
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Wenhai Wang∗1, Enze Xie∗2,4, Xiaoge Song1, Yuhang Zang3, Wenjia Wang2, Tong Lu†1, Gang Yu4, and

Chunhua Shen5

1National Key Lab for Novel Software Technology, Nanjing University
2Tongji University

3University of Electronic Science and Technology of China
4Megvii (Face++) Technology Inc.

5The University of Adelaide
{wangwenhai362, Johnny ez, sxg514}@163.com, yuhangzang@foxmail.com, wwj940312@126.com,

lutong@nju.edu.cn, yugang@megvii.com, chunhua.shen@adelaide.edu.au

Abstract

Scene text detection, an important step of scene text read-

ing systems, has witnessed rapid development with convo-

lutional neural networks. Nonetheless, two main challenges

still exist and hamper its deployment to real-world applica-

tions. The first problem is the trade-off between speed and

accuracy. The second one is to model the arbitrary-shaped

text instance. Recently, some methods have been proposed

to tackle arbitrary-shaped text detection, but they rarely

take the speed of the entire pipeline into consideration,

which may fall short in practical applications. In this paper,

we propose an efficient and accurate arbitrary-shaped text

detector, termed Pixel Aggregation Network (PAN), which is

equipped with a low computational-cost segmentation head

and a learnable post-processing. More specifically, the seg-

mentation head is made up of Feature Pyramid Enhance-

ment Module (FPEM) and Feature Fusion Module (FFM).

FPEM is a cascadable U-shaped module, which can intro-

duce multi-level information to guide the better segmenta-

tion. FFM can gather the features given by the FPEMs of

different depths into a final feature for segmentation. The

learnable post-processing is implemented by Pixel Aggre-

gation (PA), which can precisely aggregate text pixels by

predicted similarity vectors. Experiments on several stan-

dard benchmarks validate the superiority of the proposed

PAN. It is worth noting that our method can achieve a com-

petitive F-measure of 79.9% at 84.2 FPS on CTW1500.

∗Authors contributed equally.
†Corresponding author.

Figure 1. The performance and speed on curved text dataset

CTW1500. PAN-640 is 10.7% better than CTD+TLOC, and PAN-

320 is 4 times faster than EAST. * indicates the results from [31].

1. Introduction

Scene text detection is a fundamental and critical task in

computer vision, as it is a key step in many text-related ap-

plications, such as text recognition, text retrieval, license

plate recognition and text visual question answering. In

virtue of recent development of object detection [41, 30, 11,

9, 5, 8, 56] and segmentation [1, 55, 33, 53, 6, 7] based on

CNN [15, 20, 47, 25], scene text detection has witnessed

great progress [46, 42, 57, 31, 35, 49, 24]. Arbitrary-shaped

text detection, one of the most challenging tasks in text de-

tection, is receiving more and more research attention Some

new methods [31, 35, 49, 24] have been put forward to de-

tect curve text instance. However, many of these methods

suffer from low inference speed, because of their heavy

8440

Figure 2. The overall pipeline of PAN.

models or complicated post-processing steps, which lim-

its their deployment in the real-world environment. On the

other hand, previous text detectors [57, 32] with high effi-

ciency are mostly designed for quadrangular text instances,

which have flaws when detecting curved text. Therefore,

“how to design an efficient and accurate arbitrary-shaped

text detector” remains largely unsolved.

To solve these problems, here we propose an arbitrary-

shaped text detector, namely Pixel Aggregation Network

(PAN), which can achieve a good balance between speed

and performance. PAN makes arbitrary-shaped text detec-

tion following the simple pipeline as shown in Fig. 2, which

only contains two steps: i) Predicting the text regions, ker-

nels and similarity vectors by segmentation network. ii)

Rebuilding complete text instances from the predicted ker-

nels. For high efficiency, we need to reduce the time cost

of these two steps. First and foremost, a lightweight back-

bone is required for segmentation. In this paper, we use

ResNet18 [14] as the default backbone of PAN. However,

the lightweight backbone is relatively weak in feature ex-

traction, and thus its features typically have small recep-

tive fields and weak representation capabilities. To remedy

this defect, we propose a low computation-cost segmen-

tation head, which is composed of two modules: Feature

Pyramid Enhancement Module (FPEM) and Feature Fusion

Module (FFM). FPEM is a U-shaped module built by sepa-

rable convolutions (see Fig. 4), and therefore FPEM is able

to enhance the features of different scales by fusing the low-

level and high-level information with minimal computation

overhead. Moreover, FPEM is cascadable, which allows

us to compensate for the depth of lightweight backbone by

appending FPEMs after it (see Fig. 3 (d)(e)). To gather

low-level and high-level semantic information, before final

segmentation, we introduce FFM to fuse the features gen-

erated by the FPEMs of different depths. In addition, to

reconstruct complete text instances accurately, we propose

a learnable post-processing method, namely Pixel Aggrega-

tion (PA), which can guide the text pixels to correct kernels

through the predicted similarity vectors.

To show the effectiveness of our proposed PAN, we con-

duct extensive experiments on four challenging benchmark

datasets including CTW1500 [31], Total-Text [2], ICDAR

2015 [22] and MSRA-TD500 [51]. Among these datasets,

CTW1500 and Total-Text are new datasets designed for

curve text detection. As shown in Fig. 1, on CTW1500,

the F-measure of PAN-640 is 83.7% which is 10.7% bet-

ter than CTD+TLOC [31], and the FPS of PAN-320 is 84.2

which is 4 times faster than EAST [57]. Meanwhile, PAN

also has promising performance on multi-oriented and long

text datasets.

In summary, our contributions are three-fold. Firstly,

we propose a lightweight segmentation neck consisting of

Feature Pyramid Enhancement Module (FPEM) and Fea-

ture Fusion Module (FFM) which are two high-efficiency

modules that can improve the feature representation of the

network. Secondly, we propose Pixel Aggregation (PA), in

which the text similarity vector can be learned by the net-

work and be used to selectively aggregate pixels nearby the

text kernels. Finally, the proposed method achieves state-of-

the-art performance on two curved text benchmarks while

still keeping the inference speed of 58 FPS. To our knowl-

edge, ours is the first algorithm which can detect curved text

precisely in real-time.

2. Related Work

In recent years, text detectors based on deep learning

have achieved remarkable results. Most of these methods

can be roughly divided into two categories: anchor-based

methods and anchor-free methods. Among these meth-

ods, some use a heavy framework or complicated pipeline

for high accuracy, while others adopt a simple structure to

maintain a good balance between speed and accuracy.

Anchor-based text detectors are usually inspired by ob-

ject detectors such as Faster R-CNN [41] and SSD [41].

TextBoxes [27] directly modifies the anchor scales and

shape of convolution kernels of SSD to handle text with

extreme aspect ratios. TextBoxes++ [26] further regresses

quadrangles instead of horizontal bounding boxes for multi-

oriented text detection. RRD [28] applies rotation-invariant

and sensitive features for text classification and regression

from two separate branches for better long text detection.

SSTD [16] generates text attention map to enhance the text

region of the feature map and suppress background infor-

mation, which is beneficial for tiny texts. Based on Faster

R-CNN, RRPN [38] develops rotated region proposals to

detect titled text. Mask Text Spotter [36] and SPCNet [49]

regard text detection as an instance segmentation problem

and use Mask R-CNN [12] for arbitrary text detection.

The above-mentioned methods achieve remarkable results

on several benchmarks. Nonetheless, most of them rely

on complex anchor setting, which makes these approaches

heavy-footed and prevent them from applying to real-world

problems.

Anchor-free text detectors formulate text detection as a

text segmentation problem, which are often built upon fully

convolutional networks (FCN) [34]. Zhang et al. [54] first

estimatetext blocks with FCNs and detectcharacter candi-

dates from those text blocks with MSER. Yao et al. [52] use

FCN to predict three parts of a text instance, text/non-text,

character classes, and character linking orientations, then

8441

Figure 3. The overall architecture of PAN. The features from lightweight backbone network are enhanced by a low computational-cost

segmentation head which is composed of Feature Pyramid Enhancement Module (FPEM) and Feature Fusion Module (FFM). The network

predicts text regions, kernels and similarity vectors to describe the text instances.

apply a group process for text detection. To separate adja-

cent text instances, PixelLink [3] performs text/non-text and

links prediction in pixel level, then applies post-processing

to obtain text boxes and excludes noises. EAST [57] and

DeepReg [17] adopt FCNs to predict shrinkable text score

maps and perform per-pixel regression, followed by a post-

processing NMS. TextSnake [35] models text instances with

ordered disks and text center lines, which is able to rep-

resent text in arbitrary shapes. PSENet [24] uses FCN to

predict text instances with multiple scales, then adopts pro-

gressive scale expansion algorithm to reconstruct the whole

text instance. Briefly speaking, the main differences among

anchor-free methods are the way of text label generation and

post-processing. Nevertheless, among these methods, only

TextSnake and PSENet are designed for detecting curved

text instances which also widely appear in natural scenes.

However, they suffer from a heavy framework or a com-

plicated pipeline, which usually slows down their inference

speed.

Real time text detection requires a fast way to generate

high-quality text prediction. EAST [57] directly employs

FCNs to predict the score map and corresponding coordi-

nates and, followed by a simple NMS. The whole pipeline

of EAST is concise so that it can maintain a relatively high

speed. MCN [32] formulates text detection problem as

a graph-based clustering problem and generates bounding

boxes without using NMS, which can be fully parallelized

on GPUs. However, these methods are designed for quad-

rangular text detection and fail to locate the curve text in-

stances.

3. Proposed Method

3.1. Overall Architecture

PAN follows a segmentation-based pipeline (see Fig. 2)

to detect arbitrary-shaped text instances. For high effi-

ciency, the backbone of the segmentation network must be

lightweight. However, the features offered by a lightweight

backbone often have small receptive fields and weak rep-

resentation capabilities. For this reason, we propose seg-

mentation head that is computationally efficient to re-

fine the features. The segmentation head contains two

key modules, namely Feature Pyramid Enhancement Mod-

ule (FPEM) and Feature Fusion Module (FFM). As shown

in Fig. 3 (d)(e) and Fig. 4, FPEM is cascadable and has low

computational cost, which can be attached behind the back-

bone to make features of different scales deeper and more

expressive. After that, we employ the Feature Fusion Mod-

ule (FFM) to fuse the features produced by the FPEMs of

different depths into a final feature for segmentation. PAN

predicts text regions (see Fig. 3 (g)) to describe the complete

shapes of text instances, and predicts kernels (see Fig. 3 (h))

to distinguish different text instances. The network also pre-

dicts similarity vector (see Fig. 3 (i)) for each text pixel, so

that the distance between the similarity vectors of pixel and

kernel from the same text instance is small.

Fig. 3 shows the overall architecture of PAN. We employ

a lightweight model (ResNet-18 [14]) as the backbone net-

work of PAN. There are 4 feature maps (see Fig. 3 (b)) gen-

erated by conv2, conv3, conv4, and conv5 stages of back-

bone, and note that they have strides of 4, 8, 16, 32 pix-

els with respect to the input image. We use 1×1 convolu-

tion to reduce the channel number of each feature map to

128, and get a thin feature pyramid Fr. The feature pyra-

8442

Figure 4. The details of FPEM. “+”, “2×”, “DWConv”, “Conv”

and “BN” represent element-wise addition, 2× linear upsampling,

depthwise convolution [18], regular convolution [23] and Batch

Normalization [21] respectively.

mid is enhanced by nc cascaded FPEMs. Each FPEM pro-

duces an enhanced feature pyramid, and thus there are nc

enhanced feature pyramids F 1, F 2,..., Fnc . FFM fuses the

nc enhanced feature pyramids into a feature map Ff , whose

stride is 4 pixels and the channel number is 512. Ff is used

to predict text regions, kernels and similarity vectors. Fi-

nally, we apply a simple and efficient post-processing algo-

rithm to obtain the final text instances.

3.2. Feature Pyramid Enhancement Module

FPEM is a U-shaped module as illustrated in Fig. 4.

It consists of two phases, namely, up-scale enhancement

and down-scale enhancement. The up-scale enhancement

acts on the input feature pyramid. In this phase, the en-

hancement is iteratively performed on the feature maps with

strides of 32, 16, 8, 4 pixels. In the down-scale phase, the

input is the feature pyramid generated by up-scale enhance-

ment, and the enhancement is conducted from 4-stride to

32-stride.

Meanwhile, the output feature pyramid of down-scale

enhancement is the final output of FPEM. We employ sep-

arable convolution [18] (3×3 depthwise convolution [18]

followed by 1×1 projection) instead of the regular convolu-

tion to build the join part ⊕ of FPEM (see the dashed frames

in Fig. 4). Therefore, FPEM is capable of enlarging the re-

ceptive field (3×3 depthwise convolution) and deepening

the network (1×1 convolution) with a small computation

overhead.

Similar to FPN [29], FPEM is able to enhance the fea-

tures of different scales by fusing the low-level and high-

level information. In addition, different from FPN, there are

two other advantages of FPEM. Firstly, FPEM is a cascad-

able module. With the increment of cascade number nc, the

feature maps of different scales are fused more adequately

and the receptive fields of features become larger. Secondly,

FPEM is computationally cheap. FPEM is built by separa-

Figure 5. The detail of FFM. “+” is element-wise addition. “C” is

the operation of upsampling and concatenating.

ble convolution, which needs minimal computation. The

FLOPS of FPEM is about 1/5 of FPN.

3.3. Feature Fusion Module

Feature Fusion Module is applied to fuse the feature

pyramids F 1, F 2,..., Fnc of different depths. Because both

low-level and high-level semantic information are important

for semantic segmentation. A direct and effective method to

combine these feature pyramids is to upsample and concate-

nate them. However, the fused feature map given by this

method has a large channel number (4×128×nc), which

slows down the final prediction. Thus, we propose an-

other fusion method as shown in Fig. 5. We firstly combine

the corresponding-scale feature maps by element-wise ad-

dition. Then, the feature maps after addition are upsampled

and concatenated into a final feature map which only has

4×128 channels.

3.4. Pixel Aggregation

The text regions keep the complete shape of text in-

stances, but the text regions of the text instances lying

closely are often overlapping (see Fig. 3 (g)). Contrarily,

the text instances can be well distinguished using the ker-

nels (see Fig.3 (h)). However, the kernels are not the com-

plete text instance. To rebuild the complete text instances,

we need to merge the pixels in text regions to kernels. We

propose a learnable algorithm, namely Pixel Aggregation,

to guide the text pixels towards correct kernels.

In Pixel Aggregation, we borrow the idea of clustering

to reconstruct the complete text instances from the kernels.

Let us consider the text instances as clusters. The kernels

of text instances are cluster centers. The text pixels are the

samples to be clustered. Naturally, to aggregate the text

pixels to the corresponding kernels, the distance between

the text pixel and kernel of the same text instance should be

small. In the training phase, we use aggregation loss Lagg

as Equ. 1 to implement this rule.

Lagg =
1

N

N∑

i=1

1

|Ti|

∑

p∈Ti

ln(D(p,Ki) + 1), (1)

8443

D(p,Ki) = max(‖F(p)− G(Ki)‖ − δagg, 0)
2, (2)

where the N is the number of text instances. The Ti is the

ith text instance. D(p,Ki) defines the distance between

text pixel p and the kernel Ki of text instance Ti. δagg is a

constant, which is set to 0.5 experimentally and used to filter

easy samples. F(p) is the similarity vector of the pixel p.

G(·) is the similarity vector of the kernel Ki, which can be

calculated by
∑

q∈Ki
F(q)/ |Ki|.

In addition, the cluster centers need to keep discrimi-

nation. Therefore, the kernels of different text instances

should maintain enough distance. We use discrimination

loss Ldis as Equ. 3 to describe this rule during the training.

Ldis =
1

N(N − 1)

N∑

i=1

N∑

j=1

j 6=i

ln(D(Ki,Kj) + 1), (3)

D(Ki,Kj) = max(δdis − ‖G(Ki)− G(Kj)‖ , 0)
2. (4)

Ldis try to keep the distance among the kernels not less than

δdis which is set to 3 in all our experiments.

In the testing phase, we use the predicted similarity vec-

tor to guide the pixels in the text area to the corresponding

kernel. The detailed post-processing steps are as follows:

i) Finding the connected components in the kernels’ seg-

mentation result, and each connected component is a sin-

gle kernel. ii) For each kernel Ki, conditionally merging its

neighbor text pixel (4-way) p in predicted text regions while

the Euclidean distance of their similarity vectors is less than

d. iii) Repeating step ii) until there is no eligible neighbor

text pixel.

3.5. Loss Function

Our loss function can be formulated as:

L = Ltex + αLker + β(Lagg + Ldis), (5)

where Ltex is the loss of the text regions and Lker is the

loss of the kernels. The α and β are used to balance the

importance among Ltex, Lker, Lagg and Ldis, and we set

them to 0.5 and 0.25 respectively in all experiments.

Considering the extreme imbalance of text and non-text

pixels, we follow [24] and adopt dice loss [39] to supervise

the segmentation result Ptex of the text regions and Pker of

the kernels. Thus Ltex and Lker can be written as follows:

Ltex = 1−
2
∑

i Ptex(i)Gtex(i)∑
i Ptex(i)2 +

∑
i Gtex(i)2

, (6)

Lker = 1−
2
∑

i Pker(i)Gker(i)∑
i Pker(i)2 +

∑
i Gker(i)2

, (7)

where Ptex(i) and Gtex(i) refer to the value of the ith pixel

in the segmentation result and the ground truth of the text

regions respectively. The ground truth of the text regions is

a binary image, in which text pixel is 1 and non-text pixel

is 0. Similarly, Pker(i) and Gker(i) means the ith pixel

value in the prediction and the ground truth of the kernels.

The ground truth of the kernels is generated by shrinking

original ground truth polygon, and we follows the method in

[24] to shrink the original polygon by ratio r. Note that, we

adopt Online Hard Example Mining (OHEM) [43] to ignore

simple non-text pixels when calculating Ltex, and we only

take the text pixels in ground truth into consideration while

calculating Lker, Lagg and Ldis.

4. Experiment

4.1. Datasets

SynthText [10] is a large scale synthetically generated

dataset containing 800K synthetic images. Following [42,

37, 35], we pre-train our model on this dataset.

CTW1500 [31] is a recent challenging dataset for curve

text detection. It has 1000 training images and 500 testing

images. The dataset focus on curve text instances which are

labeled by 14-polygon.

Total-Text [2] is also a newly-released dataset for curve

text detection. This dataset includes horizontal, multi-

oriented and curve text instances and consists of 1255 train-

ing images and 300 testing images.

ICDAR 2015 (IC15) [22] is a commonly used dataset

for text detection. It contains a total of 1500 images, 1000

of which are used for training and the remaining are for

testing. The text instances are annotated by 4 vertices of the

quadrangle.

MSRA-TD500 includes 300 training images and 200

test images with text line level annotations. It is a dataset

with multi-lingual, arbitrary-oriented and long text lines.

Because the training set is rather small, we follow the pre-

vious works [57, 37, 35] to include the 400 images from

HUST-TR400 [50] as training data.

4.2. Implementation Details

We use the ResNet [15] or VGG16 [44] pre-trained on

ImageNet [4] as our backbone. The dimension of the sim-

ilarity vector is set to 4. All the networks are optimized

by using stochastic gradient descent (SGD). The pre-trained

model is trained on SynthText for 50K iterations with a

fixed learning rate of 1 × 10−3. Two training strategies are

adopted in other experiments: i) Training from scratch. ii)

Fine-tuning on SynthText pre-trained model. When train-

ing from scratch, we train PAN with batch size 16 on 4

GPUs for 36K iterations, and the initial learning rate is set

to 1 × 10−3. Similar to [55], we use the “poly” learn-

ing rate strategy in which the initial rate is multiplied by

(1− iter
max iter

)power, and the power is set to 0.9 in all exper-

iments. When fine-tuning on SynthText pre-trained model,

8444

#FPEM GFLOPS
ICDAR 2015 CTW1500

F FPS F FPS

0 42.17 78.4 33.7 78.8 49.7

1 42.92 79.9 29.5 80.4 44.7

2 43.67 80.3 26.1 81.0 39.8

3 44.43 80.4 23.0 81.3 35.2

4 45.18 80.5 20.1 81.5 32.4

Table 1. The results of models with different number of cascaded

FPEMs. “#FPEM” means the number of cascaded FPEMs. “F”

means F-measure. The FLOPS are calculated for the input of

640× 640× 3.

the number of iterations is 36K, and the initial learning rate

is 1 × 10−3. We use a weight decay of 5 × 10−4 and a

Nesterov momentum [45] of 0.99. We adopt the weight ini-

tialization introduced by [13].

In the training phase, we ignore the blurred text regions

labeled as DO NOT CARE in all datasets. The negative-

positive ratio of OHEM is set to 3. We apply random scale,

random horizontal flip, random rotation and random crop on

training images. On ICDAR 2015 and MSRA-TD500, we

fit a minimal area rectangle for each predicted text instance.

The shrink ratio r of the kernels is set to 0.5 on ICDAR 2015

and 0.7 on other datasets. In the testing phase, the distance

threshold d is set to 6.

4.3. Ablation Study

To make the conclusion of ablation studies more gener-

alized, all experiments of ablation studies are conducted on

ICDAR 2015 (a quadrangle text dataset) and CTW1500 (a

curve text dataset). Note that, in these experiments, all mod-

els are trained without any external dataset. The short sides

of test images in ICDAR 2015 and CTW1500 are set to 736

and 640 respectively.

The influence of the number of cascaded FPEMs. We

study the effect of the number of cascaded FPEMs by vary-

ing nc from 0 to 4. Note that, when nc = 0, we upsample

and concatenate the feature maps in Fr to get Ff . From Ta-

ble 1, we can find that the F-measures on the test sets keep

rising with the growth of nc and begins to level off when

nc ≥ 2. However, a large nc will slow down the model

despite the low computational cost of FPEM. For each ad-

ditional FPEM, the FPS will decrease by about 2-5 FPS. To

keep a good balance of performance and speed, we set nc

to 2 by default in the following experiments.

The effectiveness of FPEM. We design two groups of

experiments to verify the effectiveness of FPEM. Firstly,

we make a comparison between the model with FPEM and

without FPEM. As shown in Table 1, compared to the model

without FPEM (nc = 0), the model with one FPEM (nc =
1) can make about 1.5% improvement on F-measure while

bringing tiny extra computation. Secondly, we make com-

parison between a lightweight model equipped with FPEMs

and a widely-used segmentation model. To ensure a fair

comparison, under the same setting, we employ “ResNet18

Method
ICDAR 2015 CTW1500

F FPS F FPS

ResNet18 + 2 FPEMs + FFM 80.3 26.1 81.0 39.8

ResNet50 + PSPNet [55] 80.5 4.6 81.1 7.1

Table 2. The comparison between “ResNet18 + 2 FPEMs + FFM”

with “ResNet50 + PSPNet [55]”. “F” means F-measure.

Backbone Fuse PA
ICDAR 2015 CTW1500

F FPS F FPS

1 ResNet18 FFM X 80.3 26.1 81.0 39.8

2 ResNet18 - X 79.7 26.2 80.2 40.0

3 ResNet18 Concat X 80.4 22.3 81.2 35.9

4 ResNet18 FFM - 79.3 26.1 79.8 39.9

5 ResNet50 FFM X 81.4 16.7 81.6 26.0

6 VGG16 FFM X 81.9 6.6 81.5 10.1

Table 3. The results of models with different settings. “Fuse”

means the fusion method. “Concat” means direct concatenation.

“F” means F-measure.

+ 2 FPEMs + FFM” or “ResNet50 + PSPNet [55]” as the

segmentation network. As shown in Table. 2, even the back-

bone of “ResNet18 + 2 FPEMs + FFM” is lightweight, it

can reach almost same performance as “ResNet50 + PSP-

Net [55]”. In addition, “ResNet18 + 2 FPEMs + FFM”

enjoy over 5 times faster speed than “ResNet50 + PSP-

Net [55]”. The model size of “ResNet18 + 2 FPEMs +

FFM” is 12.25M.

The effectiveness of FFM. To investigate the effective-

ness of FFM, we firstly remove FFM and concatenate the

feature maps in the last feature pyramid Fnc to make final

segmentation. The F-measure drop 0.6%-0.8% when the

FFM is removed (see Table 3 #1 and #2), which indicates

that besides the features from deep layers, the shallow fea-

tures are also important to semantic segmentation. We then

compare FFM with the direct concatenation mentioned in

Sec. 3.3. The proposed FFM can achieve performance com-

parable to the direct concatenation (see Table 3 #1 and #3),

while FFM is more efficient.

The effectiveness of PA. We study the validity of PA by

removing it from the pipeline. Specifically, we set β to 0

in Eqn. 5 in the training phase and merge all neighbor text

pixels in step ii) of post-processing. Comparing the method

with PA (see Table 3 #1), the F-measure of the model with-

out PA (see Table 3 #4) drops over 1%, which indicate the

effectiveness of PA.

The influence of the backbone. To better analyze the

capability of the proposed PAN, we replace the lightweight

backbone (ResNet18) to heavier backbone (ResNet50 and

VGG16). As shown in Table 3 #5 and #6, under the same

setting, both of ResNet50 and VGG16 can bring over 1%

improvement on ICDAR 2015 and over 0.5% improvement

on CTW1500. However, the reduction of FPS brought by

the heavy backbone is apparent.

4.4. Comparisons with State­of­the­Art Methods

Curve text detection. To evaluate the performance of

our method for detecting curved text instance, we compare

8445

Method Ext. Venue
CTW1500

P R F FPS

CTPN* [46] - ECCV’16 60.4* 53.8* 56.9* 7.14

SegLink* [42] - CVPR’17 42.3* 40.0* 40.8* 10.7

EAST* [57] - CVPR’17 78.7* 49.1* 60.4* 21.2

CTD+TLOC [31] - ICDAR’18 77.4 69.8 73.4 13.3

PSENet-1s [24] - CVPR’19 80.6 75.6 78.0 3.9

PAN-320 - - 82.2 72.6 77.1 84.2

PAN-512 - - 83.8 77.1 80.3 58.1

PAN-640 - - 84.6 77.7 81.0 39.8

TextSnake [35] X ECCV’18 67.9 85.3 75.6 -

PSENet-1s [24] X CVPR’19 84.8 79.7 82.2 3.9

PAN-320 X - 82.7 77.4 79.9 84.2

PAN-512 X - 85.5 81.5 83.5 58.1

PAN-640 X - 86.4 81.2 83.7 39.8

Table 4. The single-scale results on CTW1500. “P”, “R” and “F”

represent the precision, recall and F-measure respectively. “Ext.”

indicates external data. * indicates the results from [31].

the proposed PAN with other state-of-the-art methods on

CTW1500 and Total-Text which include many curve text in-

stances. In the testing phase, we set the short side of images

to different scales (320, 512, 640) and evaluate the results

using the same evaluation method with [31] and [2]. We

report the single-scale performance of PAN on CTW1500

and Total-Text in Table 4 and Table 5, respectively. Note

that the backbone of PAN is set to ResNet18 by default.

On CTW1500, PAN-320 (the short side of input image

is 320), without external data pre-training, achieve the F-

measure of 77.1% at an astonishing speed (84.2 FPS), in

which the F-measure surpasses most of the counterparts, in-

cluding the methods with external data pre-training, and the

speed is 4 times faster than the fastest method. When fine-

tuning on SynthText pre-trained model, the F-measure of

PAN-320 can further be boosted to 79.9%, and PAN-512

outperform all other methods in F-measure by at least 1.2%

while still keeping nearly real-time speed (58 FPS).

Similar conclusions can be obtained on Total-Text.

Without external data pre-training, the speed of PAN-320

is real-time (82.4 FPS) while the performance is still very

competitive (77.1%), and PAN-640 achieves the F-measure

of 83.5%, surpassing all other state-of-the-art methods (in-

cluding those with external data) over 0.6%. With Syn-

thText pre-training, the F-measure of PAN-320 boosting

to 79.9%, and the best F-measure achieve by PAN-640 is

85.0%, which is 2.1% better than second-best SPCNet [49].

Meanwhile, the speed can still maintain nearly 40 FPS.

The performance on CTW1500 and Total-Text demon-

strates the solid superiority of the proposed PAN to detect

arbitrary-shaped text instances. We also illustrate several

challenging results in Fig. 6 (e)(f), which clearly demon-

strate that PAN can elegantly distinguish very complex

curve text instances.

Oriented text detection. We evaluate PAN on the IC-

DAR 2015 to test its ability for oriented text detection. By

default, ResNet18 is adopted as the backbone of PAN. Dur-

ing testing, we scale the short side of input images to 736.

The comparisons with other state-of-the-art methods are

Method Ext. Venue
Total-Text

P R F FPS

SegLink* [42] CVPR’17 30.3* 23.8* 26.7* -

EAST* [57] - CVPR’17 50.0* 36.2* 42.0* -

DeconvNet [2] - ICDAR’18 33.0 40.0 36.0 -

PSENet-1s [24] - CVPR’19 81.8 75.1 78.3 3.9

PAN-320 - - 84.0 71.3 77.1 82.4

PAN-512 - - 86.7 78.4 82.4 57.1

PAN-640 - - 88.0 79.4 83.5 39.6

TextSnake [35] X ECCV’18 82.7 74.5 78.4 -

PSENet-1s [24] X CVPR’19 84.0 78.0 80.9 3.9

SPCNet [49] X AAAI’19 83.0 82.8 82.9 -

PAN-320 X - 85.6 75.0 79.9 82.4

PAN-512 X - 89.4 79.7 84.3 57.1

PAN-640 X - 89.3 81.0 85.0 39.6

Table 5. The single-scale results on Total-Text. “P”, “R” and “F”

represent the precision, recall and F-measure respectively. “Ext.”

indicates external data. * indicates the results from [35].

Method Ext. Venue
ICDAR 2015

P R F FPS

CTPN [46] - ECCV’16 74.2 51.6 60.9 7.1

EAST [57] - CVPR’17 83.6 73.5 78.2 13.2

RRPN [38] - TMM’18 82.0 73.0 77.0 -

DeepReg [17] - ICCV’17 82.0 80.0 81.0 -

PixelLink [3] - AAAI’18 82.9 81.7 82.3 7.3

PAN - - 82.9 77.8 80.3 26.1

SegLink [42] X CVPR’17 73.1 76.8 75.0 -

SSTD [16] X ICCV’17 80.2 73.9 76.9 7.7

WordSup [19] X CVPR’17 79.3 77.0 78.2 -

Lyu et al. [37] X CVPR’18 94.1 70.7 80.7 3.6

RRD [28] X CVPR’18 85.6 79.0 82.2 6.5

MCN [32] X CVPR’18 72.0 80.0 76.0 -

TextSnake [35] X ECCV’18 84.9 80.4 82.6 1.1

PSENet-1s [24] X CVPR’19 86.9 84.5 85.7 1.6

SPCNet [49] X AAAI’19 88.7 85.8 87.2 -

PAN X - 84.0 81.9 82.9 26.1

Table 6. The single-scale results on ICDAR 2015. “P”, “R” and

“F” represent the precision, recall and F-measure respectively.

“Ext.” indicates external data.

Method Ext. Venue
MSRA-TD500

P R F FPS

EAST [57] - CVPR’17 87.3 67.4 76.1 13.2

RRPN [38] - TMM’18 82.0 68.0 74.0 -

DeepReg [17] - ICCV’17 77.0 70.0 74.0 1.1

PAN - - 80.7 77.3 78.9 30.2

SegLink [42] X CVPR’17 86.0 70.0 77.0 8.9

PixelLink [3] X AAAI’18 83.0 73.2 77.8 3.0

Lyu et al. [37] X CVPR’18 87.6 76.2 81.5 5.7

RRD [28] X CVPR’18 87.0 73.0 79.0 10

MCN [32] X CVPR’18 88.0 79.0 83.0 -

TextSnake [35] X ECCV’18 83.2 73.9 78.3 1.1

PAN X - 84.4 83.8 84.1 30.2

Table 7. The single-scale results on MSRA-TD500. “P”, “R”

and “F” represent the precision, recall and F-measure respectively.

“Ext.” indicates external data.

shown in Table 6. PAN achieves the F-measure of 80.4%

at 26.1 FPS without external data pre-training. Compared

with EAST [57], our method outperforms EAST 2.1% in

F-measure, while the FPS of our method is 2 times of

EAST. Fine-tuning on SynthText can further improve the

F-measure to 82.9% which is on par with TextSnake [35],

but our method can run 25 times faster than TextSnake. Al-

though the performance of our method is not as well as

some methods (e.g. PSENet, SPCNet), our method has a

least 16 times faster speed (26.1 FPS) than these methods.

Some qualitative illustrations are shown in Fig. 6 (g). The

8446

Figure 6. Qualitative results of PAN. (a) is the final result of PAN. (b) is the predicted text regions. (c) is the predicted kernels. (d) is the

visualization of similarity vectors, which is the best viewed in color and scatter diagram. (e)-(h) are results on four standard benchmarks.

Method F
Time consumption (ms)

FPS
Backbone Head Post

PAN-320 77.10 4.4 5.4 2.1 84.2

PAN-512 80.32 6.4 7.3 3.5 58.1

PAN-640 81.00 9.8 10.1 5.2 39.8

Table 8. Time consumption of PAN on CTW-1500. The total time

consists of backbone, segmentation head and post-processing. “F”

represents the F-measure.

proposed PAN successfully detects text instances of arbi-

trary orientations and sizes.

Long straight text detection. To test the robustness of

PAN to long straight text instance, we evaluate PAN on

MSRA-TD500 benchmark. To ensure fair comparisons,

we resize the short edge of test images to 736 as ICDAR

2015. As shown in Table. 7, the proposed PAN achieve F-

measures of 78.9% and 84.1% when the external data is not

used and used respectively. Compared with other state-of-

the-art methods, PAN can achieve higher performance and

run at a faster speed (30.2 FPS). Thus, PAN is also robust

for long straight text detection (see Fig. 6 (h)) and can in-

deed be deployed in complex natural scenarios.

4.5. Result Visualization and Speed Analysis

Result visualization. An example of PAN prediction is

shown in Fig. 6 (a-d). Fig. 6 (b) is the predicted text re-

gions which keep the complete shape information of text

instances. Fig. 6 (c) is the predicted kernels which clearly

distinguish different text instances. Fig. 6 (d) is a visualiza-

tion of similarity vectors. The dimensions of these vectors

are reduced to 3 and 2 by PCA [48] for visualization. We

can easily find that pixels belonging to its kernels have sim-

ilar color and narrow distance with its cluster center (ker-

nels).

Speed analysis. We specially analyze the time consump-

tion of PAN in different stages. As shown in Table 8, the

time costs of backbone and segmentation head are similar,

and the time cost of post-processing is half of them. In prac-

tical applications, an obvious way to increase speed is to run

the network and post-processing in parallel through a basic

producer-consumer model, which can reduce the time cost

to the original 4/5. The above experiments are conducted on

CTW1500 test set. We evaluate all test images and calcu-

late the average speed. All results in this paper are tested by

PyTorch [40] with batchsize of 1 on one 1080Ti GPU and

one 2.20GHz CPU in a single thread.

5. Conclusion

In this paper, we have proposed an efficient framework

to detect arbitrary-shaped text in real-time. We firstly intro-

duce a light-weight segmentation head consisting of Feature

Pyramid Enhancement Module and Feature Fusion Module,

which can benefit the feature extraction while bringing mi-

nor extra computation. Moreover, we propose Pixel Aggre-

gation to predict similarity vectors between text kernels and

surrounding pixels. These two advantages make the PAN

become an efficient and accurate arbitrary-shaped text de-

tector. Extensive experiments on Total-Text and CTW1500

demonstrate the superior advantages in speed and accuracy

when compared to previous state-of-the-art text detectors.

Acknowledgments

This work is supported by the Natural Science Founda-

tion of China under Grant 61672273 and Grant 61832008,

the Science Foundation for Distinguished Young Scholars

of Jiangsu under Grant BK20160021, and Scientific Foun-

dation of State Grid Corporation of China (Research on Ice-

wind Disaster Feature Recognition and Prediction by Few-

shot Machine Learning in Transmission Lines).

8447

References

[1] Liang-Chieh Chen, George Papandreou, Florian Schroff, and

Hartwig Adam. Rethinking atrous convolution for seman-

tic image segmentation. arXiv preprint arXiv:1706.05587,

2017.

[2] Chee Kheng Ch’ng and Chee Seng Chan. Total-text: A com-

prehensive dataset for scene text detection and recognition.

In Proc. Int. Conf. Document Analysis Recogn., 2017.

[3] Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Pix-

ellink: Detecting scene text via instance segmentation. In

Proc. AAAI Conf. Artificial Intell., 2018.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,

2009.

[5] Deng-Ping Fan, Ming-Ming Cheng, Jiang-Jiang Liu, Shang-

Hua Gao, Qibin Hou, and Ali Borji. Salient objects in clutter:

Bringing salient object detection to the foreground. In Proc.

Eur. Conf. Comp. Vis., 2018.

[6] Deng-Ping Fan, Ming-Ming Cheng, Yun Liu, Tao Li, and Ali

Borji. Structure-measure: A new way to evaluate foreground

maps. In Proc. IEEE Int. Conf. Comp. Vis., 2017.

[7] Deng-Ping Fan, Cheng Gong, Yang Cao, Bo Ren, Ming-

Ming Cheng, and Ali Borji. Enhanced-alignment mea-

sure for binary foreground map evaluation. arXiv preprint

arXiv:1805.10421, 2018.

[8] Deng-Ping Fan, Zheng Lin, Jia-Xing Zhao, Yun Liu,

Zhao Zhang, Qibin Hou, Menglong Zhu, and Ming-Ming

Cheng. Rethinking rgb-d salient object detection: Mod-

els, datasets, and large-scale benchmarks. arXiv preprint

arXiv:1907.06781, 2019.

[9] Deng-Ping Fan, Wenguan Wang, Ming-Ming Cheng, and

Jianbing Shen. Shifting more attention to video salient ob-

ject detection. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,

2019.

[10] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman.

Synthetic data for text localisation in natural images. In Proc.

IEEE Conf. Comp. Vis. Patt. Recogn., 2016.

[11] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017.

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask R-CNN. In Proc. IEEE Int. Conf. Comp. Vis.,

pages 2961–2969, 2017.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In Proc. IEEE Int. Conf.

Comp. Vis., 2015.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proc. IEEE

Conf. Comp. Vis. Patt. Recogn., 2016.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In Proc. Eur.

Conf. Comp. Vis., 2016.

[16] Pan He, Weilin Huang, Tong He, Qile Zhu, Yu Qiao, and

Xiaolin Li. Single shot text detector with regional attention.

In Proc. IEEE Int. Conf. Comp. Vis., 2017.

[17] Wenhao He, Xu-Yao Zhang, Fei Yin, and Cheng-Lin Liu.

Deep direct regression for multi-oriented scene text detec-

tion. In Proc. IEEE Int. Conf. Comp. Vis., 2017.

[18] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[19] Han Hu, Chengquan Zhang, Yuxuan Luo, Yuzhuo Wang,

Junyu Han, and Errui Ding. Wordsup: Exploiting word an-

notations for character based text detection. In Proc. IEEE

Int. Conf. Comp. Vis., 2017.

[20] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens

van der Maaten. Densely connected convolutional networks.

In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2017.

[21] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015.

[22] Dimosthenis Karatzas, Lluis Gomez-Bigorda, Anguelos

Nicolaou, Suman Ghosh, Andrew Bagdanov, Masakazu Iwa-

mura, Jiri Matas, Lukas Neumann, Vijay Ramaseshan Chan-

drasekhar, Shijian Lu, et al. Icdar 2015 competition on ro-

bust reading. In Proc. Int. Conf. Document Analysis Recogn.,

2015.

[23] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 1998.

[24] Xiang Li, Wenhai Wang, Wenbo Hou, Ruo-Ze Liu, Tong Lu,

and Jian Yang. Shape robust text detection with progressive

scale expansion network. arXiv preprint arXiv:1806.02559,

2018.

[25] Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selec-

tive kernel networks. In Proc. IEEE Conf. Comp. Vis. Patt.

Recogn., 2019.

[26] Minghui Liao, Baoguang Shi, and Xiang Bai. Textboxes++:

A single-shot oriented scene text detector. IEEE Trans. Im-

age Process., 2018.

[27] Minghui Liao, Baoguang Shi, Xiang Bai, Xinggang Wang,

and Wenyu Liu. Textboxes: A fast text detector with a single

deep neural network. In Proc. AAAI Conf. Artificial Intell.,

2017.

[28] Minghui Liao, Zhen Zhu, Baoguang Shi, Gui-song Xia, and

Xiang Bai. Rotation-sensitive regression for oriented scene

text detection. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,

2018.

[29] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In Proc. IEEE Conf. Comp.

Vis. Patt. Recogn., 2017.

[30] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In Proc. Eur. Conf.

Comp. Vis., 2016.

[31] Yuliang Liu, Lianwen Jin, Shuaitao Zhang, and Sheng

Zhang. Detecting curve text in the wild: New dataset and

new solution. 2017.

8448

[32] Zichuan Liu, Guosheng Lin, Sheng Yang, Jiashi Feng, Weisi

Lin, and Wang Ling Goh. Learning markov clustering net-

works for scene text detection. Proc. IEEE Conf. Comp. Vis.

Patt. Recogn., 2018.

[33] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 3431–3440, 2015.

[34] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Proc.

IEEE Conf. Comp. Vis. Patt. Recogn., 2015.

[35] Shangbang Long, Jiaqiang Ruan, Wenjie Zhang, Xin He,

Wenhao Wu, and Cong Yao. Textsnake: A flexible repre-

sentation for detecting text of arbitrary shapes. Proc. Eur.

Conf. Comp. Vis., 2018.

[36] Pengyuan Lyu, Minghui Liao, Cong Yao, Wenhao Wu, and

Xiang Bai. Mask textspotter: An end-to-end trainable neural

network for spotting text with arbitrary shapes. In Proc. Eur.

Conf. Comp. Vis., 2018.

[37] Pengyuan Lyu, Cong Yao, Wenhao Wu, Shuicheng Yan,

and Xiang Bai. Multi-oriented scene text detection via cor-

ner localization and region segmentation. arXiv preprint

arXiv:1802.08948, 2018.

[38] Jianqi Ma, Weiyuan Shao, Hao Ye, Li Wang, Hong Wang,

Yingbin Zheng, and Xiangyang Xue. Arbitrary-oriented

scene text detection via rotation proposals. IEEE Transac-

tions on Multimedia, 2018.

[39] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.

V-net: Fully convolutional neural networks for volumetric

medical image segmentation. In Proc. Int. Conf. 3D Vision,

2016.

[40] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017.

[41] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Proc. Advances in Neural Inf. Process.

Syst., 2015.

[42] Baoguang Shi, Xiang Bai, and Serge Belongie. Detecting

oriented text in natural images by linking segments. In Proc.

IEEE Conf. Comp. Vis. Patt. Recogn., 2017.

[43] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick.

Training region-based object detectors with online hard ex-

ample mining. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,

2016.

[44] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In Proc.

Int. Conf. Learn. Representations, 2015.

[45] Ilya Sutskever, James Martens, George Dahl, and Geoffrey

Hinton. On the importance of initialization and momentum

in deep learning. In ICML, 2013.

[46] Zhi Tian, Weilin Huang, Tong He, Pan He, and Yu Qiao. De-

tecting text in natural image with connectionist text proposal

network. In Proc. Eur. Conf. Comp. Vis., 2016.

[47] Wenhai Wang, Xiang Li, Tong Lu, and Jian Yang. Mixed link

networks. In Proc. Int. Joint Conf. Artificial Intell., 2018.

[48] Svante Wold, Kim Esbensen, and Paul Geladi. Principal

component analysis. Chemometrics and Intelligent Labora-

tory Systems, 2(1-3):37–52, 1987.

[49] Enze Xie, Yuhang Zang, Shuai Shao, Gang Yu, Cong Yao,

and Guangyao Li. Scene text detection with supervised pyra-

mid context network. In Proc. AAAI Conf. Artificial Intell.,

2019.

[50] Cong Yao, Xiang Bai, and Wenyu Liu. A unified framework

for multioriented text detection and recognition. IEEE Trans-

actions on Image Processing, 23(11):4737–4749, 2014.

[51] Cong Yao, Xiang Bai, Wenyu Liu, Yi Ma, and Zhuowen Tu.

Detecting texts of arbitrary orientations in natural images. In

Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2012.

[52] Cong Yao, Xiang Bai, Nong Sang, Xinyu Zhou, Shuchang

Zhou, and Zhimin Cao. Scene text detection via holistic,

multi-channel prediction. arXiv preprint arXiv:1606.09002,

2016.

[53] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,

Gang Yu, and Nong Sang. Bisenet: Bilateral segmentation

network for real-time semantic segmentation. In Proc. Eur.

Conf. Comp. Vis., 2018.

[54] Zheng Zhang, Chengquan Zhang, Wei Shen, Cong Yao,

Wenyu Liu, and Xiang Bai. Multi-oriented text detection

with fully convolutional networks. In Proc. IEEE Conf.

Comp. Vis. Patt. Recogn., 2016.

[55] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In

Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2017.

[56] Jia-Xing Zhao, Yang Cao, Deng-Ping Fan, Ming-Ming

Cheng, Xuan-Yi Li, and Le Zhang. Contrast prior and fluid

pyramid integration for rgbd salient object detection. In

Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2019.

[57] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang

Zhou, Weiran He, and Jiajun Liang. East: an efficient and ac-

curate scene text detector. arXiv preprint arXiv:1704.03155,

2017.

8449

