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Abstract

Graph matching refers to finding node correspondence

between graphs, such that the corresponding node and

edge’s affinity can be maximized. In addition with its NP-

completeness nature, another important challenge is effec-

tive modeling of the node-wise and structure-wise affin-

ity across graphs and the resulting objective, to guide the

matching procedure effectively finding the true matching

against noises. To this end, this paper devises an end-to-

end differentiable deep network pipeline to learn the affin-

ity for graph matching. It involves a supervised permuta-

tion loss regarding with node correspondence to capture

the combinatorial nature for graph matching. Meanwhile

deep graph embedding models are adopted to parameterize

both intra-graph and cross-graph affinity functions, instead

of the traditional shallow and simple parametric forms e.g.

a Gaussian kernel. The embedding can also effectively cap-

ture the higher-order structure beyond second-order edges.

The permutation loss model is agnostic to the number of

nodes, and the embedding model is shared among nodes

such that the network allows for varying numbers of nodes

in graphs for training and inference. Moreover, our network

is class-agnostic with some generalization capability across

different categories. All these features are welcomed for

real-world applications. Experiments show its superiority

against state-of-the-art graph matching learning methods.

1. Introduction and Preliminaries

Graph matching (GM) refers to establishing node corre-

spondences between two or among multiple graphs. Graph

matching incorporates both the unary similarity between

nodes and pairwise [7, 14] (or even higher-order [21, 29,

43]) similarity between edges from separate graphs to find

a matching such that the similarity between the matched

graphs is maximized. By encoding the high-order geometri-
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cal information in the matching procedure, graph matching

in general can be more robust to deformation noise and out-

liers. For its expressiveness and robustness, graph matching

has lied at the heart of many computer vision applications

e.g. visual tracking, action recognition, robotics, weak-

perspective 3-D reconstruction – refer to [40] for a more

comprehensive survey on graph matching applications.

Due to its high-order combinatorial nature, graph match-

ing is in general NP-complete [13] such that researchers em-

ploy approximate techniques to seek inexact solutions. For

the classic setting of two-graph matching between graphs

G1, G2, the problem can be written by the following general

quadratic assignment programming (QAP) problem [25]:

J(X) = vec(X)⊤Kvec(X), (1)

X ∈ {0, 1}N×N , X1 = 1, X
⊤
1 ≤ 1

where X is a permutation matrix indicating the node cor-

respondence, and K ∈ R
N2

×N2

is the so-called affinity

matrix [22] whose diagonal elements and off-diagonal ones

encode the node-to-node and edge-to-edge affinity between

two graphs, respectively. One popular embodiment of K in

literature is Kia,jb = exp
(

(fij−fab)
2

σ2

)

where fij is the fea-

ture vector of the edge ij, which can also incorporate the

node similarity when node index ia = jb.
Eq. (1) is called Lawler’s QAP [20]. It can incorporate

other forms e.g. Koopmans-Beckmann’s QAP [25]:

J(X) = tr(X⊤
F1XF2) + tr(K⊤

p X) (2)

where F1 ∈ R
N×N , F2 ∈ R

N×N are weighted adjacency

matrices of graph G1, G2 respectively, and Kp is the node-

to-node affinity matrix. Its connection to the Lawler’s QAP

can be established by setting K = F2 ⊗ F1.

Beyond the second-order affinity modeling, recent meth-

ods also explore the way of utilizing higher-order affinity

information. Based on tensor marginalization as adopted

by several hypergraph matching works [5, 9, 43, 46]:

x
∗ = argmax(H⊗1 x⊗2 x . . .⊗m x) s.t. (3)

X1 = 1,X⊤
1 ≤ 1,x = vec(X) ∈ {0, 1}N

2
×1
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Figure 1. Overview of our proposed permutation based intra-graph affinity (PIA-GM) and cross-graph affinity (PCA-GM) approaches

for deep combinatorial learning of graph matching. The CNN features are extracted from image pairs followed by node embedding and

Sinkhorn operation for matching. The CNN model, embedding model and affinity metric are all learnable in an end-to-end fashion.

where m is the affinity order and H is the m-order affin-

ity tensor whose element encodes the affinity between two

hyperedges from the graphs. ⊗k is the tensor product [21].

Readers are referred to Sec. 3.1 in [9] for details on ten-

sor multiplication. The above works all assume the affinity

tensor is invariant w.r.t. the index of the hyperedge pairs.

All the above studies show the generality and importance

of the affinity model for graph matching. However, tradi-

tional affinity methods mostly rely on a predefined affinity

function (or distance), e.g. a Gaussian kernel with Euclid

distance in the node and edge feature space. We believe

that such a predefined parametric affinity model has limited

flexibility to capture the structure of a real-world matching

task, whereby the affinity metric can be arbitrary and call

for models with enough high capacity to approximate. This

challenge is more pronounced in the presence of noise and

outliers which are ubiquitous in practical settings. Based

on an inappropriate affinity model, the matching solver can

be more struggling as the global optimum regarding with

the affinity model may even not correspond to the ground

truth matching solution – due to the biased affinity objec-

tive function as input for combinatorial optimization.

Hence it calls for effective affinity modeling across

graphs. It is orthogonal to the major line of previous efforts

on devising combinatorial solvers using predefined affinity

model [7, 9, 14, 21]. The contributions of this paper are:

i) We develop a novel supervised deep network based

pipeline for graph matching, whereby the objective involves

the permutation loss based on a Sinkhorn net rather than

structured max-margin loss [6] and pixel offset loss [45].

We argue that the permutation loss is a more inherent choice

for the combinatorial nature graph matching (by relaxing it

into linear assignment). Meanwhile, the permutation loss

allows for the flexible handling of arbitrary number of nodes

of graph for matching. In contrast, the number of nodes for

matching in a graph is fixed and predefined in the problem

structure in [6]. To our best knowledge, this is the first time

for adopting a permutation loss for learning graph matching

– a natural choice for its combinatorial nature.

ii) Our graph matching nets learn the node-wise fea-

ture (extracted from image in this paper) and the implicit

structure information (including hyper-edge) by employing

a graph convolutional network, together with the node-to-

node cross-graph affinity function using additional layers.

As such, the intra-graph information and cross-graph affin-

ity are jointly learned given ground truth correspondence.

Our network embeds both the node (image patch) feature

and structure into the node-wise vector, and the node-to-

node affinity layers are shared among all nodes. Such a de-

sign also allows for different numbers of nodes in different

graph pairs for training and testing. To our best knowledge,

this is the first time for adopting a graph neural network for

learning graph matching (at least in computer vision).

iii) Experimental results including ablation studies show

the effectiveness of our devised components including the

permutation loss, the node-wise feature extract layer, graph

convolutional network based node embedding, and the

cross-graph affinity component. In particular, our method

outperforms the deep learning peer method [45] in terms

of matching accuracy. Our method also outperforms [6] in

accuracy while being more flexible as the method in [6] re-

quires constant number of nodes for matching in both train-

ing and testing sets. We also show the learning capability of

our approach even when the training set and test set are from
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different object categories, which also outperforms [45].

2. Related Work

This paper focuses on learning of graph matching. Read-

ers are referred to [42] for a comprehensive acquaintance.

2.1. Modeling and Learning Affinity

Recently a number of studies show various techniques

for affinity function learning. Based on the extent to

which ground truth correspondence information is used

for training, methods are either unsupervised [23], semi-

supervised [24], or supervised [4, 6, 45].

Previous graph matching affinity learning methods are

mostly based on simple and shallow parametric models,

which use popular distances (typically weighted Euclid dis-

tance) in the node and edge feature space plus a similarity

kernel function (e.g. Gaussian kernel) to derive the final

affinity score. In particular, a unified (shallow) paramet-

ric graph structure learning model is devised between two

graphs in a vector form Φ(G1,G2, π) [6]. The authors in [6]

observe that the above simple model can incorporate most

previous shallow learning models, including [4, 23, 39].

Therefore, this method will be compared in our experiment.

There is a seminal work [45] presenting a method adopt-

ing deep neural networks for learning the affinity matrix for

graph matching. However, in Sec. 3.7 we show that their

pixel offset based loss function does not fit well with the

combinatorial nature of graph matching. In addition, node

embedding is not considered which is able to effectively

capture the local structure of the node, which can go be-

yond second-order for more effective affinity modeling.

2.2. Graph Neural Networks and Embedding

Deep neural networks have been proven effective on

spatial and sequential data, with CNN and RNN respec-

tively. Recently, there emerges a number of techniques for

extracting high-order node embedding via deep networks,

whose input i.e. graph is non-Euclidean data. Specifi-

cally, graph neural networks (GNN) [34] have been pro-

posed whereby node features are aggregated from adjacent

neighbors and different nodes can share the same trans-

fer function. The output of GNN is invariant to permuta-

tions of graph elements. Many variants of GNN have been

developed since [34], which is comprehensively discussed

in [48]. In particular, the SNDE model [41] is developed

for deep node embedding by exploiting the first-order and

second-order proximity jointly. Differing from the above

deep embedding models, there are some shallow embed-

ding models which are scalable on large networks including

DeepWalk [32] based on random walk and node2vec [15]

inspired by skip-gram language model [28]. In particu-

lar, LINE [38] explicitly defines first-order proximity and

second-order proximity and builds heuristics models for the

two proximities. However, these methods, including the

SNDE model cannot be used for end-to-end learning for

graph matching. For this reason, we adopt the graph con-

volutional network (GCN) [17] modeling graph structure

whose parameters are learnable in an end-to-end fashion.

2.3. Learning of Combinatorial Optimization

Graph matching bears the combinatorial nature. There is

an emerging thread using learning to seek efficient solution,

especially with deep networks. In [16], the well known NP-

hard problem for coloring very large graphs is addressed

using deep reinforcement learning. The resulting algorithm

can learn new state of the art heuristics for graph coloring.

While the Travelling Salesman Problem (TSP) is studied

in [18] and the authors propose a graph attention network

based method which learns a heuristic algorithm that em-

ploys neural network policy to find a tour. Deep learning

for node set is also explored in [44] which seeks permuta-

tion invariant objective functions to a set of nodes.

In particular, [30] shows a network based approach for

solving the quadratic assignment problem. Their work fo-

cuses on learning the solver given previous defined affin-

ity matrix. In contrast, this paper presents an end-to-end

learning pipeline for learning the affinity function. In this

sense, the two methods can be further integrated for prac-

tical applications. Moreover, for the less challenging lin-

ear assignment problem, which in fact can be solved with

polynomial complexity e.g. the Hungarian algorithm [19],

there also exist recently proposed network based new meth-

ods. The Sinkhorn Network [1] is developed for linear as-

signment learning in the sense of linear assignment given

predefined assignment cost, which is designated to enforce

doubly-stochastic regulation on any non-negative square

matrix. It has been shown that Sinkhorn algorithm [37] is

the approximate and differentiable version of Hungarian al-

gorithm [26]. More recently, the Sinkhorn AutoEncoder is

proposed in [31] to minimize Wasserstein distance in Au-

toEncoders, and the work [10] adopts reinforcement learn-

ing for learning a linear assignment solver. The Sinkhorn

layer is also adopted on top of a deep convolutional network

in DeepPermNet [33], which solves a permutation predic-

tion problem. However, DeepPermNet is not invariant to

input permutations and need a predefined node permutation

as reference, thus it is unstable for two graph matching.

In comparison, our model consists of an affinity learning

component which encodes the structure affinity into node-

wise embeddings. As such, graph matching is relaxed into

linear assignment solved by the Sinkhorn layer, which is

also sometimes called permutation learning in literature.

3. Proposed Approach

We present two models for matching G1 = (V1, E1) and

G2 = (V2, E2): i) permutation loss and intra-graph affinity
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Table 1. Symbol notations. Subscript s indexes image/graph.

Is input image s
N number of nodes in one graph

As adjacency matrix of graph s
Vs vertex set of graph s
Es edge set of graph s
Psi coordinate of keypoint i in image s

h
(k)
si feature vector of keypoint i, layer k in graph s

m
(k)
si message vector of keypoint i, layer k in graph s

n
(k)
si node feature of keypoint i, layer k in graph s

M
(k) affinity matrix on k-th Sinkhorn iteration

S N ×N matrix representing permutation

based graph matching (PIA-GM) and ii) permutation loss

and cross-graph affinity based one (PCA-GM). Both mod-

els are built upon a deep network which exploits both image

feature and structure jointly, and a Sinkhorn network en-

abling differentiable permutation prediction and loss back-

propagation. PCA-GM adopts an extra cross-graph compo-

nent which aggregates cross-graph features, while PIA-GM

only embeds intra-graph features. Fig. 1 summarizes both

PIA-GM and PCA-GM. Symbols are shown in Tab. 1.

The proposed two models consist of a CNN image fea-

ture extractor, a graph embedding component, an affinity

metric function and a permutation prediction component.

Image features are extracted by CNN (VGG16 in the paper)

as graph nodes, and aggregated through (cross-graph) node

embedding component. The networks predict a permutation

for node-to-node correspondence from raw pixel inputs.

3.1. Feature Extraction

We adopt a CNN for keypoints feature extraction, which

are constructed by interpolating on CNN’s feature map. For

image Is, the extracted feature on the keypoint Psi is:

h
(0)
si = Interp(Psi,CNN(Is)) (4)

where Interp(P,X) interpolates on point P from tensor X
via bilinear interpolation. CNN(I) performs CNN on image

I and outputs a feature tensor. Taking the idea of Siamese

Network [3], two input images share the same CNN struc-

ture and weights. To fuse both local structure and global

semantic information, feature vectors from different layers

of CNN are extracted. We choose VGG16 pretrained with

ImageNet [8] as the CNN embodiment in line with [45].

3.2. Intra­graph Node Embedding

It has been shown that methods exploiting graph struc-

ture can produce robust matching [42], compared to point

based methods [12, 47]. In PIA-GM, graph affinity is

constructed by a multi-layer embedding component which

models the higher-order information. The message passing

Algorithm 1: Cross-graph node embedding

Input: (k − 1)-th layer features {h
(k−1)
1i ,h

(k−1)
2j }i∈V1,j∈V2

1 // similarity prediction Eq. (13, 16)

2 build M̂ from {h
(k−1)
1i ,h

(k−1)
2j } by Eq. (13);

3 Ŝ← Sinkhorn(M̂);
4 // cross-graph aggregation Eq. (9, 10, 11)

5 {h
(k)
1i } ← CrossConv(Ŝ, {h

(k−1)
1i }i∈V1

, {h
(k−1)
2j }j∈V2

);

6 {h
(k)
2j } ← CrossConv(Ŝ⊤, {h

(k−1)
2j }j∈V2

, {h
(k−1)
1i }i∈V1

);

Output: k-th layer features {h
(k)
1i ,h

(k)
2j }i∈V1,j∈V2

scheme is inspired by GCN [17], where features are effec-

tively aggregated from adjacency nodes, and the node itself:

m
(k)
si =

1

|(i, j) ∈ Es|

∑

j:(i,j)∈Es

fmsg(h
(k−1)
sj ) (5)

n
(k)
si =fnode(h

(k−1)
si ) (6)

h
(k)
si =fupdate(m

(k)
si ,n

(k)
si ) (7)

Eq. (5) is the message passing along edges and fmsg is

the message passing function. The aggregated features from

adjacent nodes are normalized by the total number of adja-

cent nodes, as a common practice in GCN, in order to avoid

the bias due to the different numbers of neighbors owned

by different nodes. Eq. (6) is the message passing function

for each node and it contains a node’s self-passing func-

tion fnode. With fupdate, Eq. (7) accumulates information to

update the state of node i, and fmsg, fnode, fupdate may take

any differentiable mapping from vector to vector. Here we

implement fmsg, fnode as neural networks with ReLU activa-

tion, and fupdate is a summation function. We denote Eq. (7)

as graph convolution (GConv) between layer k − 1 and k:

{h
(k)
si } = GConv(As, {h

(k−1)
si }), i ∈ Vs (8)

which denotes a layer of our node embedding net. Mes-

sage passing paths are encoded by adjacency matrix As ∈

{0, 1}N×N . Note that h
(0)
i is the CNN feature of node i.

3.3. Cross­graph Node Embedding

We explore improvement over intra-graph embedding by

a cross-graph aggregation step, whereby features are aggre-

gated from nodes with similar features in the other graph.

First, we utilize graph affinity features from shallower em-

bedding layers to predict a doubly-stochastic similarity ma-

trix (see details in Sec. 3.5). The predicted similarity matrix

Ŝ encodes the similarity among nodes of two graphs. The

message passing scheme is similar to intra-graph convolu-

tion in Eq. (8), with adjacency matrix replaced by Ŝ, and

features are aggregated from the other graph. In our ex-

periments, we will show this simple scheme works more
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effectively than a more complex iterative procedure.

m
(k)
1i =

∑

j∈V2

Ŝi,jfmsg-cross(h
(k−1)
2j ) (9)

n
(k)
1i =fnode-cross(h

(k−1)
1i ) (10)

h
(k)
1i =fupdate-cross(m

(k)
1i ,n

(k)
1i ) (11)

where fmsg-cross, fnode-cross are taken as identity mapping,

fupdate-cross is a concatenation of two input feature tensors,

followed by a fully-connected layer. For pair of graphs

G1 = (V1, E1),G2 = (V2, E2), the cross-graph aggregation

scheme is summarized by CrossConv(·) in Alg. 1, where Ŝ

denotes the predicted correspondence from G2 to G1 and Ŝ
⊤

denotes such relation from G1 to G2.

3.4. Affinity Metric Learning

By using the above embedding model, the structure affin-

ity between two graphs have been encoded into the node-to-

node affinity in the embedding space. As such, it allows for

reducing the traditional second-order affinity matrix K in

Eq. (1) into a linear one. Let h1i be feature i from first

graph, h2j be feature j from the other graph:

M
(0)
i,j = faff(h1i,h2j), i ∈ V1, j ∈ V2 (12)

The affinity matrix M
(0) ∈ R

+N×N
contains the affin-

ity score between two graphs. M
(0)
i,j means the similarity

between node i in the first graph and node j in the second,

considering the higher-order information in graphs.

One can set faff a bi-linear mapping followed by an ex-

ponential function which ensures all elements are positive1.

M
(0)
i,j = exp

(

h
⊤
1iAh2j

τ

)

(13)

Consider the feature vectors have m dimensions, i.e.

∀i ∈ V1, j ∈ V2,h1i,h2j ∈ R
m×1. A ∈ R

m×m contains

learnable weights of this affinity function. τ is a hyper pa-

rameter for numerical concerns. For τ > 0, with τ → 0+,

Eq. (13) becomes more discriminative.

3.5. Sinkhorn Layer for Linear Assignment

Given the linear assignment affinity matrix in Eq. (13),

we adopt Sinkhorn for the linear assignment task. Sinkhorn

operation takes any non-negative square matrix and out-

puts a doubly-stochastic matrix, which is a relaxation of the

permutation matrix. This technique has been shown effec-

tive for network based permutation prediction [1, 33]. For

M
(k−1) ∈ R

+N×N
, the Sinkhorn operator is

M
(k)′ =M

(k−1) ⊘ (M(k−1)
11

⊤) (14)

M
(k) =M

(k)′ ⊘ (11⊤
M

(k)′) (15)

1We have also tried other more flexible fully-connected layers, while

we find the exponential function is simple and more stable for learning.

⊘ means element-wise division, and 1 ∈ R
N×1 is a column

vector whose elements are all ones. Sinkhorn algorithm

works iteratively by taking row-normalization of Eq. (14)

and column-normalization of Eq. (15) alternatively.

By iterating Eq. (14, 15) until convergence, we get a

doubly-stochastic matrix. This doubly-stochastic matrix S

is treated as our model’s prediction in training.

S = Sinkhorn(M(0)) (16)

For testing, Hungarian algorithm [19] is performed on

S as a post processing step to discretize output into a per-

mutation matrix. Sinkhorn operation is fully differentiable

because only matrix multiplication and element-wise divi-

sion are taken. It can be efficiently implemented with the

help of PyTorch’s automatic differentiation feature [35].

3.6. Permutation Cross­Entropy Loss

Our methods directly utilize ground truth node-to-node

correspondence, i.e. permutation matrix, as the super-

vised information for end-to-end training. Since Sinkhorn

layer in Eq. (16) is capable to transform any non-negative

matrix into doubly-stochastic matrix, we propose a lin-

ear assignment based permutation loss that evaluates the

difference between predicted doubly-stochastic matrix and

ground truth permutation matrix for training.

Cross entropy loss is adopted to train our model end-to-

end. We take the ground truth permutation matrix S
gt, and

compute the cross entropy loss between S and S
gt. It is

denoted as permutation loss, and this is the main method

adopted to train our deep graph matching model Lperm:

−
∑

i∈V1,j∈V2

(

S
gt
i,j logSi,j + (1− S

gt
i,j) log(1− Si,j)

)

(17)

Note the competing method GMN [45] applies a pixel

offset based loss namely “displacement loss”. Specifically

it computes an offset vector d by a weighted sum of all

matching candidates. The loss is given as the difference

between predicted location and ground truth location.

di =
∑

j∈V2

(Si,jP2j)− P1i (18)

Loff =
∑

i∈V1

√

||di − d
gt
i ||2 + ǫ (19)

where {P1i}, {P2j} are the coordinates of keypoints in first

and second image, respectively. While ǫ is a small value en-

suring numerical robustness. In comparison, our cross en-

tropy loss can directly learn a linear assignment cost based

permutation loss in an end-to-end fashion.

3.7. Further Discussion

Pairwise affinity matrix vs. embedding. Existing graph

matching methods focus on modeling second-order [7, 22]
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Lperm = 5.139,   Loff = 0.070
Figure 2. Failure case of offset loss: source image (left) and target

image (right) with matching candidates, where numbers denote the

probability of predicted matching. Ground truth matching nodes

are colored in rose (only receives 0.05 probability by this poor

prediction). Offset loss is computed by a weighted sum among all

candidates, resulting in a misleading low loss 0.070. In this case

offset loss fails to provide supervision on distinguishing left/right

ears. Our permutation loss, on the contrary, issues a reasonably

high loss 5.139.

and higher-order [21, 43] feature with an explicitly pre-

defined affinity matrix or tensor. The affinity information

can be encoded in an N2 × N2 affinity matrix. Optimiza-

tion techniques are applied to maximize graph affinity.

In contrast, we resort to the node embedding technique

with two merits. First, the space complexity can be reduced

to N ×N . Second, the pairwise affinity matrix K in Eq. (1)

can only encode the edge information, while the embedding

model can implicitly encode higher-order information.

Sinkhorn net vs. spectral matching. GMN [45] adopts

spectral matching (SM) [22] which is differentiable for back

propagation. While we adopt the Sinkhorn net instead. In

fact, the input of Sinkhorn is of complexity O(N2) while

it is O(N4) for spectral matching. However, in SM we ob-

serve more iterations to convergence. Such iteration may

bring negative effect to gradient’s back propagation. In fact,

spectral matching is for graph matching while Skinhorn net

is for linear assignment, which is relaxed from the graph

matching task by our embedding component.

Pixel offset loss vs. permutation loss. The loss function

adopted by GMN [45] is an offset loss named “displace-

ment loss”. The loss takes the weighted sum of all candi-

date points, and compute the offset vector from the origi-

nal image to the source image. In training, GMN tries to

minimize the variance between predicted offset vector and

ground truth offset vector. In comparison, with the help of

Sinkhorn net, we adopt a combinatorial permutation loss

which is computed as the cross entropy between predicted

result and ground truth permutation. Such permutation loss

takes the ground truth permutation directly as supervision,

and utilize such information for end-to-end training.

Fig. 2 gives an example for the failure case of offset

loss. In this case, the offset loss is unreasonably low, but

the permutation loss provides correct information. Experi-

ments also show that models trained with our permutation

loss exceed offset loss models in matching accuracy.

4. Experiments

4.1. Metrics and Peer Methods

We evaluate the matching accuracy between two given

graphs. In the evaluation period, two graphs are given with

same number of nodes N . Each node in one graph is labeled

to another node in the other graph. The model predicts a

correspondence between two graphs. Such correspondence

is represented by a permutation matrix.

The matching accuracy is computed from the permuta-

tion matrix, by the number of correctly matched keypoint

pairs averaged by the total number of keypoint pairs. For

a predicted permutation matrix S
pred ∈ {0, 1}N×N and a

ground truth permutation S
gt ∈ {0, 1}N×N , matching ac-

curacy is computed by

acc =
∑

AND(Spred
i,j ,Sgt

i,j)/N (20)

where AND is the logical function.

The evaluation involves the following peer methods:

GMN. Graph Matching Network (GMN) is the seminal

model proposed in [45]. GMN adopts VGG16 [36] network

to extract image features. First-order and second-order

features are extracted from shallower layer (relu4 2) and

deeper layer (relu5 1) of VGG16, respectively. GMN mod-

els graph matching affinity via an unlearnable graph match-

ing solver namely spectral matching (SM) [22]. This model

is class-agnostic, meaning it learns an universal model for

all instance classes. Two graphs are constructed by De-

launay triangulation and fully-connected topology, respec-

tively. GMN is the first end-to-end deep learning method for

graph matching. Note the major difference is that the loss

function is an offset based loss by Eq. (19). We follow [45]

and re-implement GMN with PyTorch as the source code is

not publicly available.

HARG-SSVM. This is the structured SVM based learn-

ing graph matching method [6], as a baseline of learning

graph matching without deep learning. HARG-SSVM is a

class-specific method, where graph models are learned for

each class. We use the source code released by the authors

upon their approval. The original setting in [6] assumes

that the keypoints of the object to be matched is unknown,

and the keypoint candidates are proposed by Hessian detec-

tor [27]. In our setting, however, all candidate keypoints

are known to the model. Therefore, we slightly modify the

original code. From all candidate points found by the Hes-

sian detector, we assign the nearest neighbor from ground

truth point as matching candidate. This practice is originally

taken in the training process of HARG-SSVM. Graphs are

created with hand-crafted edge features named HARG.

PIA-GM/PCA-GM. Our methods adopt VGG16 [36]

as backbone CNN, and extract features from relu4 2 and
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Table 2. Accuracy (%) on Pascal VOC Keypoint. Note after replacing the offset loss by permutation loss, GMN-PL outperforms GMN [45]

almost in all categories. While our method PIA-GM’s performance degenerates when its permutation loss is changed to offset loss.

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

GMN 31.9 47.2 51.9 40.8 68.7 72.2 53.6 52.8 34.6 48.6 72.3 47.7 54.8 51.0 38.6 75.1 49.5 45.0 83.0 86.3 55.3

GMN-PL 31.1 46.2 58.2 45.9 70.6 76.4 61.2 61.7 35.5 53.7 58.9 57.5 56.9 49.3 34.1 77.5 57.1 53.6 83.2 88.6 57.9

PIA-GM-OL 39.7 57.7 58.6 47.2 74.0 74.5 62.1 66.6 33.6 61.7 65.4 58.0 67.1 58.9 41.9 77.7 64.7 50.5 81.8 89.9 61.6

PIA-GM 41.5 55.8 60.9 51.9 75.0 75.8 59.6 65.2 33.3 65.9 62.8 62.7 67.7 62.1 42.9 80.2 64.3 59.5 82.7 90.1 63.0

PCA-GM 40.9 55.0 65.8 47.9 76.9 77.9 63.5 67.4 33.7 65.5 63.6 61.3 68.9 62.8 44.9 77.5 67.4 57.5 86.7 90.9 63.8
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Figure 3. Synthetic test with noise on feature vectors of node and

edge, and keypoint numbers on methods with different affinity

models and losses. Default: Kpt = 20, σfeat = 1.5, σcoo = 10.

relu5 1 for fair comparison with [45]. These two feature

vectors are concatenated to fusion both local and global

features. In PIA-GM, affinity is modeled by a 3 intra-

embedding layers while in PCA-GM it is a stack of 1 in-

tra layer, 1 cross layer and 1 intra layer, both followed by

affinity mapping in Eq. (13). Each GNN layer has a feature

dimension of 2048. Permutation loss in Eq. (17) is used. In-

put graphs are both constructed by Delaunay triangulation

and we empirically set τ = 0.005 in Eq. (13). Our models

are implemented by PyTorch.

GMN-PL & PIA/PCA-GM-OL. GMN-PL and

PIA/PCA-GM-OL are variants from GMN [45] and our

proposed PIA/PCA-GM, respectively. GMN-PL changes

the offset loss in GMN to permutation loss, with all

other configurations unchanged. While PIA/PCA-GM-OL

switch the permutation loss to offset loss, leaving all other

components unchanged.

For natural image experiments, we draw two images

from the dataset, and build two graphs containing the same

number of nodes. The graph structure is agnostic, and is

constructed according to methods’ configurations (see dis-

cussions above). The CNN weight is initialized by a pre-

trained model on ImageNet [8] classification dataset.

4.2. Synthetic Graphs

Evaluation is first performed on synthetic graphs gener-

ated in line with the protocol in [7]. Ground truth graphs

are generated with a given number of keypoints Kpt, each

with a 1024-dimensional (512 for nodes and 512 for edges)

random feature in U(−1, 1) (simulating CNN features),

and a random 2d-coordinate in U(0, 256). During train-

ing and testing, we draw disturbed graphs, with Gaussian

noise N (0, σ2
feat) added to features, and keypoint coordi-

Table 3. Accuracy (%) on Willow ObjectClass. GMN-VOC means

model trained on Pascal VOC Keypoint, likewise for Willow.

method face m-bike car duck w-bottle

HARG-SSVM [6] 91.2 44.4 58.4 55.2 66.6

GMN-VOC [45] 98.1 65.0 72.9 74.3 70.5

GMN-Willow [45] 99.3 71.4 74.3 82.8 76.7

PCA-GM-VOC 100.0 69.8 78.6 82.4 95.1

PCA-GM-Willow 100.0 76.7 84.0 93.5 96.9

nates blurred by a random affine transform, plus another

random noise of N (0, σ2
coo). Note that there is no CNN

feature extractor adopted, only graph modeling approaches

and loss metrics are compared. The matching accuracy of

PCA-GM, PCA-GM-OL, GMN-PL, GMN and unlearning

SM is evaluated with respect to Kpt and σfeat. For each

trial, 10 different graphs are generated and accuracy is av-

eraged. Experimental results in Fig. 3 show the robustness

of PCA-GM against feature deformation and complicated

graph structure.

4.3. Pascal VOC Keypoints

We perform experiments on Pascal VOC dataset [11]

with Berkeley annotations of keypoints [2]. It contains

20 classes of instances with labeled keypoint locations.

Following the practice of peer methods [45], the original

dataset is filtered to 7,020 annotated images for training

and 1,682 for testing. All instances are cropped around its

bounding box and resized to 256×256, before passed to the

network. Pascal VOC Keypoint is a difficult dataset because

instances may vary from its scale, pose and illumination,

and the number of inliers ranges from 6 to 23.

We test on Pascal VOC Keypoint [2] and evaluate on 20

Pascal categories. We compare GMN, GMN-PL, PIA-GM-

OL, PIA-GM, PCA-GM and give detailed experimental re-

sults in Tab. 2. Our proposed models PIA-GM-OL, PIA-

GM, PCA-GM outperform in most categories, including the

mean accuracy over 20 categories. Our implementation of

PCA-GM runs at ∼ 18 pairs per second in training, on dual

RTX2080Ti GPUs. The result shows the superiority of the

linear assignment loss over offset loss in training, embed-

ding and Sinkhorn over fixed SM [22] in affinity modeling,

and cross-graph embedding over intra-graph embedding.

4.4. Willow ObjectClass

Willow ObjectClass dataset is collected by [6] for real

images. This dataset consists of 5 categories from Caltech-
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Figure 4. Confusion matrix of eight categories of objects from Pascal VOC Keypoint. Models are trained on categories on the y-axis, and

testing results are given on categories on the x-axis. Note that accuracy does not degenerate much for PCA-GM between similar categories

(such as cat and dog). Numbers in matrices are the corresponding accuracy and the color map stands for accuracy normalized by the

highest accuracy on this category in current matrix. Note that the color filled in cells does not denote the absolute value of accuracy among

different categories and matrices. Accuracy for elements in diagonal and overall for each confusion matrix are shown in bracket on the top

of each matrix. We follow the train/test split provided by the benchmark for each category.

Table 4. Ablation study on proposed components on Pascal VOC

Keypoint. Tick denotes the learning is activated for the column.

For VGG16 feature it means it is fine-tuned using the graph match-

ing training data, otherwise the pretrained VGG16 via ImageNet.

VGG16 intra-graph cross-graph affinity
accuracy

feature embedding embedding metric

X X X X 63.8

X X X × 63.6

X X × × 62.1

X × × × 54.8

× × × × 41.9

256 (face, duck and wine bottle) and Pascal VOC 2007 (car

and motorbike), each with at least 40 images. Images are

resized to 256 × 256 if it is passed to CNN. This dataset

is considered easier than Pascal VOC Keypoint, because all

images inside the same category are aligned in their pose,

and it lacks scale, background and illumination changes.

We follow the protocol built by authors of [6] for fair

evaluation. HARG-SSVM is trained and evaluated on this

willow dataset. For other competing methods, we initial-

ize their weights on Pascal VOC Keypoint dataset, with all

VOC 2007 car and motorbike images removed. They are

denoted as GMN-VOC and PCA-GM-VOC. They are later

finetuned on the willow dataset as GMN-Willow and PCA-

GM-Willow, reaching even higher result in evaluation. Note

that HARG-SSVM is a class-specific model, but GMN and

PCA-GM are both class-agnostic. Tab. 3 shows our pro-

posed PCA-GM almost surpasses all competing methods in

all categories of Willow Object Calss dataset.

4.5. Further Study

PCA-GM components. Ablation study with differ-

ent PCA-GM components trained/untrained is reported in

Tab. 4. It shows the usefulness of all our components.

VGG16 is initialized with pretrained weights on ImageNet,

embedding layers are randomly initialized, and the weight

of affinity metric is initialized by identity matrix plus ran-

Table 5. Accuracy (%) by number of iterations for a more complex

cross-graph affinity component design on Pascal VOC Keypoint,

which has negative effect on accuracy (PIA-GM achieves 63.0%).

# of iters 1 2 3 4 5 6 7 Alg. 1

PCA-GM accuracy 63.1 61.3 60.9 54.7 45.9 46.7 46.2 63.8

dom noise.

Cross-graph component design. Our cross-graph affin-

ity component is relatively simple. In fact we also ex-

plore a more complex design of cross-graph module, where

the matrix Ŝ is updated by iterative prediction, rather than

predicted from shallower embedding layer as PCA-GM in

Alg. 1. In this alternative design, Ŝ(0) is initialized as zero

matrix, and we iteratively predict Ŝ(k) from Ŝ
(k−1), which

is passed to the cross-graph component. Result in Tab. 5

reveals that PCA-GM’s performance will degrade as Ŝ is it-

eratively predicted, and we further find the training is not

stable by this iterative design hence we stick to the simple

design in Alg. 1. Details on this alternative design is given

in supplementary materials.

Confusion matrix. To testify the generalization behav-

ior of our model, we train PCA-GM, PCA-GM-OL, GMN-

PL, GMN on eight categories in Pascal VOC Keypoint and

report testing result on each category as shown in Fig. 4,

where result is plotted via confusion matrix (y-axis for

training and x-axis for testing). It shows that embedding

adopted in PCA-GM works well, and the permutation loss

offers better supervision than the offset one.

5. Conclusion

This paper has presented a novel deep learning frame-

work for graph matching, which parameterizes the graph

affinity with deep networks and the learning objective in-

volves a permutation loss to account for the arbitrary trans-

formation between two graphs. Extensive experimental re-

sults including an ablation study on the presented compo-

nents and the comparison with peer methods show the state-

of-the-art performance of our method.
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