreted as the learned embedding

can only represent the factor of rain-invariance well but be-

ing unable to include most of the other essential factors such

as texture or color, thus resulting in an output with missing

detail as can be observed in Fig. 4.

3. Entangled Representation Learning Model

To generate satisfactory de-raining results by way of

learning a more complete embedding, a simple yet effec-

tive approach, termed as entangled representation learning,

is proposed, and the formulation and network architecture

are presented in this section.

3.1. Problem Formulation
The notion of feature equivariance [18] motivates our

method. In [18], the authors proposed to model how a

learned representation would change upon transformations

of the input image, and they found that such representation

changes induced by a transformation of the input image are

predictable and can be learned empirically from data.

Formally, a CNN can be interpreted as a complex non-

linear function Φ that maps an image x ∈ X to a semantic

feature vector Φ(x) ∈ R
d. The function Φ is proved to be

approximately equivariant to a transformation κ of the input

image if such a transformation can also be transferred to

the representation output [18]. That is, equivariance with κ

can be guaranteed when there exists an inherent map Mκ :
R

d → R
d that can be learned as follows:

∀x ∈ X : Φ(κx) ≈ MκΦ(x) , (1)

Similarly, our goal in this study is to design a light-weight

solution to make the learned embedding of the input rainy

image to retain more coverage (including the properties of

both rain-invariance and other essential factors). In such a

case, function Φ corresponds to the encoder, and the embed-

ding obtained with Φ on rainy image x is Φ(x). Specifically,

let us denote the rainy image and its corresponding clean

image as xr and xc respectively. According to Eq. (1), we

wish to obtain a transformed embedding of a rainy image xr
via a mapping function Mκ, so that MκΦ(xr) ≈ Φ(xc). To

facilitate the incorporation of MκΦ(xr) into a main encoder-

decoder network, as shown in Fig. 2, we formulate it as

the sum of the original rainy image embedding Φ(xr) with

residuals given by a residual function R(xr):

MκΦ(xr) = Φ(xr) +R(xr) ≈ Φ(xc) , (2)

By performing this simple residual guided transformation,

a better embedding of the input rainy image is obtained.

Such an embedding should be able to cover properties of

rain-invariance plus other essential factors, because it can be

regarded as an approximate estimation of the latent embed-

ding with the corresponding clean image.

For the network architecture designed for obtaining the

entangled embedding, two simple operations as shown in

Fig. 2(a) and Fig. 2(b) may be considered in principle. Be-

sides the proposed residual sum strategy, another approach in

terms of feature concatenation [24], which is commonly used

in disentangled representation recombination-based image-

to-image translation task [4, 13], should also work. However,

such an operation is not considered because it is said to im-

prove the embedding by way of increasing the dimension
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Figure 2: Overview of the proposed entangled representation learning network structure.

of the feature space, which will undoubtedly destroy the

original distribution and bring in more uncertainty.

3.2. Network Architectures

To deal with rain streaks or raindrops at different scales,

shapes, and densities, many task-specific modules have been

designed to build an effective de-raining model, including

residual blocks [11], multi-branch dilated convolution [26],

multi-stream dense blocks [27], and even recurrent lay-

ers [22]. Despite the improved performance obtained by

these modules, it is difficult to analyze the specific contribu-

tions of different modules and also their combinations.

Our basic network simply stacks the dense block [12]

under the U-Net structure [24] because (1) we argue that

the proposed entangled representation learning mechanism

should be applicable to other image-to-image translation

problems, and the construction of a general and simple

network architecture with such a mechanism results in an

easy-to-use framework for other problems; (2) as claimed

in [12], the desired properties of multi-scale, better informa-

tion reuse, and more stable gradient backpropagation can be

fulfilled implicitly by the cross-layer connected dense block.

Feature Fusion Layer. The FUS is proposed to address

the issue of feature incompatibility [14] induced by the skip-

connections within the U-Net structure [24]. Since the skip-

connection was proposed with an encoder-decoder network

for better feature reuse [14], it has become a default setup in

most image-to-image translation networks [22, 24, 19, 28].

Despite the large performance improvement by the use of

skip-connections in our model (as demonstrated in Sec-

tion 4.2), we argue that such a direct feature map concate-

nation between layers at different representation levels will

bring in feature incompatibility due to the inherent feature

hierarchy1 within a deep CNN. Such an inherent issue results

in insufficient exploitation of the skip-connection, leaving

1Feature hierarchy means that as the layers become deeper within a

CNN, the semantic properties become more abstract [1].

room for possible performance improvement with a better

skip-connection strategy. To this end, a simple module (as

shown in Fig. 2(c)) consisting of feature map recalibration

and residual guided layers combination is proposed and in-

corporated as a post-processing layer immediately after each

skip-connection layer in the decoder. Better results by the

feature-fusion layer are demonstrated in Section 4.2.

Architecture for Representation Entanglement. To fa-

cilitate the proposed residual guided representation entan-

glement formulation in Eq. (2), a succinct network is con-

structed as shown in Fig. 2. Built on an encoder-decoder

network, an additional encoder branch is introduced for resid-

ual learning. It should be noted that the residual branch can

be designed as any network structure only if the correspond-

ing dimension for summation is kept consistent. In our

implementation, the residual branch is designed to be ex-

actly the same structure with the main branch for simplicity.

Besides, due to the existence of skip-connection, two differ-

ent implementations of feature entanglement are introduced.

Specifically, the simpler one (as shown in Fig. 2(a)) is con-

structed by only focusing on improving the representation in

the very middle layer connecting the encoder and decoder.

Another approach (as shown in Fig. 2(b)) is realized by in-

troducing the entangled operation into both the middle layer

and every skip-connecting layer in the encoder. Such an ar-

chitecture can implicitly help reduce the representation gaps

in a layer-by-layer manner. The performance differences for

these two approaches are provided in Section 4.2.

Loss Function. With the proposed entanglement repre-

sentation learning mechanism, losses in both the pixel level

and feature level should be considered. For the loss func-

tioning on the de-rained image, unlike most of the existing

de-raining networks [22, 27] that take both the reconstruc-

tion loss and other high-level loss (e.g., perceptual loss and

adversarial loss) into consideration, only the reconstruction

loss is considered in our model because: (1) when combining

different losses, it is difficult to find the best configuration
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of loss weight to obtain the most appealing results [29]; (2)

different setups for perceptual loss (e.g., combination of out-

puts from different layers in a pre-trained CNN [27, 16])

and the instability in training a discriminator [8, 9] make it

tedious to try multiple loss combinations. Thus, the simple

reconstruction loss adopted in our work is:

Lpre = ‖IR − IDR‖1 , (3)

where Lpre indicates the pixel level reconstruction loss, IR is

the input rainy image, and IDR is the de-raining result.

Apart from the ℓ1 loss in Eq. (3), another feature level

reconstruction loss is introduced for training the residual

branch, and a pre-trained clean-to-clean image translation

network is used to generate the ground truth Φ(xc), with

which we minimize the following loss:

Lfre = ‖Φ(xr) +R(xr; θR)− Φ(xc)‖1 , (4)

where Lfre indicates the feature level reconstruction loss and

it includes one term for the network in Fig. 2(a) and multiple

terms for the network in Fig. 2(b). Φ(xr) is the layer output

from the main encoder branch, R(xr; θR) is the layer output

from the residual branch, and θR denotes the parameters of

that branch, Φ(xc) is the ground truth as mentioned above.

By combining these two reconstruction losses, the over-

all network can be trained end-to-end by minimizing the

following loss term:

LERL-Net = Lpre + λfreLfre , (5)

where λfre is set to 0.01 empirically.

To train the overall entangled representation learning net-

work, these three loss formulations in Eqs. (3)-(5) are used

stage-wise according to different training strategies, and we

provide the details in the following section.

3.3. Training of ERL­Net

By implementing the representation entanglement mecha-

nism in an efficient and flexible manner, two different strate-

gies (as summarized in Table 1) for training the ERL-Net

with the residual branch are designed to find out the best

model setup, and comprehensive results on all the strategies

will be provided in the experiments section.

Module Assembly (MA). For this strategy, four different

approaches are involved with the first stage consistently de-

signed as: a de-raining network consisting of a main encoder

(MEN) and a main decoder (MDE) is trained with the Lpre

loss, and a clean-to-clean image translation network with the

same structure is also trained for the Lfre loss calculation in

the following stages. Based on the pre-trained de-raining

network, the residual branch (REN) can be directly incor-

porated and then trained with four different setups: For the

two-staged models (MA A and MA B), the LERL-Net loss is

adopted to update the parameters within REN, while MA B

also considers the update of MDE. Furthermore, based on

MA A, the Lpre is adopted to update MDE or the combina-

tion of REN and MDE in the third stage, resulting in two

three-staged models termed as MA C and MA D.

Models
Training branch split and adopted loss functions

Stage-I Stage-II Stage-III

MA A
Branch (MEN, MDE) REN —

Loss Lpre LERL-Net —

MA B
Branch (MEN, MDE) (REN, MDE) —

Loss Lpre LERL-Net —

MA C
Branch (MEN, MDE) REN MDE

Loss Lpre LERL-Net Lpre

MA D
Branch (MEN, MDE) REN (REN, MDE)

Loss Lpre LERL-Net Lpre

DT One stage, LERL-Net to train the overall network

Table 1: Different strategies for training the entangled represen-

tation learning and de-raining network (REN, MEN, and MDE

denote branches of residual encoder, main encoder, and main de-

coder respectively as illustrated in Fig. 2).

Direct Training (DT). Given a plain encoder-decoder

de-raining network without pre-training, the residual branch

is incorporated and the overall network can be trained end-

to-end with the LERL-Net loss. Obviously, the performance

improvement will not be guaranteed without the explicit

stage-wise representation entanglement mechanism.

4. Experimental Results

4.1. Settings

Datasets and Metrics. For rain streak removal experi-

ments, three challenging benchmark synthetic datasets are

considered including the DDN-Data collected by Fu et al. [6],

the DID-Data synthesized by Zhang et al. [27], and the

Rain100H dataset provided in [26]. For raindrop removal, a

relatively large-scale raindrop dataset (denoted as AGAN-

Data [22]) is used. Following the training and testing dataset

split described in [22, 26, 27, 6], our model is trained and

evaluated quantitatively on all these four datasets with the

metrics of PSNR and SSIM on the Y channel (i.e., lumi-

nance) of the transformed YCbCr space. Besides, compre-

hensive ablation study is conducted on the Rain100H and the

AGAN-Data for rain streak and raindrop removal analysis

respectively. For the qualitative evaluation with real data,

the performance is compared by visual observation because

there is no rain-free ground truth for real-world images.

Training Details. During training, a 320×320 patch is

randomly cropped from each rainy image and used directly

for training without any data augmentation. We used a batch

size of 1 and trained our ERL-Net for 400 epochs on all

datasets on a Tesla P100 GPU. We implemented the models

and evaluated all experiments in TensorFlow, and adopted the

Adam optimizer with default settings for parameter updates.

The learning rate was initialized to 0.0004 and was divided

by 10 when the losses plateau. Code is publicly available.

4.2. Network Dissection

Basic Model. Before investigating the effect of the pro-

posed entangled representation learning mechanism, a sim-

ple ablation study was conducted to derive a powerful basic

model and also to verify the statement (in Section 3.2) on

the importance of skip-connection for the de-raining model
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design. Removing the residual branch shown in Fig. 2, a

simple baseline model termed as MEMD is constructed, on

which two variants are implemented by removing the feature

fusion layer (denoted as MEMD-) and then removing the

skip-connection (denoted as MEMD- -). Comparisons on

performance difference of these three models are carried

out on the AGAN-Data for raindrop removal and on the

Rain100H data for rain streak removal, and the qualitative

results are shown in Table 2.
MEMD- - MEMD- MEMD

Skip-Connection × √ √

Feature Fusion × × √

AGAN-Data
PSNR 30.4712 31.4305 32.2139

SSIM 0.8226 0.9186 0.9301

Rain100H
PSNR 24.0743 29.3782 31.6310

SSIM 0.7315 0.8327 0.8668

Table 2: Quantitative results by different setups on the basic model.

As demonstrated by the improvement with skip-

connection and further with the proposed feature fusion

block, the MEMD model is designed as the basic structure

for the entangled representation learning model.

Effective ERL-Net Setup Determination. As discussed

in Section 3.3, the flexibility of the proposed entanglement

formulation enables a series of model setups with different

training strategies. Besides, as illustrated in Fig. 2(a) and

(b), two different entanglement approaches including the

CLGD (connection layer guided entanglement) and MLGD

(multiple layer guided entanglement) are proposed for deter-

mining the best formulation. By adding the residual branch

to the basic model MEMD, those strategies and entangle-

ment approaches are investigated one by one by training

different ERL-Nets, and the corresponding results on both

the AGAN-Data and the Rain100H data are listed in Table 3.

As indicated by the results in Table 3, nearly all the se-

tups (except the MA A and DT strategies for Rain100H) are

able to outperform the existing state-of-the-art, fully demon-

strating the effectiveness of the proposed formulation and

network architecture. Among these powerful models, the

combination of MA D and MLGD achieves the best results

on both datasets, thus being used as the baseline setup of

ERL-Net2 for the following analysis and comparisons.

On the other hand, two other general conclusions can be

drawn from the results in Table 3: (1) The results with the

strategy of DT are worse than that of MS on both datasets re-

gardless of the entanglement approaches (CLGD or MLGD),

demonstrating the importance of stage-wise training strategy

for the proposed entangled representation learning mecha-

nism; (2) The results of different setups with MLGD are gen-

erally better than that of CLGD on both datasets regardless

of the specific training strategy, indicating the superiority of

the layer-wise feature rectification method which guarantees

a more smooth feature property transition in a layer-by-layer

2In the following section, ERL-Net specifically corresponds to the model

with the setup of combining MA D and MLGD.

manner. Meanwhile, it also reveals the importance of skip-

connection implicitly.

Furthermore, by comparing the values in Table 3 and

the values of MEMD in Table 2, the results from DT and

MEMD are similar and are both worse than that from MS,

demonstrating that the performance improvement comes

from the representation entanglement mechanism instead of

the increase in parameters with the residual encoder branch.

4.3. How ERL­Net Changes De­Raining Result?

With the best-configured ERL-Net obtained in Sec-

tion 4.2, we elaborately analyze the benefits from the pro-

posed entangled representation learning mechanism on all

the four benchmark datasets.

Statistical Distribution of Changed Samples. For the

first group of experiments, we propose to analyze the general

superiority of the proposed ERL-Net over a basic rainy-to-

clean image translation model (MEMD) by counting how

many samples are better restored by ERL-Net instead of

MEMD. For a specific rainy dataset, we first train both

MEMD and ERL-Net on the training set, and then record

the PSNR of the testing images. After obtaining the PSNR

values from MEMD and ERL-Net for each test image, the

proportion of samples with better results from ERL-Net over

MEMD are calculated. Following this procedure, such pro-

portion for four different datasets are obtained as in Fig. 3.

Figure 3: Statistical distribution of improved samples from ERL-

Net over the basic MEMD on four benchmark datasets. Left: The

proportion of improved samples over the whole dataset; Right:

The proportion of improved samples with subsets containing hard

samples or easy samples.

Judging from the distribution in Fig. 3, over half the test

samples on each dataset, as expected, are better restored

with ERL-Net, demonstrating that the proposed formulation

is capable of dealing with different raining conditions on

different datasets. More specifically, in the second experi-

ment group, we investigate how ERL-Net affects the specific

subset containing either hard samples or easy samples. For

a specific dataset, the average PSNR is first obtained with

the MEMD model, and then a hard sample is defined as the

image whose PSNR is lower than the average value. Con-

versely, the easy sample corresponds to the image with a

higher PSNR than the average one. After determining the

subsets of hard and easy samples for each dataset, the same

calculation as the first group is conducted in each subset

to obtain another distribution as illustrated in Fig. 3. The

results of all these four datasets show a similar distribution,

with more improvements on the hard samples instead of the

easy one, demonstrating the characteristics that the proposed
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SOTA MA A MA B MA C MA D DT

AGAN-Data 31.5712/0.9023
30.9741/0.8803 32.5280/0.9285 32.6427/0.9310 32.7124/0.9407 32.2650/0.9279 CLGD

31.0954/0.8992 32.8603/0.9371 32.9158/0.9374 32.9647/0.9458 32.1982/0.9298 MLGD

Rain100H 30.3821/0.8939
31.6521/0.8687 32.0452/0.9087 32.8027/0.9221 33.0145/0.9294 31.6214/0.8634 CLGD

31.6804/0.8692 32.6870/0.9247 33.2041/0.9364 34.5724/0.9387 31.6287/0.8673 MLGD

Table 3: De-raining results (on PSNR/SSIM) with different ERL-Net setups (results that outperform the existing state-of-the-art (SOTA) on

both PSNR and SSIM are shown in bold).

formulation deals with the heavier rainy conditions better.

Some de-raining results generated by MEMD and ERL-Net

on both hard and easy samples are shown in Fig. 4.

Figure 4: Results showing improvement by ERL-Net over MEMD

on both hard samples and easy samples.

As observed from Fig. 5, better de-raining results with

ERL-Net can be obtained on both rainy regions and back-

ground regions, motivating us to analyze how these two

regions are improved by the proposed entangled represen-

tation learning mechanism. Inspired by the definition of

mIoU (mean intersection over union) for evaluating seman-

tic segmentation performance [2], we propose two metrics

in terms of mIoR (mean intersection over rainy regions) and

mIoB (mean intersection over background) to evaluate the

improvement of ERL-Net on these two regions. Two maps

are calculated before evaluation:
RIM (Result Indicator Map): Given a pair of rainy and

clean images (Iclean) and the corresponding de-rained results
by MEMD (IMEMD) and ERL-Net (IERL-Net), they are first
transformed to the YCbCr space, and then the IRIM can be
calculated by Eq. (6) on the Y channel:

IRIM =

{

0, |IERL-Net − Iclean|≥ |IMEMD − Iclean|
1, Otherwise

, (6)

Binary Map: We obtain the binary maps for both rainy

regions (BMR) and background regions (BMB) by following

the thresholding strategy proposed in [22], and we adopt the

mean value instead of a fixed one (e.g., 30 in [22]) as the

threshold. Then in a BMR/BMB, a pixel belonging to the

rainy/background region has a value 1 while a pixel belong-

ing to the other region has a value 0. For the Rain100H

dataset [26], we directly use the binary map provided by the

authors for evaluation.
With the maps of BMR and BMB, the IoR (intersection

over rainy regions) and IoB (intersection over background
regions) for an image I with size M×N are calculated as:

IIoR =

M
∑

i=1

N
∑

j=1

IBMR
i,j ∩IRIM

i,j

IBMR
i,j

, IIoB =

M
∑

i=1

N
∑

j=1

IBMB
i,j ∩IRIM

i,j

IBMB
i,j

(7)

where ∩ indicates the logic operator ‘and’. With the values

of IIoR and IIoB for each image, the mIoR and mIoB for a

specific rainy dataset with K images can be calculated as:

mIoR=
1

K

K
∑

k=1

(IIoR)k, mIoB=
1

K

K
∑

k=1

(IIoB)k (8)

The specific mIoR and mIoB values given by ERL-Net

over different datasets are listed in Table 4:

Dataset AGAN-Data Rain100H DID-Data DDN-Data

mIoR 0.47 0.62 0.43 0.51

mIoB 0.28 0.19 0.30 0.27

Table 4: Results of mIoR and mIoB over four benchmark datasets.

As evidenced by the results in Table 4, the proposed

entangled representation mechanism is proved to improve the

quality of the de-rained images in both the rainy regions and

the background regions, with more focus on the rainy regions.

This is because the existence of raindrops or rain streaks

makes it difficult to learn accurate representation depicting

the property of original pixels behind the rains, while our

entangled representation learning mechanism reduces such

difficulty by imposing another encoder branch for learning

more knowledge about the distribution of the original clean

pixels behind the rains (raindrops or rain streaks).

4.4. Comparison with the State­of­the­art

The comparative experiment for rain streak removal is

designed following the setup in [19], and the proposed

ERL-Net is compared against seven state-of-the-art methods

including discriminative sparse coding (DSC) [21], layer

prior guided GMM [20], deep detail network (DDN) [6],

joint rain detection and removal network (JORDER) [26],

density-aware de-raining network (DID) [27], non-locally

enhanced de-raining network (NLEDN) [19], and progres-

sive de-raining network (PReNet) [23]. Different from the

popularity of rain streak removal, there only exists two recent

raindrop removal methods including the 3-layered network

proposed by Eigen et al. [5] and the latest attentive genera-

tive de-raining network (AGAN) [22]. Besides, following

the setup in [22], the pix2pix network [15] is also trained and

evaluated for the raindrop removal task. For fair comparison,

all the deep models for comparison are fine-tuned on the

specific training set before evaluation.

Quantitative Results. The result comparisons with

PSNR and SSIM for the tasks of rain streak removal and

raindrop removal are shown in Table 5 and Table 6 respec-

tively. Notably, as shown in Table 6, our ERL-Net achieves

far better results than the state-of-the-arts, outperforming

the best [22] by 1.39dB on PSNR and 4.8% on SSIM. On

the other hand, for the result of rain streak removal listed

in Table 5, ERL-Net achieves the best de-raining results on
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Datasets DSC [21] GMM [20] DDN [6] JORDER [26] DID [27] NLEDN [19] PReNet [23] ERL-Net

DDN-Data 22.03/0.7985 25.64/0.8361 28.24/0.8654 28.72/0.8741 26.17/0.8409 *29.79/*0.8976 32.60/0.9458 33.92/0.9502

DID-Data 20.89/0.7321 21.37/0.7923 27.33/0.8978 24.32/0.8622 *27.95/*0.9087 *33.16/*0.9192 33.48/0.9229 34.62/0.9403

Rain100H 17.55/0.5379 15.69/0.4181 16.02/0.3579 *23.45/*0.7490 26.35/0.8287 *30.38/*0.8939 29.46/0.8935 34.57/0.9387

Table 5: Average PSNR/SSIM comparisons on synthetic rain streak datasets. Red and blue colors are used to indicate top 1st and 2nd rank

respectively. Results with * indicate that the methods use additional labels or adopt data augmentation.

all the three challenging benchmark datasets, outperforming

the existing best methods by 1.32db, 1.14db, and 4.19db on

PSNR, and by 0.5%, 1.9%, and 5.0% on SSIM. The signifi-

cant performance gain achieved by the proposed ERL-Net

fully demonstrates the necessity of considering the entan-

gled representation learning mechanism for the de-raining

network design, and it also shows the effectiveness of the

simple network architecture. Furthermore, similar to the ob-

servations illustrated in Section 4.3, it can also be concluded

from the performance gains in Table 5 that the more chal-

lenging the dataset is, the more significant improvement can

be achieved by ERL-Net. This is because heavier rainy ef-

fect induces more severe information loss in the embedding

learned by traditional formulations [22, 26, 27, 6], and the

proposed ERL-Net is able to mitigate such information loss

with a simple entanglement representation learning mech-

anism, thus resulting in a superior de-raining model being

capable of dealing with more challenging rainy situations.

Eigen [5] pix2pix [15] AGAN [22] ERL-Net

PSNR 28.59 30.59 31.57 32.96

SSIM 0.6726 0.8075 0.9023 0.9458

Table 6: Quantitative result comparisons for raindrop removal. Red

and blue colors are used to indicate top 1st and 2nd rank respectively.

Qualitative Results. As can be observed from both the

raindrop removal results shown in Fig. 5 and the rain streak

removal results shown in Fig. 6, our model can remove

heterogeneously distributed rain streaks or raindrops from

different images and furthermore recover the details well.

On the contrary, some existing methods fail to handle the

extreme cases where the background is contaminated with

dense raindrops or rain streaks. Specifically, as observed

from the second row in Fig. 5 and the second row in Fig. 6,

our network can recover the hidden details of the building

walls very well. Consistent improvement over comparative

methods is also demonstrated with the de-raining result on

the skies in the second and third rows of Fig. 6, where our

model produces a much closer recovery to the ground truth

while all the others fail to remove the rain streaks thoroughly.

Much better results from our ERL-Net can also be found in

the real-world de-raining results in Fig. 7 showing that most

of the existing methods produce under-deraining results.

5. Conclusion

Starting from an entirely new view that interprets the

rainy-to-clean image translation network as a combination of

embedding learning network (encoder) and conditional gen-

erator (decoder), we attribute the unsatisfactory de-raining

results to the deficiency of the learned embedding and then

Figure 5: Visual comparison of raindrop removal results with the

AGAN-Data (zoom in to see the difference better).

Figure 6: Visual comparison of heavy rain streak removal results

with synthetic images (zoom in to see the difference better).

Figure 7: Visual comparison on real-world images. Results from

both comparative models and ERL-Net are selected as the best

one obtained from models trained on three different synthetic rain

streak datasets (zoom in to see the difference better).
present an entangled representation learning formulation to

solve such an intrinsic problem. Specifically, given that the

decoder is capable of generating a high-quality clean im-

age (demonstrated by the clean-to-clean image translation

experiment) with an optimal embedding, we bridge the dis-

crepancy from the deficient embedding to the optimal one

by performing an equivariant mapping implemented by rep-

resentation entanglement. Extensive results on three rain

streak datasets (DDN-Data, DID-Data, and Rain100H) and

one raindrop dataset (AGAN-Data) demonstrate the superi-

ority of the proposed model. Besides, a group of evaluation

metrics is established to enable a thorough dissection on

the effect of ERL-Net. It is noteworthy that the proposed

residual branch induced entangled representation learning

formulation should also be applicable to other image restora-

tion problems (e.g., image dehazing and image denoising),

which is ongoing work. Furthermore, we believe that the

proposed evaluation metrics can be used together with other

metrics (e.g., PSNR and SSIM) to provide a better analysis

on more image de-raining proposals.
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