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Abstract

A key challenge of infrared small object segmentation

(ISOS) is to balance miss detection (MD) and false alarm

(FA). This usually needs “opposite” strategies to suppress

the two terms and has not been well resolved in the litera-

ture. In this paper, we propose a deep adversarial learning

framework to improve this situation. Departing from the

tradition of relying on a single objective to jointly reduce

both MD and FA, we decompose this difficult task into two

sub-tasks handled by two models trained adversarially, with

each focusing on reducing either MD or FA. Such a new de-

sign brings forth at least three advantages. First, as each

model focuses on a relatively simpler sub-task, the overall

difficulty of ISOS is somehow decreased. Second, the adver-

sarial training of the two models naturally produces a deli-

cate balance of MD and FA, and low rates for both MD and

FA could be achieved at Nash equilibrium. Third, this MD-

FA detachment gives us more flexibility to develop specific

models dedicated to each sub-task. To realize the above de-

sign, we propose a conditional Generative Adversarial Net-

work comprising of two generators and one discriminator.

Each generator strives for one sub-task, while the discrim-

inator differentiates the three segmentation results from the

two generators and the ground truth. Moreover, in order to

better serve the sub-tasks, the two generators, based on con-

text aggregation networks, utilize different size of receptive

fields, providing both local and global views of objects for

segmentation. As verified on multiple infrared image data

sets, our method consistently achieves better segmentation

than many state-of-the-art ISOS methods.

1. Introduction

Segmenting small objects or targets in infrared images

is an important computer vision task. It plays a funda-

mental role in many practical applications such as defect

inspection [22, 26], organ segmentation [24], cell count-

∗Lei Wang is the corresponding author.(leiw@uow.edu.au)

Figure 1. Illustration of ISOS examples with the objects or targets

indicated by the red bounding boxes. A close-up is displayed at the

bottom right corner of each example. Left: a cat whose silhouette

is recognizable in a backyard background; Middle: a car which is

hard to tell in a mountain scene; Right: a dim target in the size of

three pixels submerged in a cloud background.

ing [1], maritime surveillance [25] and early warning sys-

tems [9, 13], to name but a few. With respect to common-

place object segmentation, infrared small object segmenta-

tion (ISOS) has its special characteristics (see some exam-

ples in Fig. 1). First, due to either their sizes or the long

distances from infrared sensors, the objects usually appear

to be very small in infrared images, with the extreme case

of one pixel only. Second, the infrared radiation energy de-

cays markedly over distances, making the objects appear to

be extremely dim. Consequently, they are easily submerged

in background clutters and sensor noises. Third, different

from dense small object instance segmentation [18, 15, 2],

the objects in ISOS are usually very sparse, e.g., containing

a single instance only. This leads to a severe imbalance be-

tween the object area and the background area. These three

factors significantly complicate ISOS.

For many infrared image related applications, high qual-

ity segmentation is essential for the precise measurement,

localization and recognition tasks in the sequel. The seg-

mentation errors in ISOS boil down to miss detection (MD

in short, i.e., the pixels of an object are wrongly segmented

into the background) and false alarm (FA in short, i.e., the

pixels of the background are wrongly segmented into the

object). An optimal segmentation should minimize both

MD and FA. However, reducing MD and FA usually in-

volves “opposite” strategies, e.g., the former prefers a low

threshold while the latter prefers a high one on the confi-

dence maps used in many ISOS methods [12, 29, 4] and
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they are difficult to balance. Conventional signal process-

ing based ISOS methods apply an adaptive threshold on ob-

jects’ confidence maps to balance MD and FA. These meth-

ods do not involve any feature learning and cannot effec-

tively handle the complexity in real scenarios. Recently,

deep learning based methods have been developed for small

object segmentation [15, 18, 28]. Considering the special

characteristics of that task, they remove the common CNN

network components that are not suitable and design special

structures to cater for small object segmentation. However,

the scenarios addressed by these methods are still signifi-

cantly different from the ISOS task focused in this paper,

e.g, the work on remote sensing imagery [15] is proposed

for dense small object segmentation. More importantly, all

of these deep learning methods crucially rely on a single ob-

jective to minimize the overall segmentation error, instead

of separating MD and FA as in our work. Given the compli-

cated nature of the ISOS task, these methods still perform

less satisfactorily, as demonstrated in the experiment later.

This work is motivated by the following thought that we

gain from ISOS tasks. Due to the small size of the objects to

segment and their sparsity in an infrared image, producing

high quality segmentation requires a delicate balance of MD

and FA. However, such a balance may not be sufficiently

achieved by merely applying a threshold or solely employ-

ing a loss function in the form of a weighted linear com-

bination of MD and FA. Inspired by the recent success of

adversarial learning, we realize that a better approach may

be to let the two “opposite” tasks, minimizing MD and min-

imizing FA, compete with each other, with the expectation

that the delicate balance could naturally arise when such a

competition achieves its stable state.

Following the above idea, we propose a deep adversarial

learning framework to improve the performance of ISOS.

In this framework, an ISOS task is decomposed into two

sub-tasks, i.e., minimizing MD and minimizing FA. Two

deep neural networks are constructed to focus on each of

the two tasks, respectively. The two networks play the role

of generator and each outputs a segmentation result. To

make the two segmentation results align with the ground

truth segmentation result, a discriminator network is con-

structed to classify the above three results. In this way,

the two generators work in an interesting “competitive and

cooperative” manner. By competition, they strive to maxi-

mally segment the pixels into the objects or the background,

respectively. By cooperation, they negotiate (i.e., balance)

with each other to both converge towards the ground truth

segmentation in order to fool the discriminator. Given a test

image, the output of either generator (or their average) will

be the segmentation result. The whole framework can be

readily implemented by expanding a conditional Generative

Adversarial Network, as illustrated in Fig. 2.

The contributions of this paper can be summarized as

follows. First, we propose a novel framework for infrared

small object segmentation, by employing the adversarial

learning paradigm. It removes the burden of explicitly bal-

ancing MD and FA and can achieve a delicate balance in

an implicit and natural manner; Second, taking advantage

of the separability of MD and FA minimization, an ISOS

task is decomposed to two individual and simpler sub-tasks.

Compared with the existing methods that use a single net-

work for segmentation, our approach could reduce the over-

all difficulty of model and network design. Third, an im-

mediate advantage resulted from the above separation is the

extra flexibility to develop the model that best suits a sub-

task, and this has been demonstrated in our work as follows.

We find that in ISOS, the segmentation of objects prefers lo-

cal visual information, while the suppression of false alarm

benefits from global visual information. To meet this re-

quirement, we utilize different size of receptive fields in

the two generators, via context aggregation networks [15].

Without the separation of the two sub-tasks, implement-

ing this special setting could be awkward if not impossible.

Last, we compare our method with relevant state-of-the-art

small object segmentation methods on multiple infrared im-

age datasets. The results well demonstrate the superiority of

the proposed method and its interesting properties.

2. Related Work

2.1. Generic Small Object Segmentation

Recently, deep network models have been successfully

applied to semantic segmentation, e.g., the Fully Convolu-

tional Network (FCN) [21] and its numerous variants that

dominate the literature. Unfortunately, directly applying

generic FCN models to ISOS will not work effectively be-

cause they do not sufficiently consider the special charac-

teristics of small objects in that task. For example, con-

secutive max-pooling may suppress or even eliminate the

important features of small objects [15]. Also, due to

the considerable disproportion between the object area and

the background area, these models could be easily con-

fused by the background regions containing complicated

content [28]. To resolve these issues, some deep learning

models have been proposed to adapt FCN to small object

segmentation (but not to ISOS though). For example, the

Front-end-module [15] (denoted as Front) replaces the max-

pooling layers with dilated convolutional layers for large

receptive fields; the recurrent saliency transformation net-

work [28] (denoted as FCN-RSTN) adopts a multi-stage

strategy for coarse-to-fine small organ segmentation; and

the FCN in [18] (denoted as FCN-MFB) weighs its loss

function with median frequency to balance small classes.

These models work well for their targeted scenarios, e.g.,

Front and FCN-MFB for dense small object segmentation in

remote sensing images, and FCN-RSTN for CT organ seg-
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mentation with relatively fixed locations. However, those

scenarios are still significantly different from ISOS where

the objects to segment are tiny, dim and sparse with un-

predictable locations. Moreover, all of the above models

attempt to minimize the overall segmentation errors by re-

lying on a single objective. As we have argued previously,

achieving this in ISOS tasks could be awkward due to their

more complicated nature.

2.2. Infrared small object segmentation (ISOS)

For infrared images, many ISOS methods in the

literature are rooted in detection frameworks using a

segmentation-before-detection strategy, and most of them

are based on traditional image processing techniques. A

common pipeline is to apply image filtering [12, 29, 3],

contrast and saliency detection [4, 9, 11] or low-rank re-

covery [13, 8, 7] to suppress the background and enhance

the objects to obtain a confidence map. After that, an adap-

tive thresholding is conducted on this map to segment the

objects out. These methods perform well for relatively sim-

ple backgrounds, but tend to fail for complex ones, since

they do not involve any feature learning and therefore are

not capable enough to handle varied real scenarios.

Sporadically, learning-based methods [20, 6] are also

used for ISOS. The work in [20] densely samples regions

using a sliding window and classifies the region centroids

into background or object. It uses a CNN model with the

features extracted from the region proposals for segmenta-

tion. The work in [6] uses a two-stage strategy, where object

regions are proposed in the first stage and verified in the

second stage via an SVM classifier. The relatively simple

learning strategies used in these methods are not sufficient

to handle the real complexity in ISOS and they only produce

mediocre performance, as shown in our experiment later.

2.3. Conditional GAN

Our model utilizes the conditional Generative Adversar-

ial Network (GAN). GAN [14] has recently achieved great

success in numerous visual recognition tasks [23]. Briefly,

different from common deep models, a basic GAN model

consists of two players: a generator G and a discrimina-

tor D. These two players compete in a zero-sum game, in

which G aims to produce a realistic image given an input

random vector, while D attempts to distinguish the fake im-

ages generated by G from the real ones. Such an adversarial

competition progressively boosts the performance of both

G and D, until a Nash equilibrium is reached. Conditional

GAN (cGAN) [17] extends GAN by introducing an addi-

tional conditional variable to both G and D. For example,

in many visual tasks, this conditional variable usually cor-

responds to an original input image as the reference. GANs

have also been used for image segmentation [17], where the

generator attempts to produce segmentation labels close to

the ground truth as much as possible to fool the discrimi-

nator. Our work utilizes the basic cGAN framework, but

makes substantial changes to accommodate the proposed

separation of MD and FA minimization tasks.

3. The proposed model

This section begins with an overview of the proposed

model. After that, the loss functions for the generators, dis-

criminator, and adversarial learning are presented. Follow-

ing that, we describe how each generator is individually de-

signed to better handle the characteristics of ISOS, with the

key implementation details provided.

3.1. Model overview

As illustrated in Fig. 2, the proposed model consists

of generator and discriminator components as in cGAN.

However, different from cGAN, it has two generators, G1

and G2, and one discriminator D. Each of the generators

maps an input image I to another image S showing the

segmentation result, subject to the minimization of MD or

FA. Formally, this can be represented as G1(I) → S1 and

G2(I) → S2, where S1 and S2 denote the segmentation re-

sults. To carry out adversarial learning, the discriminator is

designed to distinguish three segmentation results, i.e. S1,

S2 and S0, where S0 denotes the ground truth segmentation

(“1” for objects and “0” for the background).

Intuitively, we could individually train the two generator

networks and then fuse their segmentation results after they

are well trained. For example, this strategy has been seen in

the literature when addressing shadow segmentation [23].

However, this fusion-after-training strategy blocks the shar-

ing of information between the training of the two genera-

tors, and this will result in inferior segmentation. This issue

is well avoided in the proposed model, which jointly trains

the two generators via the cGAN framework. Specifically,

it leverages the discriminator D as a medium to connect G1

and G2, so that information can flow between them. This

information exchange could in turn boost the ability of G1

(originally designed for minimizing MD) in reducing FA,

and boost the ability of G2 (originally designed for mini-

mizing FA) in reducing MD. Furthermore, both generators

receive strong supervision signals from D, as the adversar-

ial mechanism forces them to converge towards the ground

truth in order to fool D. Through this process, the two gen-

erators will end up with producing consistent segmentation

and becoming highly similar to the ground truth. Fig. 3

gives an example of the output evolution of G1 and G2.

After training the whole model, either generator can be

applied to a test image to produce segmentation result, since

the two generators have been trained to converge through

the adversarial learning process. In practice, for the sake of

robustness, we apply both generators and use the average of

their outputs as the final segmentation result.
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Figure 2. System overview and network architectures. On the left are the two generators. The generator one (i.e., G1) is illustrated in

the red box, while the generator two (i.e., G2) is shown in the green one. On the right is the discriminator plotted in the orange box.

Layers are indexed in red numbers. For the generators, the black number within each layer is the dilation factor used by that layer. For the

discriminator, the width, height and channel number of feature maps in each layer are given besides that layer.

Figure 3. The output evolution of G1 and G2 during a training

process. The top left shows an input image and its corresponding

ground truth. The bottom left shows the loss curves of G1 and

G2. The right shows the outputs of G1 and G2 at three different

epochs.

3.2. Loss formulation in the proposed model

The objective of the proposed model consists of three

parts: the adversarial loss, a generator consistency loss, and

a data loss treating MD and FA1, described as follows.

Adversarial loss. Different from the one in the common

cGAN, this loss now consists of three terms due to the use

of two generators. It can be expressed as

LcGAN(G,D) = EI,S0
[logD(I,S0)] (1)

+ EI [log(1−D(I, G1(I)))]

+ EI [log(1−D(I, G2(I)))] ,

where the last two terms correspond to two generators. Min-

imizing this objective with respect to the network weights

1As will be clarified shortly, different from the existing methods that

significantly reply on a single objective jointly considering MD and FA,

this data loss only plays an auxiliary role in training the proposed frame-

work.

of G1 and G2 encourages their outputs (i.e., S1 and S2 pre-

viously defined) to become similar as the ground truth S0.

Maximizing it with respect to the network weights of D en-

hances its discrimination in the three segmentation results.

Generator consistency loss. The above adversarial loss

forces S1 and S2 to approach S0. However, this is insuffi-

cient. As we observe, S1 and S2 could move towards S0 in

their own ways. As a result, their discrepancy could still re-

main significant after training. This cannot effectively force

them to compete on every pixel to strike a balance between

MD and FA. To address this issue, we impose an extra con-

tent consistency loss to bind the two generators tighter (i.e.,

enhance the information flow between them). This loss is

defined as the L2 norm of the difference between the con-

volutional feature maps in the discriminator D with respect

to the input pairs (I,S1) and (I,S2) as

LGC(G,D) =
1

w · h · d
‖φ(I,S1)− φ(I,S2)‖

2

2 (2)

where φ(·) denotes the corresponding feature mapping, and

w, h and d are the three dimensions of the convolutional

feature maps.

Data loss. In image-to-image conditional GAN [17], an

L1 or L2 loss is commonly used to indicate the difference

between the prediction and the ground truth. However, sim-

ply using an L1 or L2 loss only accounts for pixel-level dis-

crepancy, while ignoring the measurement of MD or FA. To

handle this, we instead define the data loss as follows. The

losses for two generators G1 and G2 are, respectively,

LMF1(G1, D) =
1

n

n∑

i=1

(λ1MD1i + FA1i) (3)

LMF2(G2, D) =
1

n

n∑

i=1

(MD2i + λ2FA2i),
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where MD1i and FA1i are the miss detection and false

alarm rates computed based on S1 (i.e., the segmentation

result produced by G1) for the i-th image in the training set

containing n images. Similarly, MD2i and FA2i are com-

puted based on S2.2 λ1 and λ2 are the parameters to weigh

MD and FA, so that G1 focuses on MD and G2 focuses on

FA. The final data loss is

LMF (G1, G2, D) = LMF1(G1, D)+LMF2(G2, D). (4)

It is worth clarifying that this data loss does not contra-

dict our previous claim that the proposed model does not

crucially reply on a single objective to balance MD and FA.

We highlight that regularizing MD with a small FA term in

G1 (or vice versa in G2) is to achieve a good initialization

for training. It helps the two generators quickly enter their

roles and speed up the convergence of training process. The

proposed method is insensitive to the specific values of λ1

and λ2, and they can vary in a relatively large range, as

demonstrated in our experiment. This is significantly dif-

ferent from the traditional use of this kind of loss in the

literature, in which how to set λ1 and λ2 has a direct and

substantial impact on the segmentation performance.

Now, the complete objective of our proposed model is

(G∗

1, G
∗

2, D
∗) = arg min

G1,G2

max
D

(LGC + α1LMF + α2LcGAN) ,

(5)

where α1 and α2 are the algorithmic coefficients. The set-

ting will be provided in the experimental part.

3.3. Network Architecture

Since the reductions of MD and FA are conducted by

different generators in our model, they can enjoy different

network architectures or parameters that better suit the spe-

cific objective. As observed, the detection of small objects

may prefer local receptive fields to preserve the footprints of

the objects, while the suppression of FA seems to need the

context clues provided by more global receptive fields. In

our model we build our generators using Context Aggrega-

tion Network (CAN)[5] and assign different receptive fields

to different generator.

Specifically, as shown in Fig. 2, to form the backbone of

G1 or G2, we concatenate two CANs back to back, where

the first one has an exponentially (i.e., at the power of 2)

increasing dilation factor from 1 to the maximum MDF and

the second one has an exponentially (i.e., at the power of 2)

decreasing dilation factor from MDF to 1. The generator

G1 prefers local receptive fields to reduce MD and thus sets

MDF = 8, while the generator G2 prefers global receptive

fields to suppress FA and thus sets MDF = 64. The total

2The calculation of MD and FA is simple. Given a binary segmentation

result S and the ground truth S0, MD = ‖(S−S0)⊗S0)‖22 and FA =
‖(S − S0) ⊗ (1 − S0)‖22, where the L2 norm is matrix-based and the

operator ⊗ denotes the element-wise multiplication.

receptive field is 31 × 31 for G1 and 257 × 257 for G2.

Compared with G1, in addition to having more layers, G2

also uses skip connections to connect layers with the same

dilation factors to mitigate the gradient vanishing problem

when the model goes deeper.

The discriminator is a CNN network for classification.

It consists of two max-pooling layers (Layers 1 and 2) to

downsample the input images, four layers (Layers 3 ∼ 6) of

network modules consisting of conv-layer + BN (batch nor-

malisation) + leaky-ReLU activation, two fully connected

layers (Layers 7 and 8) and the output layer with softmax

activation to classify the source of the input images (either

from G1, G2 or the ground truth). The size of feature maps

for each layer is given in Fig. 2.

4. Experimental Result

This experiment will compare the proposed method with

the related state-of-the-art small object detection methods

and ISOS methods. Also, it will conduct ablation study to

clearly show its advantage and appealing properties.

4.1. Datasets

Lacking public benchmark datasets for ISOS tasks, we

collect real infrared images and generate synthetic ones to

validate the proposed model. The real infrared images come

from two bespoke datasets containing small objects, de-

noted as “AllSeqs” and “Single”, respectively. The dataset

“AllSeqs” contains 11 real infrared sequences with 2098

frames in total, and the dataset “Single” contains 100 real

individual infrared images with different small objects. The

detailed description about the real infrared image datasets

is given in Table 1, and example images are given in Fig. 4.

In addition, to augment the datasets, synthetic infrared im-

ages with small objects are generated. For this purpose, we

collect infrared high-resolution natural scene images from

the Internet and crop different regions from these images to

form different backgrounds; then small target objects either

separated from the real infrared images or synthesised using

the two dimensional Gaussian function in [20] are overlaid

on the attained backgrounds to form new images. Detailed

procedure to produce the synthetic dataset is given in the

supplement material. Both the real and synthetic datasets

used in this experiment will be released for public use.

Our experiment is conducted under two training-test

configurations. In Configuration I, the “Single” data set is

used as the test set, while the “AllSeqs” dataset and the syn-

thetic images are used as the training set. In Configura-

tion II, the “AllSeqs” dataset is used as the test set , while

the “Single” dataset and the synthetic images are used as

the training set. Note that under either configuration, the

backgrounds in the test images are not seen in the training

images, increasing the difficulty of the tasks and ensuring

an accurate evaluation of generalization capability of each
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method. To increase the number of the training samples, we

randomly sample 128 × 128 images patches from the orig-

inal images as our input, which adds up to 10, 000 patches

for training under each configuration.

(a)

(b)

(c)

Figure 4. Representative real images from (a) ”Allseqs” and (b)

”Single”, and (c) synthesised images used for model training.

Small objects to segment are indicated by red circles.

Table 1. Datasets: No. 1∼11 are the eleven sequences in “AllSeqs”

dataset, and No. 12 is the single frame image dataset “Single”.

No. Name Size Frames/images

1 Cannonball 352× 288 30

2 Car 344× 256 116

3 Plane 320× 240 298

4 Bird 640× 480 232

5 Cat 216× 256 292

6 Rockets 320× 240 242

7 Drone 384× 288 396

8 Target1 480× 360 361

9 Target2 256× 200 30

10 Target3 352× 240 50

11 Target4 384× 288 51

12 Single-frame

image set

Min:173 × 98,

Max:407×305

100

4.2. Experimental Settings

The experiment is conducted on a computer with

2.50GHz CPU, 8GB RAM and GeForce GTX 1080ti GPU.

Our model is implemented by Python and Tensorflow. We

use Adam algorithm for optimization. Key parameters are

empirically set as α1 = 100, α2 = 10, and they are uni-

formly applied to all experiments. The mini-batch size is

set to be 10. The learning rate is set to be 10−4 for the

two generators and 10−5 for the discriminator. The weights

of the generators are initialized using the identity initializa-

tion technique [5], while the weights of the discriminator

is initialized by following the literature [16]. All models

are trained from the scratch, and the whole training process

terminates in 30,000 iterations, which equals 30 epochs.

4.3. Methods in comparison

This experiment compares the proposed model (denoted

as MDvsFA-cGAN) with two groups of related methods:

generic small object segmentation and the ISOS methods.

The state-of-the-art generic small object segmentation

methods are based on deep learning, and they are not origi-

nally designed to solve ISOS problems. We choose the most

related models for our comparison, including the methods

of Front [15] and FCN-MFB [18] originally for remote

sensing, and FCN-RSTN[28] for small organs in CT scans.

Although scGAN [23] is designed for shadow segmenta-

tion, it is also included in the comparison because it pro-

vides a fusion strategy to integrate different sensitivity pa-

rameters in a single loss function of the generator, which is

also related to our task. Moreover, as our model is trained

with the cGAN framework, it is also compared with the

well-known pix2pix-cGAN [17] model for segmentation.

For the ISOS methods, we compare our model with 14

methods, covering the state-of-the-art ones in this field.

These methods can be categorized into four groups, in-

cluding i) background suppression methods (Max-Median

[12], Top-hat [29] and DSVT [27]); ii) contrast and saliency

based methods (LCM [4], WLDM [9], PatchSim [3],

MSLH [11], LDM [10] and MFMM [11]); iii) decompo-

sition based methods (CLSDM [19], IPI [13], NIPPS [8]

and RIPT [7]); and iv) learning based method FCnet [20].

4.4. Evaluation Metrics

The common metric to evaluate the (binary) segmenta-

tion result by considering the balance of MD and FA is the

F-measure. It is the harmonic mean of Precision and Recall.

This measure is used in our experiment. In addition, Preci-

sion and Recall are also displayed. It is worth highlight-

ing that merely achieving high Precision or Recall does not

necessarily indicate a good method. F-measure shall be the

primary evaluation metric to compare the methods.

For those small object segmentation methods compared

in Table 2, when their outputs are not strictly binary, a

threshold of 0.5 will be applied for binarization before the

above metrics are computed. For the ISOS methods com-

pared in Table 3, they usually produce a gray-scale confi-

dence map as output and then apply a threshold to localise

objects in the map. F-measure, Precision and Recall are

computed based on the binarized confidence map obtained

by using the thresholding method suggested by the authors

of those methods.

To give a more comprehensive evaluation, for the ISOS

methods, the quality of their confidence map without

thresholding is also measured. This is achieved via the ROC

curve to evaluate their performance of localizing the objects

or targets. Specifically, following the literature, two met-

rics, i.e., area under ROC curve (AUC) [10] and the detec-

tion probability (Pd) within a fixed false-alarm ([13]), are

employed for this purpose.
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4.5. Results and Discussion

4.5.1 Comparison with generic small object segmenta-

tion methods

In Table 2, the segmentation results from the proposed

MDvsFA-cGAN and multiple deep learning models for

small object segmentation are compared. As can be seen,

on both the “AllSeqs” and “Single” datasets, our method

achieves the highest F-measure on both datasets. This indi-

cates its best balance to suppress the missed detection and

the false alarms at the pixel-level. On top of this result, our

method also achieves the highest precision with reasonably

good recall. These are in contrast to the cases of some ex-

isting methods in comparison. For example, Front[15] and

FCN-RSTN [28] show the highest recall on “AllSeqs” and

“Single”. However, the precision of Front is very low on

both datasets, making its F-measure much lower than ours.

Also, due to the inferior precision, FCN-RSTN loses to our

method in F-measure on both datasets, and it loses in recall

as well on the “Single” dataset to our method.

Table 2. Compare the proposed method with the generic small ob-

ject segmentation methods. F-measure is the primary evaluation

metric. Prec and Rec are for “precision” and “recall”, respectively.

Dataset Method Prec Rec F-measure

Front[15] 0.01 0.45 0.01

FCN-RSTN[28] 0.13 0.74 0.22

AllSeqs FCN-MFB[18] 0.09 0.66 0.15

scGAN[23] 0.14 0.27 0.19

pix2pix-cGAN[17] 0.01 0.02 0.01

MDvsFA-cGAN (ours) 0.17 0.60 0.27

Front[15] 0.10 0.89 0.18

FCN-RSTN[28] 0.54 0.39 0.45

Single FCN-MFB[18] 0.38 0.61 0.47

scGAN[23] 0.47 0.55 0.50

pix2pix-cGAN[17] 0.26 0.22 0.23

MDvsFA-cGAN (ours) 0.66 0.54 0.60

4.5.2 Comparison with state-of-the-art ISOS methods

The comparison between the proposed MDvsFA-cGAN

method and the state-of-the-art ISOS methods is reported in

Table 3. In this experiment, we evaluate the performance at

both the pixel-level (by F-measure, Precision and Recall for

binary segmentation) and the object/target-level (by AUC

and Pd for object detection).

Again, for segmentation, our MDvsFA-cGAN consis-

tently achieves the best balance between the pixel-level

missed detection and false alarms, as indicated by its high-

est F-measure obtained on both datasets. Also, it achieves

the highest precision and recall on “AllSeqs” and the highest

precision on “Single.” Meanwhile, the proposed MDvsFA-

cGAN demonstrates promising performance for small ob-

ject/target detection. It outperforms all the existing ISOS

methods in comparison in terms of both AUC and Pd.

Specifically, it seems to better deal with background in-

terference that affects the background filtering-based meth-

ods such as TopHat [29] and Max-median [12]. It learns

to identify targets from complex background with fewer

FAs, showing effectiveness in enhancing the targets com-

pared with the contrast and saliency based methods such as

LCM [4] and WLDM [9]. It demonstrates capability to sup-

press FAs from the rarely seen structures that often degrade

the decomposition based methods such as CLSDM [19], IPI

[13] and NIPPS [7]. Also, it aggregates both global and lo-

cal contexts, superior to FCnet [20] that only learns from

local features to detect targets.

By cross-referencing the results for small object/target

segmentation (i.e., measured by F-measure, Precision and

Recall) and detection (i.e., measured by AUC and Pd) in

this table, it is revealed that although many existing ISOS

methods have relatively good object/target detection perfor-

mance, they indeed could not correctly label the exact pixels

of the object/target. For example, on the “Single” dataset,

MFMM [11] shows excellent target detection performance

but poor target segmentation performance. As a result, it

will not be applicable to the tasks requiring precise mea-

surement, localization and recognition. This reinforces the

necessity to improve small object segmentation in infrared

images, which is the main purpose of this paper.

4.5.3 Ablation Study

In ablation study, we explore the following questions to un-

derstand the contributions of our model components.

Q1) Does the proposed adversarial training between MD

and FA outperform a single model targeting at reducing

both through an integrated objective?

Q2) Whether using different network architectures for each

sub-task contributes to the performance improvement?

Q3) Whether the proposed method is sufficiently insensitive

to the value λ1 and λ2 in the data loss defined in Eq.(4)?

We develop variants of our model to answer the first two

questions. To facilitate expression, for our MDvsFA-cGAN

model, let us denote the architecture of G1 as CAN8 (CAN

model with MDF = 8), and that of G2 as UCAN64 (CAN

model with MDF = 64 and using skip connections). To

answer Q1, we develop two CAN models and two cGAN

models for comparison, all of which optimise MD and FA in

a single combined objective with the combination weight λ

obtained by grid-search. Specifically, the two CAN models

use either CAN8 or UCAN64 architecture and are denoted

as CAN8-plain and UCAN64-plain, respectively. Each of

the two cGAN models is composed of a single genera-

tor and a discriminator, while the generator tries to min-

imise MD and FA simultaneously. Depending on the ar-

chitecture of their generator, the two cGAN models are de-

noted as CAN8-cGAN and UCAN64-cGAN, respectively.
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Table 3. Comparison with the state-of-the-art ISOS methods

AllSeqs Single
Method

Precision Recall F-measure AUC Pd Precision Recall F-measure AUC Pd

Max-median[12] 0.002 0.10 0.004 0.76 0.15 0.04 0.11 0.05 0.44 0.40

Tophat[29] 0.05 0.13 0.07 0.55 0.56 0.01 0.20 0.17 0.41 0.38

DSVT[27] 0.01 0.27 0.01 0.81 0.24 0.17 0.27 0.21 0.64 0.57

CLSDM[19] 0.15 0.25 0.18 0.57 0.57 0.34 0.35 0.34 0.48 0.14

LCM[4] 0.06 0.36 0.11 0.50 0.46 0.12 0.46 0.19 0.67 0.66

WLDM[9] 0.05 0.25 0.08 0.49 0.49 0.36 0.53 0.43 0.86 0.85

IPI[13] 0.13 0.34 0.19 0.64 0.65 0.43 0.60 0.50 0.86 0.87

NIPPS[8] 0.01 0.48 0.02 0.81 0.34 0.10 0.28 0.15 0.17 0.09

PatchSim[3] 0.16 0.34 0.22 0.77 0.77 0.57 0.51 0.54 0.85 0.84

FCnet[20] 0.04 0.40 0.07 0.63 0.10 0.15 0.34 0.21 0.71 0.74

MSLH[11] 0.01 0.19 0.02 0.73 0.17 0.12 0.33 0.17 0.56 0.54

LDM[10] 0.01 0.44 0.02 0.73 0.17 0.34 0.51 0.41 0.89 0.89

MFMM[11] 0.01 0.42 0.02 0.61 0.14 0.32 0.51 0.39 0.91 0.91

MDvsFA-cGAN (ours) 0.17 0.59 0.27 0.84 0.79 0.66 0.54 0.60 0.91 0.92

Table 4. Ablation study. “Prec” and “Rec” are for “precision” and

“recall”, respectively.

Test-set Method Prec. Rec. F-measure

CAN8-plain 0.12 0.65 0.20

UCAN64-plain 0.13 0.46 0.20

CAN8-cGAN 0.12 0.62 0.21

AllSeqs UCAN64-cGAN 0.13 0.60 0.22

CAN8-double 0.10 0.78 0.17

UCAN64-double 0.14 0.38 0.20

MDvsFA-cGAN (ours) 0.17 0.59 0.27

CAN8-plain 0.22 0.57 0.31

UCAN64-plain 0.27 0.70 0.39

CAN8-cGAN 0.26 0.61 0.36

Single UCAN64-cGAN 0.28 0.71 0.40

CAN8-double 0.26 0.69 0.37

UCAN64-double 0.38 0.71 0.50

MDvsFA-cGAN (ours) 0.66 0.54 0.60

To answer Q2, two models, denoted as CAN8-double and

UCAN64-double are built. Each of them is composed of

two generators and one discriminator in the same way as

MDvsFA-cGAN. However, in those two models, the two

generators share the same architecture of either CAN8 or

UCAN64. The comparison results are reported in Table 4.

As can be seen, our model MDvsFA-cGAN outperforms

the models (CAN8-plain, UCAN64-plain, CAN8-cGAN,

and UCAN64-cGAN) that use a single objective to suppress

MD and FA, no matter whether they use CAN or cGAN as

backbones. We attribute this to two probable reasons. First,

using a single network, these models have to deal MD and

FA with the same network design, which however usually

requires “opposite” strategies for suppression. Second, the

dynamic balance between MD and FA in MDvsFA-cGAN

provides a better way to nonlinearly integrate these two ob-

jectives, which is superior to the static linear combination

used in the compared models. Moreover, the advantage of

MDvsFA-cGAN over CAN8-double and UCAN64-double

shows the benefits of using different network architectures

Table 5. Insensitivity of λ1 and λ2 in Eq.(4) on “Single” dataset.

λ1 λ2 F-measure λ1 λ2 F-measure

100 10 0.60 500 1 0.59

100 5 0.60 200 1 0.59

100 1 0.60 100 1 0.60

100 0.5 0.60 50 1 0.60

100 0.1 0.60 10 1 0.58

for different sub-tasks (reducing MD or FA) for ISOS.

To answer the third question, we test different values

of λ1 and λ2. Note that, due to the small sizes of ob-

jects/targets in ISOS problems, the magnitudes of FA are

usually 10 times more than those of MD. Taking this into

account, we set λ1 = 100 and λ2 = 1 in Eq.(4) to make G1

focus on MD and G2 focus on FA. To show the insensitivity

of our method to these two parameters, we fix λ1 = 100 and

vary λ2 to test the performance change and then fix λ2 = 1
and vary λ1. As seen in Table 5, even when λ1 and λ2 are

varied in a range where its max value is 50-100 times of its

min, the fluctuation of F-measure is almost negligible.

5. Conclusion

In this paper, we decompose the ISOS problem into

two sub-tasks of suppressing MD and FA, respectively, and

jointly solve these two sub-tasks via adversarial learning.

This new learning framework enables us to disentangle the

suppression of MD and FA, design different models that

better suit each sub-task, and provide a dedicated balance

of MD and FA to lower the rates of both. It provides a

new perspective to ISOS research and demonstrates its su-

periority over existing methods in this field. Also, it is our

hope that the proposed method can inspire other computer

vision research work that needs to strike a delicate balance

between two mutually competitive criteria.
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