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Figure 1: Our 3D semantic completion model (right-most) generates realistic yet accurate volumetric scene representations

from a single depth image (left-most) affected by occlusion and noise, even if acquired from a real depth sensor.

Abstract

We propose a novel model for 3D semantic completion

from a single depth image, based on a single encoder and

three separate generators used to reconstruct different ge-

ometric and semantic representations of the original and

completed scene, all sharing the same latent space. To

transfer information between the geometric and semantic

branches of the network, we introduce paths between them

concatenating features at corresponding network layers.

Motivated by the limited amount of training samples from

real scenes, an interesting attribute of our architecture is

the capacity to supplement the existing dataset by generat-

ing a new training dataset with high quality, realistic scenes

that even includes occlusion and real noise. We build the

new dataset by sampling the features directly from latent

space which generates a pair of partial volumetric surface

and completed volumetric semantic surface. Moreover, we

utilize multiple discriminators to increase the accuracy and

realism of the reconstructions. We demonstrate the benefits

of our approach on standard benchmarks for the two most

common completion tasks: semantic 3D scene completion

and 3D object completion.

1. Introduction

The increasing abundance of depth data, thanks to the

widespread presence of depth sensors on devices such as

robots and smartphones, has recently fostered big advance-

ments in 3D processing for augmented reality, robotics and

scene understanding, unfolding new applications and tech-

nology that relies on the geometric rather than just the ap-

pearance information. Since 3D devices sense the environ-

ment from one specific viewpoint, the geometry that can be

captured in one shot is only partial due to occlusion caused

by foreground objects as well as self-occlusion from the

same object.

As for many applications, this partial 3D information is

insufficient to robustly carry-out 3D tasks such as object de-

tection and tracking or scene understanding. A recent re-

search direction has emerged that leverages deep learning

to “complete” the depth images acquired by a 3D sensor,

i.e. filling in the missing geometry that the sensor could not

capture due to occlusion. The capability of deep learning

to determine a latent space that captures the global context

from the training samples proved useful in regressing com-

pleted 3D scenes and 3D shapes even when big portion of

the geometry are missing [3, 4, 28, 30, 39]. Also, some of

these approaches have been extended to jointly learn how

to infer geometry and semantic information, in what is re-

ferred to as semantic 3D scene completion [4, 30, 34]. Nev-

ertheless, current approaches are still limited by different

factors, including the difficulty of regressing fine and sharp

details of the completed geometry, as well as to general-

ize to shapes that significantly differ from those seen during

training.
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Figure 2: This figure shows the ground truth reconstruc-

tion where we notice the incorrect labels from SUNCG [30]

dataset on the TVs, i.e. enclosed in the black box.

In this work, we aim to tackle 3D completion from a sin-

gle depth image based on a novel learned model that relies

on a single encoder and multiple generators, each trained to

regress a different 3D representation of the input data: (i) a

voxelized depth map, (ii) a geometric completed volume,

(iii) a semantic completed volume. This particular architec-

ture aims at two goals. The first is to supplement the lack

of paired input-output data, i.e. a depth map and the associ-

ated completed volumetric scene, with novel pairs directly

generated from the latent space, i.e. by means of (i) and

(iii). The second goal is to overcome a common limitation

of available benchmarks that provide imprecise semantic la-

bels, by letting the geometric completion remain unaffected

from it, i.e. by means of (i) and (ii). By means of specific

connections between corresponding neural layers in the dif-

ferent branches, we let the semantic completion model be

conditioned on geometric reconstruction information, this

being beneficial to generate accurate reconstructions with

aligned semantic information.

Overall, the proposed learning model uses a mix of su-

pervised and unsupervised training stages which leverage

the power of generative models in addition to the annota-

tions provided by benchmark datasets. Additionally, we

propose to further improve the effectiveness of our gener-

ative model by employing discriminators able to increase

the accuracy and realism of the produced output, yielding

completed scenes with high level details even in the pres-

ence of strong occlusion, as witnessed by Fig. 1 that reports

an example from a real dataset (NYU [24]).

Our contributions can be summarized as follows: (i) a

novel architecture, dubbed ForkNet, based on a single en-

coder and three generators built upon the same shared latent

space, useful to generate additional paired training samples;

(ii) the use of specific connections between generators to let

geometric information condition and drive the completion

process over the often imprecise ground truth annotations

(see Fig. 2); and, (iii) the use of multiple discriminators to

regress fine details and realistic completions. We demon-

strate the benefits of our approach on standard benchmarks

for the two most common completion tasks: semantic 3D

scene completion and 3D object completion. For the for-

mer, we rely on SUNCG [30] (synthetic) and NYU [24]

(real). For the latter, instead, we test on ShapeNet [1] and

3D-RecGAN [38]. Notably, we outperform the state of the

art for both scene reconstruction and object completion on

the real dataset.

2. Related work

Semantic scene completion. 3D semantic scene comple-

tion starts from a depth image or a point cloud to provide

an occlusion-free 3D reconstruction of the visible scene

within the viewpoint’s frustrum while labeling each 3D ele-

ment with a semantic class from a pre-defined category set.

Scene completion could be in principle achieved by exploit-

ing simple geometric cues such as plane consistency [23] or

object symmetry [17]. Moreover, meshing approaches such

as Poisson reconstruction [16] as well as purely geometric

works [7] can also be employed for this goal.

Recent approaches suggested to leverage deep learning

to predict how to fill-in occluded parts in a globally coher-

ent way with respect to the training set. SSCNet [30] carries

out semantic scene completion from a single depth image

using dilated convolution [40] to capture 3D spatial infor-

mation at multiple scales. They rely on a volumetric repre-

sentation to represent both input and output data. Based on

SSCNet, VVNet [12] applies view-based 3D convolutions

as a replacement for SDF back-projections, this resulting

more effective in extracting geometric information from the

input depth image. SaTNet [21] relies on the RGB-D im-

ages. They initially predict the 2D semantic segments with

the RGB. The depth image then back-projects the seman-

tically labelled pixels to a 3D volume which goes through

another architecture for 3D scene completion. ScanCom-

plete [4] also targets semantic scene completion but, in-

stead of starting from a single depth image, they assume

to process a large-scale reconstruction of a scene acquired

via a consumer depth camera. They suggest a coarse-to-

fine scheme based on an auto-regressive architecture [27],

where each level predicts the completion and the per-voxel

semantic labeling at a different voxel resolution. The work

in [34] proposes to use GANs for the task of semantic scene

completion from a single depth image. In particular, it pro-

poses to use adversarial losses applied on both the output

and latent space to enforce realistic interpolation of scene

parts. The work in [34] proposes to use GANs for the task

of semantic scene completion from a single depth image. In

particular, it proposes to use adversarial losses applied on

both the output and latent space to enforce realistic interpo-

lation of scene parts. Partially related to this field, the work

in [31] leverages input object proposals in the form of 2D

bounding boxes to extract the layout of a 3D scene from a

single RGB image, while estimating the pose of the objects

therein. A similar task is tackled by [9] starting from an

8609



(  )

Latent
Feature

Denoising Block Conv(2,1)

Deconv(2,1)

Multi-Scale Upsampling

Multi-Scale Downsampling

Upsampling

Downsampling

Concatenate

Encoder (   )

Figure 3: ForkNet – the proposed volumetric network architecture for semantic completion relies on a shared latent space

encoded from SDF volume x reconstructed from the input depth image. The two decoding paths are trained to generate,

respectively, incomplete surface geometry (x̂), completed geometric volume (g) and completed semantic volumes (s).

RGB-D image.

Object completion. 3D object completion aims at obtain-

ing a full 3D object representation from either a single depth

or RGB image. While several RGB-based approaches have

been recently proposed [2, 6, 35], in this section, we will

focus only on those based on depth images as input since

they are more related to the scope of this work. The work

in [28] uses a hybrid architecture based on a CNN and an

autoencoder to learn completing 3D shapes from a single

depth map. 3D-RecGAN [38, 39] proposes to complete an

observed object from a single depth image using a network

based on skip connections [29] between the encoder and

the generator so to fetch more spatial information from the

input depth image to the generator. 3D-EPN [3] performs

shape completion based on a latent feature concatenated

with object classification information via one-hot coding,

so that this additional semantic information could drive an

accurate extrapolation of the missing shape parts. Han et

al. [13] complete shapes with multiple depth images fused

via LSTM Fusion [19] and process the fused data using a

3D fully convolutional approach. MarrNet [35] reconstructs

the 3D shape by applying reprojection consistency between

2.5D sketch and 3D shape.

GANs for 3D shapes. Although the use of GANs for 3D

semantic scene completion tasks is almost an unexplored

territory, GANs have been frequently employed in recent

proposals for the task of learning a latent space for 3D

shapes, useful for object completion as well as for tasks

such as object retrieval and object part segmentation. For

instance, 3D-VAE-GAN [36] trains a volumetric GAN in

an unsupervised way from a dataset of 3D models, so to be

able to generate realistic 3D shapes by sampling the learned

latent space. ShapeHD [37] tackles the difficult problem

of reconstructing 3D shapes from a single RGB image and

suggests to overcome the 2D-3D ambiguity by adversari-

ally learning a regularizer for shapes. PrGAN [8] learns to

generate 3D volumes in an unsupervised way, trained by

a discriminator that distinguishes whether 2D images pro-

jected from a generated 3D volume are realistic or fake. 3D-

ED-GAN [33] transforms a coarse 3D shape into a more

complete one using a Long Short-term Memory (LSTM)

Network by interpreting 3D volumes as sequences of 2D

images.

3. Proposed semantic completion

Taking the depth image as input, we reconstruct the vis-

ible surface by back-projecting each pixel onto a voxel of

the volumetric data. Denoted as x, we represent the surface

reconstruction from the depth image as a signed distance

function (SDF) [25] with nl×nw ×nh voxels such that the

value of the voxel approaches zero when it is closer to the

visible surface.

Our task then is to produce the completed reconstruction

of the scene with a semantic label for each voxel. Hav-

ing N object categories, the class labels are assigned as

C = {ci}
N
i=0 where c0 is the empty space. Thus, denoted as

s, we represent the resulting semantic volume as a one-hot

encoding [22] with N + 1 dimensional feature. Similarly,

we define g as the completed reconstruction of the scene

without the semantic information by setting N to 1.

3.1. Model architecture

We assemble an encoder-generator architecture [36] that

builds the completed semantic volume from the partial

scene derived from a single depth image. As illustrated in

Fig. 3, the encoder E(·) is composed of 3D convolutional

operators where the spatial resolutions are decreased by a

factor of two in each layer. In effect, this continuously re-

duces the volume into its simplest form, denoted by the la-

tent feature z such that z = E(x).
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Figure 4: (a-b) Downsam-

pling and (c) upsampling

convolutional layers in our

architecture (see Fig. 3).

Note that the two parameters

(s, d) in all the functions are

the stride and dilation while

the kernel size is set to 3.

In detail, the encoder is composed of four downsampling

operators. The first aims at denoising [30] the SDF volumes

as illustrated in Fig. 4(a). This involves a combination of a

3D convolutional operator, several 3D ResNet blocks [14],

denoted as Res3D(s, d) where s is the stride while d is the

dilation, and a pooling layer. The second layer aims at

including different objects in the scene even with varying

sizes by concatenating the output of four sequentially con-

nected 3D ResNet blocks in Fig. 4(b). Consequently, the

information from the smaller objects are captured on the

first Res3D(·, ·) while the larger object are captured on the

subsequent blocks. Notably, the first block is parameterized

with a dilation of 1 while the other three with dilations of

2. The concatenated result is then downsampled by a 3D

convolutional operator. In the final two layers, we further

downsample the volume with 3D convolutional operators

until we form the latent feature with a size of 16×5×3×5.

Branching from the same latent feature, we design three

generators that reconstructs:

(i) the SDF volume (x̂) which, with respect to x, formu-

lates as an autoencoder;

(ii) the completed volume (g) which focuses on recon-

structing the geometric structure of the scene; and,

(iii) the completed semantic volume (s) which is the de-

sired outcome.

We assign these generators as the functions Gx̂(·), Gg(·) and

Gs(·), respectively. Notably, we distinguish x, which is the

SDF volume obtained from the input depth image, from x̂,

which is the inferred SDF volume obtained from the gen-

erator. The structure of each generator is composed of 3D

deconvolutional operators that increases the spatial resolu-

tion by two in each layer.

While the first 3 convolutional upsampling layers in the

generators are composed of 3D deconvolutional operators

as shown in Fig. 3, the last layer is a multi-scale upsam-

pling which is sketched in Fig. 4(c). This layer is similar to

the multi-scale downsampling of the encoder where the goal

is to consider the variation of sizes from different objects.

In this case, we concatenate the results of two sequentially

connected 3D ResNet blocks then end with a 3D deconvo-

lution operator. With the same operations as the other gen-

erators, the generator that builds the completed semantical

volume Gs additionally incorporates the data from the gen-

erator of the geometric scene reconstruction Gg as shown in

Fig. 3 by concatenating the results from the second and the

third layers. Since the resulting x̂, g and s have different

number of channels, only the dimension of the output from

the deconvolutional operator in the last layer changes for

each structure.

Giving a holistic perspective, we can simplify the sketch

of the architecture in Fig. 3 to Fig. 5 by plotting the relation

of the variables x, x̂, g, s and z. When we focus on cer-

tain structures, we notice that we have an autoencoder that

builds an SDF volume in Fig. 5(a), the reconstruction of the

scene in Fig. 5(b) and the volumetric semantic completion

in Fig. 5(c), where all of these structures branch out from

the same latent feature. Later in Sec. 3.2, these plots are

used to explain the loss terms in training.

The rationale of having multiple generators is twofold.

First, in contrast to the typical encoder-decoder architecture,

we introduce the connection that relates the two generators.

Taking the output from the Gx̂ in each layer, we concatenate

the results to the data from Gs as shown in Fig. 3. By estab-

lishing this relation, we incorporate the SDF reconstruction

from the Gx̂ into the semantic completion in order to capture

the geometric information of the observed scene.

Second, the latent feature can generate a pair of SDF and

completed semantic volumes. Through this set of paired

volumes, we can supplement the learning dataset in an un-

supervised manner. This becomes a significant component

in evaluating the NYU dataset [24] in Sec. 4.1 where the

amount of learning dataset is limited because, since they use

a consumer depth camera to capture real scenes, annotation

becomes difficult. However, evaluating on this dataset is

more essential compared to the synthetic dataset because it

brings us a step closer to real applications. Relying on this

idea in Sec. 3.2, we propose an unsupervised loss term that

optimizes the entire architecture based on its own learning

dataset.

Discriminators. Inspired by GANs [11, 26], we intro-

duce the discriminator Dx that evaluates whether the gener-

ated SDF volumes from Gx̂ are realistic or not by comparing

them to the learning dataset. Here, Dx is constructed by a
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Figure 5: Graphical models of the 4 data flows (and the associated loss terms) used during training and derived from Fig. 3.

sequentially connected 3D convolutional operators with the

kernel size of 3×3×3 and stride of 2. This implies that the

resolution of the input volume is sequentially decreased by

a factor of two after each operation. To capture the local

information of the volume [5], the results from Dx is set to

a resolution of 5×3×5.

With a similar architecture as Dx, we also introduce a

second discriminator Ds that evaluates the authenticity of

the generated volume s. Notably, the two discriminators

are evaluated in the loss terms in Sec. 3.2 to optimize the

generators.

3.2. Loss terms

Leveraging on the forward passes of smaller architec-

tures in Fig. 5, we can optimize the entire architecture by

simultaneously optimizing different paths. We also opti-

mize the architecture of the two discriminators that distin-

guishes whether the generated volumes are realistic or not.

During training, the learning dataset is given by a set of

the pairs {(x, sgt)}, where we distinguish sgt as the ground

truth from the generated s. Note that the ground truth for

the geometric completion ggt is the binarized summation of

non-empty space in sgt and an occupancy volume from the

SDF surface.

SDF autoencoder. Motivated to reconstruct as similar

SDF volume from the generator Gx̂ as the original input,

we define the loss function

Lauto
(E,Gx̂)

= ‖Gx̂(E(x))− x‖
2

(1)

for the autoencoder in Fig. 5(a) in order to minimize the

difference between the observed x and the inferred x̂.

Geometric completion. In Fig. 5(b), a conditional gen-

erative model combines the encoder E(·) and the generator

Gg(·) in order to reconstruct the scene (i.e. without the se-

mantic labels). Since the reconstruction is a two-channel

volume that represents the empty and non-empty category,

we use a binary cross-entropy loss

Lrecon
(E,Gg)

=

1∑

i=0

(ǫ(Gg(E(x)), ggt)) (2)

to train the inference network, where ǫ(·, ·) is the per-

category error

ǫ(q, r) = −λr log q − (1− λ)(1− r) log(1− q) . (3)

In (3), λ, which ranges from 0 to 1, weighs the importance

of reconstructing true positive regions in the volume. If λ =
1, the penalty for the false positive predictions will not be

considered; while, if λ is set to 0, the false negatives will

not be corrected.

Semantic completion. Similar to (2), in Fig. 5(c), we

train a conditional generative model that is composed of the

encoder E(·) and generator Gs(·) linking x and s. Hence,

we also use a binary cross-entropy loss

Lpred

(E,Gs)

=

N∑

i=0

(ǫ(Gs(E(x)), sgt)) (4)

where N is the number of categories in the semantic scene.

Discriminators on the architecture. In relation to the ar-

chitecture, we use two discriminators to optimize the gen-

erators [36] through

Lgen-x̂

Gx̂

= − log (Dx(Gx̂(z)))

Lgen-s

Gs

= − log (Ds(Gs(z))) . (5)

In this manner, we optimize the two generative models in-

cluding both the SDF encoder and the semantic scene gener-

ator by randomly sampling the latent features. On the other

hand, when we update the parameters of both discrimina-

tors, we optimize the loss functions

Ldis-x
(Dx)

= − log(Dx(x))− log (1−Dx(Gx̂(z)))

Ldis-s
(Ds)

= − log(Ds(sgt))− log (1−Ds(Gs(z))) . (6)

During training, we apply the set of equations in (5) and (6)

alternatingly to optimize the generators and the discrimina-

tors separately. Note that we use the KL-divergence from

the variational inference [10, 15] to penalize the deviation

8612



(a) SDF Volume (b) Completed Semantic Scene

Figure 6: An example of the generated SDF volume and

the corresponding completed semantic scene parameterized

from the latent feature, which are used to supplement the

existing learning dataset.

between the distribution of E(x) and a normal distribution

with zero mean and identity variance matrix. The advan-

tage of such is the capacity to easily sample from the latent

space in the generative model, which becomes helpful in the

succeeding loss term.

SDF-Semantic consistency. Since the generators are

trained to produce SDF volumes and semantic scenes while

being optimized to produce realistic data by the discrimi-

nator, we can build a new set of paired volumes to act as

the learning dataset in order to supplement the existing one.

Thus, we propose to generate paired volumes directly from

the latent feature in order to optimize the architecture in an

unsupervised learning.

Exploiting the latent space, we reconstruct the set of

pairs {(Gx̂(z),Gs(z))}, where z is randomly sampled from

a Gaussian distribution centered on the average of latent fea-

tures of a batch of samples. Following the inference model

in Fig. 5(c), we formulate a similar loss function as (4) but

with the newly acquired data such that

Lconsistency

(E,Gx̂,Gs)

=

N∑

i=0

(ǫ(Gs(E(Gx̂(z))),Gs(z))) . (7)

By drawing the data flow of the first term Gs(E(Gx̂(z))) in

Fig. 5(d), we observe that the loss term in (7) optimizes the

entire architecture.

Interestingly, when we take a closer look at the newly

generated pairs {(Gx̂(z),Gs(z))} in Fig. 6, we can easily

notice the realistic results. The SDF volume in Fig. 6(a)

considers missing regions due to the camera position while

the semantic scene in Fig. 6(b) generates lifelike structures

and reasonable positions of the objects in the scene (e.g. the

bed in red). By adding the newly generated pairs, we nu-

merically show in Sec. 4.1 that there is a significant boost in

performance when evaluating the NYU dataset [24] where

the size of the learning dataset is small.

Optimization. With all the loss terms given, achieving

the optimum parameters in our architecture requires us to

simultaneously minimize them. We start by optimizing (1),

(2), (4) and (5) altogether. Then, the loss functions in (6)

for the two discriminators are optimized alternatively (i.e.

batch-by-batch) with (1), (2), (4) and (5). In practice, we

employ the Adam optimizer [18] with a learning rate of

0.0001. For the data flows, Fig. 5(a) and (d) are both un-

supervised while Fig. 5(b) and (c) are supervised. In addi-

tion, for the discriminators, (5) is unsupervised while (6) is

supervised.

4. Experiments

There are two tasks at hand – (1) 3D semantic scene

completion; and, (2) 3D object completion. Although they

perform similar tasks in reconstructing from a single view,

the former completes the structure of a scene with semantic

labels while the latter requires a more detailed completion

with the assumption of a single category.

Metric. For each of the N classes, the accuracy of the pre-

dicted volumes is measured based on the Intersection over

Union (IoU). Analogously to the evaluation carried out by

other methods, the average IoU is taken from all the cate-

gories except for the empty space.

Implementation details. We learn our model with an

Nvidia Titan Xp with a batch size of 8. We applied

batch normalization after every convolutional and deconvo-

lutional operations except for the convolutional operations

in the last deconvolutional layers in 3 generators. Leaky

ReLU with a negative slope of 0.2 is applied on the out-

put of each convolutional layer in the Res3D(·, ·) modules

in Fig. 4. In addition, ReLU is applied on the output of de-

convolutional operations in the generators except for the last

deconvolution operation in the Multi-Scale Upsampling. Fi-

nally, the sigmoid operation is applied to the last deconvolu-

tion layer of the generators for the geometric and semantic

completion. Notably, the factor λ from (3) is set to be 0.5

for the geometric completion in (2). For the semantic com-

pletion, it is initially set to 0.9 in (4). However, when the

network is capable of revealing objects from the depth im-

age, more and more false positive predictions in the empty

space appears. Due to this, we set λ to 0.6 after five epochs.

4.1. Semantic scene completion

The SUNCG [30] and NYU [24] datasets are currently

the most relevant benchmarks for semantic scene comple-

tion, and include a paired depth image and the correspond-

ing semantically labeled volume. While SUNCG comprises

synthetically rendered depth data, NYU includes real scenes

acquired with a Kinect depth sensor. This makes the eval-

uation of NYU more challenging, due to the presence of

real nuisances, as well as due to a limited training set of
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ceil. floor wall win. chair bed sofa table tvs furn. objs. Avg.

SSCNet [30] (observed) 97.7 94.5 66.4 30.0 36.9 60.2 62.5 56.3 12.1 46.7 33.0 54.2

Proposed Method (observed) 98.2 96.9 67.8 37.4 35.9 72.9 69.6 48.8 20.5 48.4 32.4 57.2

Wang et al. [34] 41.4 37.7 45.8 26.5 26.4 21.8 25.4 23.7 20.1 16.2 5.7 26.4

3D-RecGAN [38] 79.9 75.2 48.2 28.9 20.2 64.4 54.6 25.7 17.4 33.7 24.4 43.0

SSCNet [30] 96.3 84.9 56.8 28.2 21.3 56.0 52.7 33.7 10.9 44.3 25.4 46.4

VVNet [12] 98.4 87.0 61.0 54.8 49.3 83.0 75.5 55.1 43.5 68.8 57.7 66.7

SaTNet [21] 97.9 82.5 57.7 58.5 45.1 78.4 72.3 47.3 45.7 67.1 55.2 64.3

Proposed Method 95.0 85.9 73.2 54.5 46.0 81.3 74.2 42.8 31.9 63.1 49.3 63.4

– without completion branch 94.1 83.5 68.2 49.6 43.1 80.5 77.7 41.8 33.8 61.7 51.7 62.3

– without scene consistency 89.6 79.5 63.4 46.3 39.0 77.5 73.2 37.7 29.8 57.4 46.7 58.2

Table 1: Semantic scene completion results on the SUNCG test set with depth map for IoU (in %).

ceil. floor wall win. chair bed sofa table tvs furn. objs. Avg.

SSCNet [30] (observed) 37.7 91.9 75.4 64.0 29.0 51.1 63.3 43.7 29.7 73.3 54.5 50.8

Proposed Method (observed) 41.5 90.8 69.6 54.8 27.7 53.1 66.3 44.4 27.1 74.7 57.5 55.2

Lin et al. [20] (NYU only) 0.0 11.7 13.3 14.1 9.4 29.0 24.0 6.0 7.0 16.2 1.1 12.0

3D-RecGAN [38] 35.3 70.3 24.1 3.8 11.9 47.4 43.1 11.4 16.9 30.6 7.2 27.5

Geiger and Wang [9] (NYU only) 10.2 62.5 19.1 5.8 8.5 40.6 27.7 7.0 6.0 22.6 5.9 19.6

SSCNet [30] 15.1 94.6 24.7 10.8 17.3 53.2 45.9 15.9 13.9 31.1 12.6 30.5

VVNet [12] 19.3 94.8 28.0 12.2 19.6 57.0 50.5 17.6 11.9 35.6 15.3 32.9

SaTNet [21] 17.3 92.1 28.0 16.6 19.3 57.5 53.8 17.7 18.5 38.4 18.9 34.4

Proposed Method 36.2 93.8 29.2 18.9 17.7 61.6 52.9 23.3 19.5 45.4 20.0 37.1

– without completion branch 35.8 94.1 28.9 19.2 16.8 61.4 53.5 23.0 14.0 45.6 18.9 36.5

– without scene consistency 36.8 91.7 28.0 18.3 8.3 58.8 49.5 13.0 16.7 42.6 17.6 34.7

Table 2: Semantic scene completion results on the NYU test set with depth map for IoU (in %).

SUNCG NYU

Lin et al. [20] – 36.4

3D-RecGAN [38] 72.1 51.3

Geiger and Wang [9] – 44.4

SSCNet [30] 73.5 56.6

VVNet [12] 84.0 61.1

SaTNet [21] 78.5 60.6

Proposed Method 86.9 63.4

– without completion branch 82.3 62.6

– without scene consistency 82.0 61.1

Table 3: Scene completion results on the SUNCG and the

NYU test set in terms of IoU (in %).

less than 1000 samples. We compare our method against

Wang et al. [34], Lin et al. [20], 3D-RecGAN [38], Geiger

and Wang [9], SSCNet [30], VVNet [12], and SaTNet [21].

The resolution of our input volume is given in the scale

of 80×48×80 voxels. While [9, 12, 20, 21, 30] produce

60×36×60 semantic volumes for evaluation, [34, 38] and

us produce a slightly higher resolution of 80×48×80.

Following SUNCG [30], the semantic categories include

12 classes of varying shapes and sizes, i.e.: empty space,

ceiling, floor, wall, window, chair, bed, sofa, table, tvs, fur-

niture and other objects. We follow two types of evalua-

tion as introduced by [30]. One evaluates the semantic seg-

mentation accuracy on the observed surface reconstruction,

while the other considers the semantic segmentation of the

predicted full volumetric reconstruction.

SUNCG dataset. Based on an online interior design plat-

form, the evaluation of SUNCG contains more than 130,000

paired depth images and voxel-wise semantic labels taken

from 45,622 houses with realistic rooms and furniture lay-

outs [30]. Focusing on the semantic segmentation on the

observed surface, our approach performs at an IoU of 57.2%

which is 3.0% higher than SSCNet [30]. On the other hand,

when we evaluate the IoU measure on the entire volume

in Table 1, our method reaches an average IoU of 63.4%

which is significantly better than Wang et al. [34], 3D-

RecGAN [38] and SSCNet [30] but slightly worse than

VVNet [12] and SaTNet [21].

NYU dataset (real). The NYU dataset [24] is composed

of 1,449 indoor depth images captured with a Kinect depth

sensor. Like SUNCG, each image is also annotated with
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bench chair couch table Avg.

Varley et al. [32] 65.3 61.9 81.8 67.8 69.2

3D-EPN [3] 75.8 73.9 83.4 77.2 77.6

Han et al. [13] 54.4 46.9 48.3 56.0 51.4

3D-RecAE [38] 73.3 73.6 83.2 75.0 76.3

3D-RecGAN [38] 74.5 74.1 84.4 77.0 77.5

Proposed Method 79.1 80.6 92.4 84.0 84.1

– without scene consistency 76.3 76.4 87.5 81.2 80.4

Table 4: Object completion results on the ShapeNet test set

in terms of IoU (in %). The resolution for Varley et al. [32]

and 3D-EPN [3]: 32×32×32, for others: 64×64×64.

3D semantic labels. Due to its size, training our network on

this dataset alone is insufficient. As a solution already used

in [30], we take the network trained on the SUNCG then

refine it by supplementing the training data from NYU with

1,500 randomly selected samples from SUNCG in each

epoch of training.

Although we achieved slightly worse results than

VVNet [12] and SaTNet [21] on the synthetic dataset, we

performed better than the state of the art on the real images,

reaching an IoU measure of 37.1% as shown in Table 2.

Consequently, we attain a 4.2% improvement compared to

VVNet [12] and 2.7% to SaTNet [21].

Looking at the other approaches, we achieve even more

significant improvements with at least 6.6% increase in IoU.

For the evaluation on the semantic labels on the observed

surface, we gained 4.4% increase in IoU against SSCNet.

Notably, our approach outperforms other works not only on

the average IoU but also on individual object categories. In

addition, we also achieve similar improvements in the scene

completion task in Table 3 with approximately 2.8% better

in IoU compared to SaTNet [21].

Moreover, while the re-implementation SSCNet [30] in

our experiments does not fit into any of our contributions,

we used it in order to qualitatively compare our results with

them (see Fig. 1).

Ablation study for loss terms. In Tables 1 and 2, we

investigate the contribution of Lrecon from the supervised

learning and Lconsistency from the unsupervised learning. Our

ablation study indicates that Lconsistency prompts the highest

boost in IoU with 5.2% in Table 1. When using the Lrecon

in the geometric completion, it improves by 1.1% on the

SUNCG dataset. A similar conclusion for the loss terms is

presented in Table 1 for NYU.

4.2. 3D object completion

Adapting the assessment data and strategy from 3D-

RecGAN [38], we use ShapeNet [1] to generate the training

and test data for 3D object completion, wherein each re-

constructed object surface x is paired with a corresponding

ground truth voxelized shape with a size of 64×64×64. The

dataset comprises four object classes: bench, chair, couch

bench chair couch table Avg.

Han et al. [13] 18.4 14.8 10.1 12.6 14.0

3D-RecAE [38] 23.1 17.8 10.7 14.8 16.6

3D-RecGAN [38] 23.0 17.4 10.9 14.6 16.5

Proposed Method 32.7 24.1 15.9 22.5 23.8

– without scene consistency 26.1 21.5 14.9 18.6 20.3

Table 5: Object completion results on the real-world test set

provided by 3D-RecGAN [38] in terms of IoU (in %). The

resolution for all methods is 64×64×64.

and table. [38] prepared an evaluation for both synthetic

and real input data. Notably, for both synthetic and real test

data, we can express the same conclusions as the ablation

studies in Sec. 4.1 (see Tables 4 and 5).

Synthetic test data. We perform two evaluations in Ta-

ble 4. The first is a single category test [38] such that each

category is trained and tested separately while the second

considers the categories in order to label the voxels. We

compare our results against [3, 13, 32, 38].

In the single category test, we achieve the best results

with 84.1%. This result is 6.5% higher than 3D-EPN [3],

6.6% higher than 3D-RecGAN [38], 7.8% higher than 3D-

RecAE [38], 32.7% higher than Han et al. [13] and 14.9%

higher than Varley et al. [32]. Moreover, this table also

shows the we achieve the best results across all categories.

Real test data. Using the single category test in Table 5,

we also evaluate the 3D object completion task on the real

world test data provided by [38]. In this evaluation, we

generate the state-of-the art results with 23.8% IoU mea-

sure, which is higher than 3D-RecAE [38] by 7.2%, 3D-

RecGAN [38] by 7.3% and Han et al. [13] by 9.8%.

5. Conclusion

We propose ForkNet, a novel architecture for volumetric

semantic 3D completion that leverages a shared embedding

encoding both geometric and semantic surface cues, as well

as multiple generators designed to deal with limited paired

data and imprecise semantic annotations. Experimental re-

sults numerically demonstrate the benefits of our approach

for the two tasks of scene and object completion, as well

as the effectiveness of the proposed contributions in terms

of architecture, loss terms and use of discriminators. How-

ever, since we compress the input SDF volume into a lower

resolution through the encoder then increase the resolution

through the generator, small or thin structures such as the

legs of the chair or TVs tend to disappear during compres-

sion. This is an aspect we plan to improve in the future

work. In addition, for 3D scene understanding, the volumet-

ric representations are typically memory and power-hungry,

we also plan to extend our model for completion of efficient

and sparse representations such as point clouds.
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