Hallucinating IDT Descriptors and I3D Optical Flow Features for Action Recognition with CNNs

Lei Wang∗,1,2 Piotr Koniusz∗,1,2 Du Q. Huynh3
1Data61/CSIRO, 2Australian National University, 3University of Western Australia
firstname.lastname@{data61.csiro.au, anu.edu.au, uwa.edu.au}

Abstract

In this paper, we revive the use of old-fashioned handcrafted video representations for action recognition and put new life into these techniques via a CNN-based hallucination step. Despite the use of RGB and optical flow frames, the I3D model (amongst others) thrives on combining its output with the Improved Dense Trajectory (IDT) and extracted with its low-level video descriptors encoded via Bag-of-Words (BoW) and Fisher Vectors (FV). Such a fusion of CNNs and handcrafted representations is time-consuming due to pre-processing, descriptor extraction, encoding and tuning parameters. Thus, we propose an end-to-end trainable network with streams which learn the IDT-based BoW/FV representations at the training stage and are simple to integrate with the I3D model. Specifically, each stream takes I3D feature maps ahead of the last 1D conv. layer and learns to ‘translate’ these maps to BoW/FV representations. Thus, our model can hallucinate and use such synthesized BoW/FV representations at the testing stage. We show that even features of the entire I3D optical flow stream can be hallucinated thus simplifying the pipeline. Our model saves 20–55h of computations and yields state-of-the-art results on four publicly available datasets.

1. Introduction

Action Recognition (AR) pipelines have transitioned from the use of handcrafted descriptors [13, 54, 31, 64, 65, 66] to CNN models such as the two-stream network [56], 3D spatio-temporal features [60], spatio-temporal ResNet [17] and the I3D network pre-trained on Kinetics-400 [4]. Such CNNs operate on RGB/optical flow videos thus failing to capture some domain-specific information which sophisticated low-level representations capture by design. One prominent example are Improved Dense Trajectory (IDT) descriptors [66] which are typically encoded with Bag-of-Words (BoW) [57, 12] or Fisher Vectors (FV) [47, 48] and fused with CNNs [21, 8, 9, 67, 10] at the classifier which improves results due to several sophisticated steps of IDT: (i) camera motion estimation, (ii) motion descriptor modeling along motion trajectories estimated by the optical flow, (iii) pruning inconsistent matches, (iv) focusing on human motions via a human detector, (v) combination of IDT with powerful and highly complementary to each other video descriptors such as Histogram of Oriented Gradients (HOG) [22, 31], Histogram of Optical Flow (HOF) [13] and Motion Boundary Histogram (MBH) [65] e.g., HOF and MBH contain zero- and first-order motion statistics [66].

However, extracting dense trajectories and corresponding video descriptors is costly due to several off-line/CPU-based steps. Motivated by this shortcoming, we propose simple trainable CNN streams on top of a CNN network (in our case I3D [4]) which learn to ‘translate’ the I3D output into IDT-based BoW and FV global video descriptors. We can even ‘translate’ the I3D RGB output into I3D Optical Flow Features (OFF). At the testing stage, our so-called BoW, and FV and OFF streams (on top of I3D) are able to hallucinate such global descriptors which we feed into the final layer preceding a classifier. We show that IDT/OFF representations can be synthesized by our network thus removing the need of actually computing them which simplifies the AR pipeline. With a handful of convolutional/FC layers and basic CNN building blocks, our representation rivals sophisticated AR pipelines that aggregate features frame-by-frame e.g., HOK [8] and rank-pooling [21, 9, 67, 10]. Below, we detail our contributions:

I. We are the first to propose that old-fashioned IDT-based BoW and FV global video descriptors can be learned via simple dedicated CNN-streams at the training stage and simply hallucinated for classification with a CNN action recognition pipeline during testing.

II. We show that even the I3D optical flow stream can be easily hallucinated from the I3D RGB stream.

III. We study various aspects of our model e.g., the count sketch [49] of features to avoid overfitting when fusing several streams and Power Normalization [38, 37, 39] to prevent so-called burstiness in BoW, FV and CNNs, and we perform several experiments on four datasets.

Sections 2 and 3 introduce the background, notations and concepts. Sections 4 and 5 present our method and results.

∗Both authors contributed equally.
2. Related Work

Below, we describe handcrafted spatio-temporal video descriptors and their encoding strategies, optical flow, and deep learning pipelines for video classification.

Handcrafted video representations. Early AR relied on spatio-temporal interest point detectors \([43, 14, 6, 73, 44, 64]\) and spatio-temporal descriptors \([13, 54, 61, 64, 65, 66]\) which capture various appearance and motion statistics.

Spatio-temporal interest point detectors were developed for the task of identifying spatio-temporal regions of videos rich in motion patterns relevant to classification, thus providing sampling locations for local descriptors. The number of sampling points had a significant influence on the processing speed due to the volumetric nature of videos. Harris3D \([43]\), one of the earliest detectors, performs a search for extreme points in the spatio-temporal domain via the so-called structure tensor and the determinant-to-trace ratio test. Cuboid \([14]\), a faster detector, applies Gaussian and Gabor filters in spatial and temporal domains, respectively. Selective STIP \([6]\) extracts initial key-point candidates with the Harris corner detector followed by the candidate suppression with a so-called surround suppression mask. HessSTIP, a more recent detector, uses integral videos and Hessian matrix to search the scale-space for local maxima of the signal. Evaluations and further reading on spatio-temporal detectors can be found in surveys \([23, 68, 69]\).

One drawback of spatio-temporal interest point detectors is the sparsity of key-points and inability to capture long-term motion patterns. Thus, a Dense Trajectory (DT) \([64]\) approach densely samples feature points in each frame to track them in the video (via optical flow). Then, multiple descriptors are extracted along trajectories to capture shape, appearance and motion cues. As DT cannot compensate for the camera motion, the IDT \([66, 65]\) estimates the camera motion to remove the global background motion. IDT also removes inconsistent matches via a human detector.

For spatio-temporal descriptors, IDT employs HOG \([22, HOF [13] and MBH \([65]\). HOG \([22]\) contains statistics of the amplitude of image gradients w.r.t. the gradient orientation. Thus, it captures the static appearance cues while its close cousin, HOG-3D \([31]\), is designed for spatio-temporal interest points. In contrast, HOF \([13]\) captures histograms of optical flow while MBH \([65]\) captures derivatives of the optical flow, thus it is highly resilient to the global camera motion whose cues cancel out due to derivatives. Thus, HOF and MBH contain the zero- and first-order optical flow statistics. Other spatio-temporal descriptors include SIFT3D \([54]\), SURF3D \([73]\) and LTP \([75]\).

In this work, we follow the standard practice, that is, we use the Improved Dense Trajectories \([64, 8, 10]\) and we encode them together with HOG, HOF, and MBH descriptors via BoW \([57, 12]\) and FV \([47, 48]\) which we describe below.

Descriptor encoding. BoW \([57, 12]\), a global image representation, is likely the oldest encoding strategy for local descriptors. It consists of (i) clustering with k-means for a collection of descriptor vectors from the training set to build so-called visual vocabulary, (ii) assigning each descriptor to its nearest cluster center from the visual dictionary, and (iii) aggregating the one-hot assignment vectors via average pooling. Similar models such as Soft Assignment (SA) \([62, 33]\) and Localized Soft Assignment (LcSA) \([45, 38]\) use the Component Membership Probability (CMP) of GMM to assign each descriptor with some probability to visual words followed by average or non-linear pooling \([38, 70]\).

In this paper, we chose the simplest BoW model \([12]\)

![Figure 1](image1.png)

Figure 1: The overview of our pipeline. We remove the prediction and the last 1D conv. layers from I3D RGB and optical flow streams, concatenate (⊕) the 1024 × 7 feature representations \(X_{(rgb)}\) and \(X_{(opt)}\), and feed them into our Fisher Vector (FV), Bag-of-Words (BoW), and the High Abstraction Features (HAF) streams followed by the Power Normalization (PN) blocks. The resulting feature vectors \(\tilde{\psi}_{(f,v1)}, \tilde{\psi}_{(f,v2)}, \tilde{\psi}_{(bow)}\) and \(\psi_{(haf)}\) are concatenated (⊕) and fed into our Prediction Network (PredNet). By \(\check{\times}\), we indicate that the three Mean Square Error (MSE) losses are only applied at the training stage to train our FV (first- and second-order components) and BoW hallucinating streams (indicated in dashed red). By \(\times\), we indicate that the MSE losses are switched off at the testing stage. Thus, we hallucinate \(\tilde{\psi}_{(f,v1)}, \tilde{\psi}_{(f,v2)}\) and \(\tilde{\psi}_{(bow)}\), and pass them to PredNet together with \(\psi_{(haf)}\) to obtain labels \(y\). The original training FV and BoW feature vectors (used only during training) are denoted by \(\psi_{(f,v1)}, \psi_{(f,v2)}\) and \(\psi_{(bow)}\), while \(\check{P}\) are count sketch projection matrices (see text for details).

![Figure 2](image2.png)

Figure 2: Hallucinating the Optical Flow Features (OFF).
with Power Normalization [38] detailed in Section 3. BoW can be seen as zero-order statistics of FV [47, 48], thus we also employ FV to capture first- and second-order statistics of local descriptors. FV builds a visual dictionary from training data via GMM. Then, a displacement/square displacement of each descriptor vector w.r.t. each GMM component center is taken, normalized by its GMM standard deviation/variance to capture the first/second-order terms, and then soft-assigned via CMP to each GMM component.

Optical flow. As a key concept in AR from videos, optical flow is the distribution of velocities of movement of brightness pattern across frames [26] such as the pattern of motion of objects, surfaces and edges in a visual scene caused by the relative motion between an observer and a scene [27]. Early optical flow coped with small displacements via energy minimization [26, 46]. However, to capture informative motions of subjects/objects, optical flow needs to cope with large displacements [1]. As energy-based methods suffer from the local minima, local descriptor matching is used in Large Displacement Optical Flow (LDOF) [3]. Recent methods use non-rigid descriptor matching [72], segment matching [2] or even edge-preserving interpolation [51].

In this work, we are not concerned with the use of the newest possible optical flow. Thus, we opt for LDOF [46].

CNN-based action recognition. The success of AlexNet [40] and ImageNet [53] sparked studies into AR with CNNs. Early models extracted per-frame representations followed by average pooling [30] which discards the temporal order. To fix such a shortcoming, frame-wise CNN scores were fed to LSTMs [15]. Two-stream networks [56] compute representations per RGB frame and per 10 stacked optical flow frames. However, a more obvious extension is to model spatio-temporal 3D CNN filters [29, 60, 17, 63].

The recent I3D model [4] draws on the two-stream networks, ‘inflates’ 2D CNN filters pre-trained on ImageNet to spatio-temporal 3D filters, and implements temporal pooling across the inception module. In this paper, we opt for the I3D network but our proposed layers are independent of the CNN design. We are concerned with ‘absorbing’ the old yet powerful IDT representations and/or optical flow features into CNN and hallucinating them at the test time.

Temporal aggregation. While two-stream networks [56] discard the temporal order and others use LSTMs [15], many AR pipelines address the spatio-temporal aggregation. Rank pooling [20, 21] projects frame-wise feature vectors onto a line such that the temporal order of vectors is preserved along the line. Subspace and kernel rank pooling [9, 67] use projections into the RKHS in which the temporal order of frames is preserved. Another aggregation family captures second- or higher-order statistics [8, 32, 37, 16].

In this paper, we are not concerned with temporal pooling. Thus, we use a 1D convolution (as in I3D [4]).

Power Normalization family. BoW, FV and even CNN-based descriptors have to deal with the so-called burstiness defined as ‘the property that a given visual element appears more times in an image than a statistically independent model would predict’ [28], a phenomenon also present in video descriptors. Power Normalization [38, 36] is known to suppress the burstiness, and it has been extensively studied in the context of BoW [38, 36, 37, 39]. Moreover, a connection to Max-pooling was found in survey [38] which also shows that the so-called MaxExp pooling is in fact a detector of ‘at least one particular visual word being present in an image’. According to papers [38, 39], many Power Normalization functions are closely related. We outline Power Normalizations used in our work in Section 3.

3. Background

In this work, we use BoW/FV (training stage), as well as Power Normalization [38, 37] and count sketches [71].

Notations. We use boldface uppercase letters to express matrices e.g., M, P, regular uppercase letters with a subscript to express matrix elements e.g., P_{ij} is the $(i, j)^{th}$ element of P, boldface lowercase letters to express vectors, e.g., x, ϕ, ψ, and regular lowercase letters to denote scalars. Vectors can be numbered e.g., $m_1, ..., m_K$ or x_n, etc., while regular lowercase letters with a subscript express an element of vector e.g., m_i is the i^{th} element of m. Operators ‘;‘ and \oplus concatenate vectors e.g., $\oplus_{i \in \mathbb{I}_K} v_i = [v_1; ...; v_K]$ while \mathbb{I}_d denotes an index set of integers $\{1, ..., d\}$.

3.1. Descriptor Encoding Schemes

Bag-of-Words [57, 12] assigns each local descriptor x to the closest visual word from $M = [m_1, ..., m_K]$ built via k-means. In order to obtain mid-level feature ϕ, we solve:

$$
\phi = \arg \min_{\phi'} \left\| x - M \phi' \right\|_2^2,
$$

s.t. $\phi' \in \{0, 1\}, 1^T \phi' = 1.

Fisher Vector Encoding [47, 48] uses a Mixture of K Gaussians from a GMM used as a dictionary. It performs descriptor coding w.r.t. to Gaussian components $G(w_k, m_k, \sigma_k)$ which are parametrized by mixing probability, mean, and on-diagonal standard deviation. The first- and second-order features $\phi_k, \phi'_k \in \mathbb{R}^D$ are:

$$
\phi_k = (x - m_k) / \sigma_k, \quad \phi'_k = \phi_k^2 - 1.
$$

Concatenation of per-cluster features $\phi_k^i \in \mathbb{R}^{2KD}$ forms the mid-level feature $\phi \in \mathbb{R}^{2KD}$:

$$
\phi = [\phi_1^i; ...; \phi_K^i], \quad \phi_k = \frac{p(m_k | x, \theta)}{\sqrt{\alpha_k}} \left[\phi_k; \phi'_k / \sqrt{2} \right],
$$

where p and θ are the component membership probabilities and parameters of GMM, respectively. For each descriptor x of dimensionality D (after PCA), its encoding ϕ is of $2KD$ dim. as ϕ contains first- and second-order statistics.
3.2. Pooling a.k.a. Aggregation

Traditionally, pooling is performed via averaging mid-level feature vectors \(\phi(x) \) corresponding to (local) descriptors \(x \in X \) from a video sequence \(X \), that is \(\psi = \text{avg}_{x \in X} \phi(x) \), and (optionally) applying the \(\ell_2 \)-norm normalization. In this paper, we work with either sequences \(X \) (for which the above step is used) or subsequences.

Proposition 1. For subsequence pooling, let \(X_{s, t} = X_{s, t} \setminus X_{0, s-1} \), where \(X_{s, t} \) denotes a set of descriptors in the sequence \(X \) counting from frame \(s \) up to frame \(t \), where \(0 \leq s \leq t \leq \tau \), \(X_{0, -1} = \emptyset \), and \(\tau \) is the length of \(X \). Moreover, let us compute an integral mid-level feature \(\phi)' = \phi)'_1 + \sum_{x \in X_{s, t}} \phi(x) \) which aggregates mid-level feature vectors from frame \(s \) to frame \(t \), and \(\phi)'_1 \) is an all-zeros vector. Then, the pooled subsequence is given by:

\[
\psi_{s, t} = (\phi)' - \phi)'_{s-1})/ (\|\phi)' - \phi)'_{s-1}\|_2 + \epsilon),
\]

where \(0 \leq s \leq t \leq \tau \) are the starting and ending frames of subsequence \(X_{s, t} \subseteq X \) and \(\epsilon \) is a small constant. We normalize the pooled subsequences/subseq. as described next.

3.3. Power Normalization

As alluded to in Section 2, we apply Power Normalizing functions to BoW and FV streams which hallucinate these two modalities (and HAF/OFF stream explained later). We investigate three operators \(g(\psi, \cdot) \) detailed by Remarks 1–3.

Remark 1. AsinhE function [39] is an extension of a well-known Power Normalization (Gamma) [39] defined as \(g(\psi, \gamma) = \text{Sgn}(\psi)|\psi|^\gamma \) for \(0 < \gamma \leq 1 \) to the operator with a smooth derivative and a parameter \(\gamma' \). AsinhE is defined as the normalized Arcsin hyperbolic function:

\[
g(\psi, \gamma') = \text{arcsinh}(\gamma/\psi)/\text{arcsinh}(\gamma').
\]

Remark 2. Sigmoid (SigmE), a Max-pooling approximation [39], is an extension of the MaxExp operator defined as \(g(\psi, \eta) = 1 - (1 - \psi)^\eta \) for \(\eta > 1 \) to the operator with a smooth derivative, a response defined for real-valued \(\psi \) (rather than \(\psi \geq 0 \)), a parameter \(\eta' \) and a small const. \(\epsilon' \):

\[
g(\psi, \eta') = \frac{2}{1 + e^{-\eta'\psi/\|\psi\|_2 + \epsilon'}} - 1.
\]

Remark 3. AxMin, a piece-wise linear form of SigmE [39], is given as \(g(\psi, \eta'') = \text{Sgn}(\psi) \min(\eta''\psi/\|\psi\|_2 + \epsilon'), 1) \) for \(\eta'' > 1 \) and a small constant \(\epsilon' \).

Despite the similar role of these three pooling operators, we investigate each of them as their interplay with end-to-end learning differs. Specifically, \(\lim_{\psi \rightarrow \pm \infty} g(\psi, \cdot) \) for AsinhE and SigmE are \(\pm \infty \) and \(\pm 1 \), resp., thus their asymptotic behavior differs. Moreover, AxMin is non-smooth and relies on the same gradient re-projection properties as ReLU.

![Figure 3: Stream types used in our network. Figures 3a and 3b show Fully Connected and Convolutional variants used for the practical realization of the FV, BoW, OFF, and HAF streams. Figure 3c shows our PredNet. Note that we indicate the type of operation and its parameters in each block e.g., conv2d and its number of filters/size, or Power Normalization (PN). Beneath arrows, we indicate the size of input, intermediate or output representation.](image)

3.4. Count Sketches

Sketching vectors by the count sketch [11, 71] is used for their dimensionality reduction which we use in this paper.

Proposition 2. Let \(d \) and \(d' \) denote the dimensionality of the input and sketched output vectors, respectively. Let vector \(h \in \mathbb{Z}_d \) contain \(d \) uniformly drawn integer numbers from \(\{1, \ldots, d'\} \) and vector \(s \in \{−1, 1\}^d \) contain \(d \) uniformly drawn values from \(\{−1, 1\} \). Then, the sketch projection matrix \(P \in \{−1, 0, 1\}^{d \times d'} \) becomes:

\[
P_{ij} = \begin{cases} 0 & \text{if } h_i = j, \\ s_i & \text{otherwise}, \end{cases}
\]

and the sketch projection \(p : \mathbb{R}^d \rightarrow \mathbb{R}^{d'} \) is a linear operation given as \(p(\psi) = P\psi \) (or \(p(\psi, P) = P\psi \) to highlight \(P \)).

Proof. It directly follows from the definition of the count sketch e.g., see Definition 1 [71].

Remark 4. Count sketches are unbiased estimators: \(\mathbb{E}_{h, s}(p(\psi, P(h, s))) = \langle \psi, \psi' \rangle \). As variance \(\mathbb{V}_{h, s}(p(\psi, p(\psi'))) \leq \frac{1}{\tau} \left(\langle \psi, \psi' \rangle^2 + \|\psi\|^2_2 \|\psi'\|^2_2 \right) \), we note that larger sketches are less noisy. Thus, for every modality we compress, we use a separate sketch matrix \(P \). As video modalities are partially dependent, this implicitly leverages the unbiased estimator and reduces the variance.

Proof. For the first and second property, see Appendix A of paper [71] and Lemma 3 [49].

4. Approach

Our pipeline is illustrated in Figure 1. It consist of (i) the Fisher Vector and Bag-of-Words hallucinating streams denoted as FV and BoW (shown in dashed red), respectively,
(ii) the High Abstraction Features stream denoted as HAF, and (iii) the Prediction Network abbreviated as PredNet.

The role of BoW/FV streams is to take 1D intermediate representations generated from the RGB and optical flow frames and learn to hallucinate BoW/FV representations. For this purpose, we use the MSE loss between the ground-truth BoW/FV and the outputs of BoW/FV streams. The role of the HAF stream is to further process 3D intermediate representations before they are concatenated with hallucinated BoW/FV. PredNet fuses the concatenated BoW/FV/HAF and learns class concepts. Figure 2 shows our pipeline for hallucinating the OFF representation (1D optical flow). Below, we describe each module in detail.

4.1. BoW/FV Hallucinating Streams

BoW/FV take as input the 1D intermediate representations $X_{(rgb)}$ and $X_{(opt.)}$ of size 1024×7 which were obtained by stripping the classifier and the last 1D conv. layer of 1D pre-trained on Kinetics-400. The latter dimension of $X_{(rgb)}$ and $X_{(opt.)}$ can be thought of as the temporal size. We concatenate $X_{(rgb)}$ and $X_{(opt.)}$ along the third mode and obtain X which has dimensionality $1024 \times 7 \times 2$. As FV contains the first- and second-order statistics, we use a separate stream in Eq. (3.1) and normalize by Ψ. Thus, we indicate that FV (first- and second-order), $X_{(rgb)}$ and $X_{(opt.)}$ are pre-computed as the training ground-truth for the OFF layer (the MSE loss is used).

4.2. High Abstraction Features

High Abstraction Features (HAF) take as input the 1D intermediate representations $X_{(rgb)}$ and $X_{(opt.)}$. Practical realizations of HAF pipelines are identical to those of BoW/FV/OFF. Thus, we have a choice of either FC or Conv units illustrated in Figures 3a and 3b. We simply refer to those variants as HAF-FC and HAF-Conv, respectively. Similar to BoW/FV/ OFF streams, the HAF representation also uses Power Normalization and it is of size 1000.

4.3. Optical Flow Features

For pipeline in Figure 2, the 1D intermediate representation $X_{(rgb)}$ only is fed to hallucination/HAF streams. 1D Optical Flow Features $X_{(opt.)}$ are pre-computed as the training ground-truth for the OFF layer (the MSE loss is used).

4.4. Combining Hallucinated BoW/FV/OFF and HAF

Figure 1 indicates that FV (first- and second-order), BoW and HAF feature vectors $\tilde{\Psi}(f_{pr})$, $\tilde{\Psi}(f_{pr})$, $\tilde{\Psi}(\theta_{(bow)})$, and $\tilde{\Psi}(\theta_{(haf)})$ are concatenated (via operator \oplus) to obtain $\tilde{\Psi}(\theta_{(tot)})$ and subsequently sketched (if indicated so during experiments), that is, $\tilde{\Psi}(\theta_{(tot)}) = P_{(tot)} \tilde{\Psi}(\theta_{(tot)})$ which reduces the size of the total representation from $d = 4000$ to $500 \leq d' \leq 2000$. Matrix $P_{(tot)}$ is prepared according to Proposition 2 and fixed throughout experiments. As sketching is a linear projection, we can back-propagate through it with ease. When also hallucinating OFF as in Figure 2, we additionally concatenate $\pi_{(off)}$ with other feature vectors to obtain $\tilde{\Psi}(\theta_{(tot)})$.

4.5. Objective and its Optimization

During training, we combine MSE loss functions responsible for training hallucination streams with the class loss:

$$\ell^c(\mathbf{X}, \mathbf{y}; \Theta) = \frac{\alpha}{|\mathcal{H}|} \sum_{h \in \mathcal{H}} \left[\frac{1}{2} \left\| \tilde{\pi}_h - \tilde{\pi}(\mathbf{X}_h, \Theta) \right\|^2_F + \ell \left(f(\psi_{(tot)}; \Theta_{(pr)}), \mathbf{y}, \Theta_{(\ell)} \right) \right],$$

where: $\forall i \in H$, $\tilde{\pi}_i = g(h(\mathbf{X}, \Theta), \eta), \psi_{(tot)} = P_{(tot)} \tilde{\pi}_i, \psi_{(haf)} = g(h(\mathbf{X}, \Theta_{(haf)}), \eta)$, $\psi_{(tot)} = P_{(tot)} \left[\oplus_{i \in H} \tilde{\pi}_i; \psi_{(haf)} \right].$ (8)
The above equation is a trade-off between the MSE loss functions \(\| \psi_i - \psi'_i \|^2 \), \(i \in \mathcal{H} \) and the classification loss \(\ell(\cdot, y; \Theta(\ell)) \) with some label \(y \in \mathcal{Y} \) and parameters \(\Theta(\ell) \equiv \{ W_i, b_i \} \). The trade-off is controlled by a constant \(\alpha \geq 0 \) which is computed over hallucination streams \(i \in \mathcal{H} \), and \(\mathcal{H} \equiv \{(f_{1}), (f_{2}), (bow), (af f)\} \) is our set of hallucination streams which can be modified to multiple/few such streams depending on the task at hand. Moreover, \(q(\cdot; \eta) \) is a Power Normalizing function chosen from the family described in Section 3.3. \(f(\cdot; \Theta_{(pr)}) \) is the PredNet module with parameters \(\Theta_{(pr)} \) which we learn, \(\{ h(\cdot, \Theta_{(i)}) \}, i \in \mathcal{H} \) are the hallucination streams while \(\psi_i, i \in \mathcal{H} \) are the corresponding hallucinated BoW/FV/OFF representations. Moreover, \(h(\cdot, \Theta_{(haf)}) \) is the HAF stream with the output denoted by \(\psi_i(haf) \). For the hallucination streams, we learn parameters \(\{ \Theta_{(i)} \}, i \in \mathcal{H} \) while for HAF, we learn \(\Theta_{(haf)} \). The full set of parameters we learn is defined as \(\Theta \equiv \{(\Theta_{(i)}, i \in \mathcal{H}, \Theta_{(haf)}, \Theta_{(pr)}, \Theta(\ell))\} \). Furthermore, \(\{ P_i \}, i \in \mathcal{H} \) are the projection matrices for count sketching of the ground-truth BoW/FV/OFF feature vectors \(\{ \psi_i, i \in \mathcal{H} \} \) while \(\psi'_i, i \in \mathcal{H} \) are the corresponding sketched/compressed representations. Finally, \(P_{(tot)} \) is the projection matrix for hallucinated BoW/FV/OFF representations concatenated with each other and HAF, that is, for \(\psi_{(tot)} = \left[\oplus_{i \in \mathcal{H}} \psi_i \psi_i(haf) \right] \) which results in the sketched counterpart \(\psi'_{(tot)} \) that goes into the PredNet module \(f \). Section 3.4 details how to select matrices \(P \). If sketching is not needed, we simply set a given \(P \) to be the identity projection \(P = I \). In our experiments, we simply set \(\alpha = 1 \).

Optimization. We minimize \(\ell(\cdot; \mathcal{X}, y; \Theta) \) w.r.t. parameters of each stream, that is \(\{ \Theta_{(i)}, i \in \mathcal{H} \} \) for hallucination streams, \(\Theta_{(haf)} \) for the HAF stream, and \(\Theta_{(pr)} \) for PredNet and \(\Theta(\ell) \) for the classification loss. In practice, we perform a simple alternation over two minimization steps shown in Figure 4. In each iteration, we perform one forward and backward pass regarding the MSE losses to update the parameters \(\{ \Theta_{(i)}, i \in \mathcal{H} \} \) of the hallucination streams. Then, we perform one forward and backward pass regarding the classification loss \(\ell \). We update all network streams during this pass. Thus, one can think of our network as multi-task learning with BoW/FV/OFF and label learning tasks.

Furthermore, we use the Adam minimizer with \(10^{-4} \) initial learning rate which we halve every 10 epochs. We run our training for 50–100 epochs depending on the dataset.

Sketching the Power Normalized vectors.

Proposition 3. Sketching PN vectors increases the sketching variance \((\ell_2\text{-normalized by vec. norms})\) by \(1 \leq \kappa \leq 2 \).

Proof. Normalize variance \(\gamma \) from Remark 4 by \(\| \psi_{(\gamma)} \|_{\ell_2} \), \(\| \psi'_{(\gamma)} \|_{\ell_2} \). Consider \(\langle \psi_{(\gamma)} \rangle \) which is the variance for \(d \)-dimensional vectors \(\{ (\psi_{(\gamma)}, \psi'_{(\gamma)}) : \psi_{(\gamma)} \geq 0, \psi'_{(\gamma)} \geq 0 \} \) power normalized by Gamma from Remark 1, and divide it accordingly by \(\| \psi_{(\gamma)} \|_{\ell_2} \| \psi'_{(\gamma)} \|_{\ell_2} \).

\[
\lim_{\gamma \to 0} \langle \gamma \rangle = \frac{1}{d^2} \lim_{\gamma \to 0} \left(\frac{\langle \psi_{(\gamma)} \rangle^2}{\| \psi_{(\gamma)} \|_{\ell_2}^2 \| \psi'_{(\gamma)} \|_{\ell_2}^2} + 1 \right) = \frac{2}{d^2}.
\]

Now, assume that \(d \)-dimensional \(\psi \) and \(\psi' \) are actually \(\ell_2 \)-norm normalized. Then, we have the following ratio of variances:

\[
\kappa = \gamma / \langle \gamma \rangle = 2 / \langle (\psi_{(\gamma)}, \psi'_{(\gamma)})^2 + 1 \rangle,
\]

Thus, \(1 \leq \kappa \leq 2 \) depends on \((\psi, \psi') \), and \(\kappa \) varies smoothly between \([1; 2]\) for \(1 \leq \gamma \leq 0 \) of Gamma, a monotonically increasing function. For typical \(\gamma = 0.5 \), we measured for the actual data that \(\kappa \approx 1.3 \). □

5. Experiments

5.1. Datasets and Evaluation Protocols

HMDB-51 [41] consists of 6766 internet videos over 51 classes; each video has \(\sim 20 – 1000 \) frames. Following the protocol, we report the mean accuracy across three splits. YUP++ [19] dataset contains so-called video textures. It has 20 scene classes, 60 videos per class, and its splits contain scenes captured with the static or moving camera. We follow the standard splits (1/9 dataset for training).

MPII Cooking Activities [52] consist of high-resolution videos of people cooking various dishes. The 64 distinct activities from 3748 clips include coarse actions e.g., *opening refrigerator*, and fine-grained actions e.g., *peel, slice, cut apart*.

We use the mean Average Precision (mAP) over 7-fold cross validation. For human-centric protocol [7, 9], we use Faster-RCNN [50] to crop video around humans.

Charades [55] consist of of 9848 videos of daily indoors activities, 66500 temporal annotations and 157 classes.

<table>
<thead>
<tr>
<th></th>
<th>(sp1)</th>
<th>(sp2)</th>
<th>(sp3)</th>
<th>mean acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAF only</td>
<td>81.83%</td>
<td>80.78%</td>
<td>80.45%</td>
<td>81.02%</td>
</tr>
<tr>
<td>HAF+BoW/FV exact</td>
<td>83.00%</td>
<td>82.80%</td>
<td>81.70%</td>
<td>82.50%</td>
</tr>
<tr>
<td>HAF+BoW halluc.</td>
<td>82.29%</td>
<td>81.24%</td>
<td>80.98%</td>
<td>81.30%</td>
</tr>
<tr>
<td>HAF+FV halluc.</td>
<td>82.68%</td>
<td>81.05%</td>
<td>79.93%</td>
<td>81.22%</td>
</tr>
<tr>
<td>HAF+BoW/FV halluc.</td>
<td>82.88%</td>
<td>82.74%</td>
<td>81.50%</td>
<td>82.37%</td>
</tr>
</tbody>
</table>

Table 1: Evaluations of pipelines on the HMDB-51 dataset. We compare \((HAF only)\) and \((HAF+BoW/FV exact)\) which show the lower- and upper bound on the accuracy, and our \((HAF+BoW/FV halluc.), (HAF+BoW halluc.)\) and \((HAF+FV halluc.)\).
Table 2: Eval. of pipelines on YUP++. See Table 1 for the legend.

<table>
<thead>
<tr>
<th>HAF</th>
<th>BoW/FV halluc.</th>
<th>mean acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAF only</td>
<td>92.03%</td>
<td>81.61%</td>
</tr>
<tr>
<td>HAF+BoW/FV exact</td>
<td>93.30%</td>
<td>88.82%</td>
</tr>
<tr>
<td>HAF+BoW halluc.</td>
<td>92.69%</td>
<td>88.15%</td>
</tr>
<tr>
<td>HAF+BoW/FV halluc.</td>
<td>93.15%</td>
<td>89.63%</td>
</tr>
</tbody>
</table>

Table 3: Evaluations of pipelines on the HMDB-51 dataset. We compare (HAF+BoW/FV halluc.) approach on different architectures used for HAF and BoW/FV streams such as (FC) and (Conv).

<table>
<thead>
<tr>
<th>sp1</th>
<th>sp2</th>
<th>sp3</th>
<th>mean acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAF-Conv+BoW/FV-FC halluc.</td>
<td>81.36%</td>
<td>80.39%</td>
<td>80.32%</td>
</tr>
<tr>
<td>HAF-FC+BoW/FV-Conv halluc.</td>
<td>82.42%</td>
<td>81.30%</td>
<td>81.50%</td>
</tr>
<tr>
<td>HAF-FC+BoW/FV-FC halluc.</td>
<td>82.88%</td>
<td>82.74%</td>
<td>81.50%</td>
</tr>
</tbody>
</table>

5.2. Evaluations

We start our experiments by investigating various aspects of our pipeline and then present our final results.

HAF, BoW and FV streams. Firstly, we ascertain the gains from our HAF and BoW/FV streams. We evaluate the performance of (i) the HAF-only baseline pipeline without IDT-based BoW/FV information (HAF only), (ii) the HAF-only baseline with exact ground-truth IDT-based BoW/FV added at both training and testing time (HAF+BoW/FV exact), and (iii) the combined HAF plus IDT-based BoW/FV streams (HAF+BoW/FV halluc.). We also perform evaluations on (iv) HAF plus IDT-based BoW stream (HAF+BoW halluc.) and (v) HAF plus IDT-based FV stream (HAF+BoW halluc.) to examine how much gain IDT-based BoW and FV bring, respectively. As Section 4.1 suggests that each stream can be based on either the Fully Connected (FC) or Convolutional (Conv.) pipeline, we firstly investigate the use of FC unit from Figure 3a, that is, we use HAF-FC, BoW-FC and HAF-FC streams. PredNet also uses FC. For ground-truth FV, we use 1000 dim. sketches.

Table 1 presents results on the HMDB-51 dataset. As expected, the (HAF only) is the poorest performer while (HAF+BoW/FV exact) is the best performer determining the upper limit on the accuracy. Hallucinating (HAF+BoW halluc.) outperforms (HAF+BoW halluc.) marginally. We expect FV to perform close to BoW due to the significant compression with sketching by factor $\sim 52.5x$. Approaches (HAF+BoW halluc.) and (HAF+BoW/FV exact) achieve the best results, and outperform (HAF only) by 1.35% and 1.48% accuracy. These result show that our hallucination strategy (HAF+BoW/FV halluc.) can mimic (HAF+BoW/FV exact) closely. Our 82.37% accuracy is the new state of the art. Below we show larger gains on YUP++.

Table 2 presents similar findings on the YUP++ dataset. Our (HAF+BoW halluc.) brings the improvement of ~ 2.2 and ~ 6.5% over (HAF+BoW halluc.) and (HAF only) on scenes captured with the moving camera (dynamic). Our (HAF+BoW/FV halluc.) yields ~ 8.0% (HAF only) thus demonstrating again the benefit of hallucinating BoW/FV descriptors. The total gain for (HAF+BoW/FV halluc.) over (HAF only) equals 4.1%. Our (HAF+BoW/FV halluc.) catches results of (HAF+BoW/FV exact) without explicitly computing BoW/FV during testing. Below, we investigate different architectures of our streams.

Fully Connected/Convolutional streams. Figures 3a and 3b show two possible realizations of HAF, BoW and FV streams. While FC and Conv. architectures are not the only possibilities, they are the simplest ones. Table 3 shows that using FC layers (FC) for HAF and BoW/FV streams, denoted as (HAF-FC+BoW/FV-FC halluc.) outperforms Convolutional (Conv.) variants by up to ~ 1.5% accuracy. Thus, we use only the FC architecture in what follows.

Sketching and Power Normalization. As PredNet uses FC layers (see Figure 3c), we expect that limiting the input size to this layer via count sketching from Section 3.4 should benefit the performance. Moreover, as visual and video representations suffer from so-called burstiness, we investigate AsinhE, SigmE and AxMin from Remarks 1, 2 and 3.

Figure 5a investigates the classification accuracy on the HMDB-51 dataset (split 1) when our HAF and BoW/FV feature vectors $\{\psi_i, i \in H\}$ and $\psi_{(haf)}$ (described in Sections 4.4 and 4.5) are passed via Power Normalizing functions AsinhE, SigmE and AxMin prior to concatenation (see Figure 1). From our experiment it appears that all PN functions perform similarly and improve results from the baseline 82.29% to ~ 83.20% accuracy. We observe a similar gain from 93.15% to 94.44% acc. on YUP++ (static). In what follows, we simply use AsinhE for PN.

Figure 5b illustrates on the HMDB-51 dataset (split 1) that applying count sketching on concatenated HAF and BoW/FV feature vectors $\psi_{(tot)}$ which produces $\psi_{(tot)}'$ (see Section 4.5 for reference to symbols), improves results from 82.88% to 83.92% accuracy for $d' = 2000$. This is expected as reduced size of $\psi_{(tot)}'$ results in fewer parameters of the FC layer of PredNet and less overfitting. Similarly, for the YUP++ dataset and the split (static), we see the performance increase from 93.15% to 94.81% accuracy.

Comparisons with other methods. Below we present our final results and we contrast them against the state of the art. Table 4 shows results on the HMDB-51 dataset. For
Table 4: Evaluations of (top) our (HAF+BoW/FV halluc.) and (bottom) comparisons to the state of the art on HMDB-51.

<table>
<thead>
<tr>
<th>Method</th>
<th>sp1</th>
<th>sp2</th>
<th>sp3</th>
<th>mean acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAF only</td>
<td>81.85%</td>
<td>80.78%</td>
<td>80.45%</td>
<td>81.02%</td>
</tr>
<tr>
<td>HAF+BoW/FV halluc.</td>
<td>80.36%</td>
<td>82.61%</td>
<td>81.37%</td>
<td>82.48%</td>
</tr>
<tr>
<td>HAF+ResNet+IDT 74.3% [67]</td>
<td>80%</td>
<td>83%</td>
<td>82%</td>
<td>82%</td>
</tr>
<tr>
<td>ADL+I3D 81.5% [67]</td>
<td>82.2%</td>
<td>82.2%</td>
<td>82.2%</td>
<td>82.2%</td>
</tr>
<tr>
<td>STM Network+I3D 72.2% [18]</td>
<td>80.2%</td>
<td>80.2%</td>
<td>80.2%</td>
<td>80.2%</td>
</tr>
</tbody>
</table>

Table 5: Evaluations of (top) our (HAF+BoW/FV halluc.) and (bottom) comparisons to the state of the art on YUP++.

<table>
<thead>
<tr>
<th>Method</th>
<th>sp1</th>
<th>sp2</th>
<th>sp3</th>
<th>sp4</th>
<th>sp5</th>
<th>sp6</th>
<th>sp7</th>
<th>mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAF+BoW/FV halluc.</td>
<td>75.9%</td>
<td>76.2%</td>
<td>76.7%</td>
<td>76.5%</td>
<td>76.3%</td>
<td>76.3%</td>
<td>76.3%</td>
<td>71.9%</td>
</tr>
<tr>
<td>HAF+BoW/FV halluc.+SK/PN</td>
<td>75.9%</td>
<td>76.2%</td>
<td>76.7%</td>
<td>76.5%</td>
<td>76.3%</td>
<td>76.3%</td>
<td>76.3%</td>
<td>71.9%</td>
</tr>
<tr>
<td>HAF* only</td>
<td>74.7%</td>
<td>78.4%</td>
<td>78.7%</td>
<td>78.5%</td>
<td>78.3%</td>
<td>78.3%</td>
<td>78.3%</td>
<td>74.8%</td>
</tr>
<tr>
<td>HAF*+BoW halluc.</td>
<td>78.8%</td>
<td>75.0%</td>
<td>84.1%</td>
<td>76.0%</td>
<td>77.0%</td>
<td>78.0%</td>
<td>78.0%</td>
<td>77.8%</td>
</tr>
<tr>
<td>HAF*+BoW halluc.+MSK/PN</td>
<td>80.1%</td>
<td>79.2%</td>
<td>84.9%</td>
<td>80.9%</td>
<td>80.9%</td>
<td>80.9%</td>
<td>80.9%</td>
<td>80.4%</td>
</tr>
<tr>
<td>HAF*+BoW halluc.+MSK/PN</td>
<td>81.5%</td>
<td>80.9%</td>
<td>85.1%</td>
<td>83.9%</td>
<td>82.1%</td>
<td>79.8%</td>
<td>79.6%</td>
<td>81.7%</td>
</tr>
<tr>
<td>dito+OFF halluc.</td>
<td>81.2%</td>
<td>81.2%</td>
<td>84.9%</td>
<td>83.4%</td>
<td>84.2%</td>
<td>78.9%</td>
<td>79.1%</td>
<td>81.8%</td>
</tr>
<tr>
<td>I3D+BoW MTL*</td>
<td>79.1%</td>
<td>78.1%</td>
<td>83.6%</td>
<td>78.7%</td>
<td>79.1%</td>
<td>78.0%</td>
<td>76.5%</td>
<td>91.1%</td>
</tr>
</tbody>
</table>

Table 6: Evaluations of (top) our (HAF+BoW/FV halluc.) pipeline without sketching/PN, with sketching/PN (SK/PN). The (HAF* only) is our baseline without the BoW stream. (*) denotes human-centric pre-processing while (MSK/PN) in pipeline (HAF*+BoW hal.+MSK/PN) denotes multiple sketches per BoW followed by Power Norm (PN). (bottom) Other methods on the MPII dataset.

<table>
<thead>
<tr>
<th>Method</th>
<th>sp1</th>
<th>sp2</th>
<th>sp3</th>
<th>sp4</th>
<th>sp5</th>
<th>sp6</th>
<th>sp7</th>
<th>mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAF+BoW/FV Halluc.</td>
<td>54.3%</td>
<td>54.3%</td>
<td>54.3%</td>
<td>54.3%</td>
<td>54.3%</td>
<td>54.3%</td>
<td>54.3%</td>
<td>54.3%</td>
</tr>
<tr>
<td>HAF+BoW/FV/Off halluc. +MSK ×2/PN</td>
<td>43.1%</td>
<td>43.1%</td>
<td>43.1%</td>
<td>43.1%</td>
<td>43.1%</td>
<td>43.1%</td>
<td>43.1%</td>
<td>43.1%</td>
</tr>
<tr>
<td>HAF+BoW/FV/Off halluc. +MSK ×3/PN halluc. +MSK ×8/PN</td>
<td>42.2%</td>
<td>42.2%</td>
<td>42.2%</td>
<td>42.2%</td>
<td>42.2%</td>
<td>42.2%</td>
<td>42.2%</td>
<td>42.2%</td>
</tr>
</tbody>
</table>

Table 7: Evaluations of our methods on the Charades dataset.

<table>
<thead>
<tr>
<th>Method</th>
<th>sp1</th>
<th>sp2</th>
<th>sp3</th>
<th>sp4</th>
<th>sp5</th>
<th>sp6</th>
<th>sp7</th>
<th>mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRP-FS 70.0% [9]</td>
<td>71.3%</td>
<td>71.6%</td>
<td>71.9%</td>
<td>72.2%</td>
<td>72.5%</td>
<td>72.8%</td>
<td>73.1%</td>
<td>73.4%</td>
</tr>
<tr>
<td>KRP-FS+IDT 76.1% [9]</td>
<td>68.4%</td>
<td>68.4%</td>
<td>68.4%</td>
<td>68.4%</td>
<td>68.4%</td>
<td>68.4%</td>
<td>68.4%</td>
<td>68.4%</td>
</tr>
</tbody>
</table>

Table 6: Evaluations of (top) our (HAF+BoW/FV halluc.) pipeline without sketching/PN, with sketching/PN (SK/PN). The (HAF* only) is our baseline without the BoW stream. (*) denotes human-centric pre-processing while (MSK/PN) in pipeline (HAF*+BoW hal.+MSK/PN) denotes multiple sketches per BoW followed by Power Norm (PN). (bottom) Other methods on the MPII dataset.

Table 7: Evaluations of our methods on the Charades dataset.

<table>
<thead>
<tr>
<th>Model</th>
<th>sp1</th>
<th>sp2</th>
<th>sp3</th>
<th>sp4</th>
<th>sp5</th>
<th>sp6</th>
<th>sp7</th>
<th>mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRP-FS</td>
<td>71.3%</td>
<td>71.6%</td>
<td>71.9%</td>
<td>72.2%</td>
<td>72.5%</td>
<td>72.8%</td>
<td>73.1%</td>
<td>73.4%</td>
</tr>
<tr>
<td>KRP-FS+IDT</td>
<td>68.4%</td>
<td>68.4%</td>
<td>68.4%</td>
<td>68.4%</td>
<td>68.4%</td>
<td>68.4%</td>
<td>68.4%</td>
<td>68.4%</td>
</tr>
</tbody>
</table>

Discussion. There exist several reasons explaining why our pipeline works well e.g., sophisticated IDT trajectory modeling is unlikely to be captured by off-the-shelf CNNs unless a CNN is enforced to learn IDT. We perform translation of the IDD output into IDT-based BoW/FV descriptors thus enforcing IDD to implicitly learn IDT which regularizes IDD which resembles Domain Adaptation (DA) methods: a source network co-regulates a target network [34, 38, 52, 25, 24, 42] by the alignment of feature statistic of both streams. Related to DA is Multi-task Learning (MTL) known for boosting generalization/preventing overfitting of CNNs due to task specific losses [5]. MTL training on related tasks is known to boost individual task accuracies beyond a vanilla feature fusion [59]. Finally, our pipeline uses self-supervision e.g., IDT BoW/FV and OFF descriptors represent easy to obtain self-information about videos. We train our halluc./last I3D layers via task-specific losses (similar to MTL). However, our halluc. layers distill the domain specific cues which are fed back into the network (PredNet) which boosts our results by further ~2.7% compared to vanilla (I3D+BoW MTL*) in Table 6.

6. Conclusions

We have proposed a simple yet powerful strategy that learns IDT-based descriptors (and even optical flow features) and hallucinates them in a CNN pipeline for AR at the test time. With state-of-the-art results, we hope our method will spark a renewed interest in IDT-like descriptors.
References

[34] Piotr Koniusz, Yusuf Tas, and Fatih Porikli. Domain adaptation by mixture of alignments of second- or higher-order scatter tensors. *CVPR*, 2017.

Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaiming He, Philipp Krähenbühl, and Ross Girshick. Long-term
feature banks for detailed video understanding. In CVPR, June 2019. 8