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Abstract

Treating graph structures of Markov random fields as un-

known and estimating them jointly with labels have been

shown to be useful for modeling human activity recogni-

tion and other related tasks. We propose two novel relax-

ations for solving this problem. The first is a linear pro-

gramming (LP) relaxation, which is provably tighter than

the existing LP relaxation. The second is a non-convex

quadratic programming (QP) relaxation, which admits an

efficient concave-convex procedure (CCCP). The CCCP al-

gorithm is initialized by solving a convex QP relaxation of

the problem, which is obtained by modifying the diagonal of

the matrix that specifies the non-convex QP relaxation. We

show that our convex QP relaxation is optimal in the sense

that it minimizes the ℓ1 norm of the diagonal modification

vector. While the convex QP relaxation is not as tight as

the existing and the new LP relaxations, when used in con-

junction with the CCCP algorithm for the non-convex QP

relaxation, it provides accurate solutions. We demonstrate

the efficacy of our new relaxations for both synthetic data

and human activity recognition.

1. Introduction

Traditional methods for maximum a posteriori (MAP)

inference, or energy minimization, in Markov random fields

(MRFs) assume a known graph structure of the MRF

[20, 11, 26]. However, the assumption is weak due to two

reasons. First, it restricts the use of MRFs to problems

where all the instances are homogeneous, that is, when the

underlying graphs for all problem instances are the same.

Even in the case of a time series problem, where the num-

ber of nodes of a MRF varies across instances, this assump-

tion forces us to retain the same basic structure across two

consecutive time frames (for example, see Fig. 6.1 of [10]).

Second, due to the lack of information of the relationship

among variables, domain knowledge or human heuristics

are typically utilized to construct graphs such as trees, grids

and fully-connected nets [5, 12, 3, 26, 25], which probably

are not the most desirable structure. In order to overcome
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Figure 1: An illustration of the proposed new convex relaxations

using a toy example. Both upper and lower bounds for these relax-

ations are shown. The LP-M relaxation (green) is provably tighter

than the convex QP relaxation (blue), which in turn delivers sig-

nificantly better solutions to the original problem (see Section 5).

the deficiency of MRFs with known graph structures, recent

research has started to focus on treating the graph structure

as unknown and estimating proper structures jointly with la-

bels [15, 24, 16]. Such an approach lends itself naturally to

various real-world problems where the graphs are heteroge-

neous. For example, when modeling human actions in TV

episodes, where each node represents an actor, the graph

structure changes dynamically as different actors enter and

exit the scene.

The problem of simultaneous estimating labels and

graphs was first introduced by Lan et al. [15], who sug-

gested an alternating search strategy to obtain an approxi-

mate solution. Specifically, their method alternates between

finding the best labels for a fixed graph, and finding the

best graph for the fixed labels. While such an approach

is computationally efficient, it is prone to bad local min-

ima solutions. Wang et al. [24] cast this problem as an

integer quadratic program. By dropping the integral con-

straints, they obtain a bilinear program, which they further

relaxed to a linear program (LP). The LP relaxation of [24],

which we refer to as LP-W, can either be solved over the

entire feasible region, or it can be used in conjunction with

a branch-and-bound strategy [2]. Each subproblem of the

branch-and-bound approach requires us to solve the LP-

W relaxation over a subset of the feasible region, which

makes it computationally infeasible for even a smaller num-

ber of nodes. Typically, the branch-and-bound approach is
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stopped early, which results in sub-optimal solutions.

In order to alleviate the deficiencies of the previous

methods, we propose two new convex relaxations for the

problem of simultaneously estimating the MRF labels and

graph structures. The first relaxation is a new LP relaxation,

which replaces the upper and lower bounds of the variables

in LP-W with linear marginalization constraints. We pro-

vide a sound theoretical justification of our LP, denoted by

LP-M, by showing that it is provably tighter than LP-W. The

second relaxation is a non-convex QP relaxation, which ad-

mits an efficient concave-convex procedure (CCCP) though

it is looser than LP-M (see Figure 1 for an illustration). In

order to initialize the CCCP, we propose a convexification

of the non-convex QP. Similar to the convex QP of Raviku-

mar and Lafferty [19] for fixed graph structures, our con-

vex QP relaxation modifies the diagonal of the matrix that

is used to specify the objective of the QP. However, un-

like [19], our convex QP can be shown to be optimal, that

is, it minimizes the ℓ1 norm of the diagonal modification

vector. Using synthetic and real human activity recognition

data, we empirically demonstrate that our relaxations pro-

vide salient improvements over existing approaches.

2. Preliminaries

Notation. We closely follow the notation of [24]. Specifi-

cally, the MRF is represented by a graph G = (V,E), where

the node set V = {1, 2, · · · , n} is known but the edge set

E, which represents the graph structure, is unknown. Each

node i is associated with a random variable, which needs to

be assigned a label yi ∈ Y. For example, the nodes can rep-

resent the actors of a TV show, and the labels can represent

their actions. The labeling of all the nodes is denoted by

Y = (y1, · · · , yn). The node potential for assigning a node

i to the label yi is denoted by θi(yi). Similarly, the pair-

wise (edge) potential for assigning two neighboring nodes

i and j to the labels yi and yj respectively is denoted by

θij(yi, yj). Here, two nodes are said to be neighboring if

they are connected by an edge in the set E.

Problem Formulation. We would like to obtain the la-

beling Y and the edge set E such that it minimizes the sum

of the node and pairwise potentials, that is,

min
Y,E

∑

i∈V
θi(yi) +

∑

(i,j)∈E
θij(yi, yj),

s.t. degree(i) ≤ h, ∀i ∈ V. (1)

Here degree(i) denotes the number of edges in E that are

incident on i. By constraining the degree of each node,

we ensure that we obtain a simple graph structure. Note

that, unlike the MAP inference problem with a fixed graph

structure, the above problem is not invariant to reparameter-

izations of the energy function. In other words, the above

problem needs to be specified using potential functions that

are scaled in such a manner as to provide accurate solu-

tions for the corresponding application. Fortunately, Wang

et al. [24] showed that such potentials can be learned from

a training dataset using a latent support vector machine for-

mulation [6, 27]. We refer the reader to [24] for details.

In this paper, we are concerned with the optimization of

problem (1) for a given set of potential functions. To this

end, we note that problem (1) can be specified as an integer

quadratic program, using the three types of binary variables:

(i) µi(yi) ∈ {0, 1} indicates whether i is assigned the label

yi; (ii) µij(yi, yj) ∈ {0, 1}, i < j, indicates whether the

variables i and j are assigned the labels yi and yj ; and (iii)

zij ∈ {0, 1} indicates whether the edge (i, j) is present in

the edge set E. Using the above variables, the problem of

simultaneously estimating MRF labels and graph structure

can be formulated as follows:

min
µ,z

∑

i∈V

∑

yi

µi(yi)θi(yi) +

∑

i,j∈V,i<j

∑

yi,yj

µij(yi, yj)zijθij(yi, yj),

s.t. µi(yi) ∈ {0, 1}, µij(yi, yj) ∈ {0, 1}, zij ∈ {0, 1},
∑

yi

µij(yi, yj) = µj(yj),
∑

yj

µij(yi, yj) = µi(yi),

∑

j>i
zij +

∑

j<i
zji ≤ h,

∑

yi

µi(yi) = 1, ∀i, j ∈ V, i < j, yi, yj . (2)

Decoding. Decoding is to extract the estimated edge set

E∗ and labelling Y ∗ from µ and z solutions. To obtain

Y ∗, one typically let Y ∗ = (y∗1 , y
∗
2 , . . . , y

∗
n), where y∗i =

argminyi∈Y µi(yi). To obtain E∗, one can start with E =
∅. Then ∀i, j ∈ V, i < j, if zij ≥ 0.5, E∗ = E∗ ∪ {(i, j)}.

Existing LP Relaxation. Wang et al. [24] proposed a

linear programming (LP) relaxation for the above integer

quadratic program, which we denote by LP-W. The LP-

W relaxation replaces the quadratic term in the objective

function, namely µij(yi, yj)zij , by a new optimization vari-

able λij(yi, yj). It introduces an upper and lower bound for

λij(yi, yj), which are linear in µij(yi, yj) and zij . By drop-

ping the integrality constraints, the resulting convex pro-

gram can be solved in a time that is polynomial in the size

of the problem. Formally, the LP-W relaxation is as:

min
∑

i∈V

∑

yi

µi(yi)θi(yi) +

∑

i,j∈V,i<j

∑

yi,yj

θij(yi, yj)λij(yi, yj),

s.t. λij(yi, yj) ≥ max{0, zij + µij(yi, yj)− 1},

λij(yi, yj) ≤ min{zij , µij(yi, yj)},

∀i, j ∈ V, i < j, yi, yj , µ, z ∈ O . (3)
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where O denotes a space which is defined as

O =







µ, z

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

µij(yi, yj), zij ∈ [0, 1], ∀i < j, yi, yj ,∑

yi
µi(yi) = 1, ∀i ∈ V, yi,

∑

yi
µij(yi, yj) = µj(yj), ∀i < j, yj ,

∑

yj
µij(yi, yj) = µi(yi), ∀i < j, yi,

∑

j∈V,j>i zij +
∑

j∈V,j<i zji ≤ h, ∀i ∈ V.







3. LP Relaxation with Marginalization

In this section, we describe our new LP relaxation,

which we denote by LP-M. Similar to LP-W, the LP-M

also replaces the quadratic term µij(yi, yj)zij in the ob-

jective function of problem (2) by the optimization vari-

able λij(yi, yj). However, in contrast to LP-W, which

explicitly specifies lower and upper bounds of λij(yi, yj)
as linear functions of µij(yi, yj) and zij , LP-M intro-

duces a linear marginalization constraint. Specifically, since
∑

yi,yj
µij(yi, yj) = 1 it follows that

∑

yi,yj

λij(yi, yj) = zij , ∀i < j. (4)

In other words, by marginalizing λij(yi, yj) over all values

of yi and yj , we recover the indicator variable for whether

(i, j) ∈ E. While the above marginalization constraint

specifies the relationship between λij(yi, yj) and zij , it

does not depend on µij(yi, yj). To address this problem,

we exploit the fact that zij <= 1, which implies that

λij(yi, yj) ≤ µij(yi, yj), ∀i < j, yi, yj . (5)

Substituting the upper and lower bounds of λij(yi, yj) in

the LP-W relaxation with the above two linear constraints,

the LP-M relaxation can be specified as follows:

min
∑

i∈V

∑

yi

µi(yi)θi(yi) +

∑

i,j∈V,i<j

∑

yi,yj

θij(yi, yj)λij(yi, yj),

s.t.
∑

yi,yj

λij(yi, yj) = zij , ∀i < j,

λij(yi, yj) ≤ µij(yi, yj), ∀i < j, yi, yj ,

λij(yi, yj) ∈ [0, 1], ∀i, j, i < j, yi, yj ,

µ, z ∈ O . (6)

LP-M is an intuitive extension of the standard LP relax-

ation for MRF inference with known graph structure [7].

However, its theoretical property (tightness over LP-W) is

an interesting contribution of the paper.

3.1. Comparing the LP­W and LP­M Relaxations

Problem Size. We begin by comparing the two LP relax-

ations in terms of the problem size. We denote the num-

ber of nodes by n, and the cardinality of the label set Y

by c. Note that both LP-W and LP-M contain the same

number of optimization variables since both the relaxations

substitute the quadratic terms µij(yi, yj)zij by the variables

λij(yi, yj). In terms of the number of constraints, the LP-

M relaxation is smaller than the LP-W relaxation. This is

due to the fact that the LP-W relaxation introduces two con-

straints to specify the lower bound of λij(zi, zj) (specif-

ically, λij(yi, yj) ≥ max{0, zij + µij(yi, yj) − 1}) and

two constraints to specify the upper bound of λij(zi, zj)
(specifically, λij(yi, yj) ≤ min{zij , µij(yi, yj)}). In con-

trast, the LP-M relaxation introduces one constraint for the

lower bound of λij(yi, yj) (specifically, λij(yi, yj) ≥ 0),

one constraint for the upper bound of λij(yi, yj) (specifi-

cally, λij(yi, yj) ≤ µij(yi, yj)), and one marginalization

constraint for the set of variables {λij(yi, yj), yi, yj ∈ Y}.

Table 1 lists the exact sizes of different relaxations.

Tightness. We now compare LP-W and LP-M in terms

of their tightness. Note that a relaxation A of a problem is

said to be tighter than the relaxation B of the same problem

if and only if the feasible region of A is a subset of the

feasible region of B. The following proposition establishes

the relationship between LP-W and LP-M.

Proposition 1 The LP-M relaxation (6) is tighter than the

LP-W relaxation (3).

The proof of the above proposition is provided in the

supplementary material. As will be seen in section 5, the

theoretical advantage of LP-M over LP-W also translates to

better performance in practice both in terms of the energy

as well as the accuracy of human action recognition.

4. Quadratic Programming Relaxation

The relaxation in the previous section replaces the

quadratic objective function of the original problem (2) by a

linear objective function, and linear constraints on the new

variables λij(yi, yj). While the resulting LP-M relaxation

is tighter than LP-W, it still increases the feasible region of

problem (2) substantially. In fact, one may argue that any

convex relaxation of problem (1) will not be tight in gen-

eral since the feasible region of problem (1) is highly non-

convex. Inspired by this observation, we propose a non-

convex QP relaxation of problem (2), which is obtained by

replacing the integral constraints over the optimization vari-

ables by linear constraints that allow the variables to take

(possibly fractional) values between 0 and 1. While the non-

convex QP relaxation cannot be solved optimally in polyno-

mial time, we show that its local minimum or saddle point

solution can be obtained efficiently. Specifically, we show

that the objective function of the non-convex QP relaxation

can be viewed as a difference of two convex quadratic func-

tions, which allows us to use the concave-convex proce-

dure (CCCP). In order to initialize the CCCP algorithm, we
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Number of variables Number of constraints

LP-W [24]
n(n−1)(2c2+1)

2 + nc (cn2 + n) + (n2 − n)(3c2 + 1)

LP-M
n(n−1)(2c2+1)

2 + nc (cn2 + n) + (n2 − n)(3c2 + 1)− n(n−1)(c2−1)
2

convex QP
n(n−1)(c2+1)

2 + nc+ n(c2 − c+ 1)
︸ ︷︷ ︸

removable

(cn2 + n) + (n2 − n)(3c2 + 1)− 2n(n− 1)c2

Table 1: Scales of three different relaxations. Here n and c denote the number of nodes and the cardinality of label set respectively.

propose an optimal convexification of the non-convex QP.

While the convex QP relaxation is not as tight as the LP-W

and LP-M relaxations, when used in conjunction with the

CCCP algorithm, it provides accurate solutions.

We begin our description with the non-convex QP re-

laxation. In subsection 4.2, we present its convexification,

which modifies the diagonal of the matrix that specifies the

objective function of the non-convex QP. Unlike the convex

QP relaxation for fixed graphs [19], we show that our relax-

ation is optimal in the sense that it minimizes the ℓ1 norm

of the diagonal modification vector. In subsection 4.3, we

provide a comparison of the convex QP, LP-W and LP-M in

terms of the problem size and the tightness of the relaxation.

Finally, in subsection 4.4, we show how the non-convex QP

can be optimized efficiently using a CCCP algorithm to ob-

tain an accurate approximate solution to problem (2).

4.1. Non­Convex QP Relaxation

The following notation will be helpful in describ-

ing the non-convex QP relaxation. The vector θij =
[θij(yi, yj)]yi,yj∈Y is formed by enumerating the pairwise

potentials between yi and yj over all possible labellings in

turn. Here, θi,i(a, b) = 0 ∀a, b ∈ Y, i ∈ V . The set of all

pairwise potentials are defined using the matrix Θ̂:

Θ̂ =

[
0 1

2Θ
1
2Θ

⊤ 0

]

,Θ =















θ11 0 . . . 0 0
0 θ12 0 0

0
...

...
...

θn−1n 0
0 θnn















.

(7)

A less compact, but more detailed exposition of Θ can be

found in the supplementary material. In order to spec-

ify the node potentials in the QP relaxation, we define a

vector ϑ = [ϑ̂ij(yi, yj)]i≤j,yi,yj∈Y where ϑij(yi, yj) =
θi(yi) ∀i = j & yi = yj , and ϑij(yi, yj) = 0 otherwise.

Furthermore, we define θ̂ = [ϑ,0], where 0 is a zero vector

has n(n+ 1)/2 dimensions. The vector θ̂ and the matrix Θ̂
represent the node and the pairwise potentials of the given

MRF, that is, the input of the problem. The output of the

problem, that is, the optimization variables, are denoted by

the vectors z = [zij ]i≤j and µ = [µij(yi, yj)]i≤j,yi,yj∈Y,

where µii(yi, yi) = µi(yi). The set of all the optimization

variables is denoted by χ = [µ, z].
Using the above notation, the energy corresponding to

the variables z and µ can be concisely written as
∑

i∈V

∑

yi

µi(yi)θi(yi) +
∑

i<j

∑

yi,yj

µij(yi, yj)θij(yi, yj)zij

= χ⊤θ̂ + χ⊤Θ̂χ. (8)

The non-convex QP relaxation of problem (2) can therefore

be specified in terms of the optimization variables χ as

min
χ

χ⊤θ̂ + χ⊤Θ̂χ, s.t. χ ∈ O . (9)

Note that, since the QP is obtained by relaxing the domain

of z, µ from {0, 1} to [0, 1] only (without changing the ob-

jective function of the original problem (2), it is tighter

than both LP-W and LP-M. The main disadvantage of prob-

lem (9) is that it is non-convex in general. However, as will

be seen shortly, its local maximum or saddle point solution

can be obtained efficiently using the CCCP algorithm. Be-

fore describing the CCCP algorithm in detail, it would be

helpful to discuss the convexification of problem (9), which

is used to initialize the CCCP algorithm.

Note we are not the first to formulate MRF inference as

QP problems, see [19, 9]. However, we do provide the first

QP formulation for MRF inference with unknown graphs.

4.2. Convex Approximation

We now present a convex approximation of problem (9),

which is inspired by the convex relaxation of MAP infer-

ence for fixed graphs [19]. The following notation will be

useful in describing the convex approximation. The number

of rows (and columns) of the square matrix Θ̂ are denoted

by N . The matrix diag(d) is a diagonal matrix, whose di-

agonal elements form the vector d ∈ R
N . The i-th element

of the optimization vector χ is denoted by xi.

For any vector d ∈ R
N , we can rewrite the objective of

problem (9) as

χ⊤θ̂ + χ⊤Θ̂χ =

χ⊤(θ̂ − d) + χ⊤(Θ̂ + diag(d))χ+ g(d, χ), (10)

g(d, χ) = χ⊤ d−χ⊤ diag(d)χ =

N∑

i=1

di(xi − x2
i ). (11)
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Clearly for xi ∈ {0, 1}, g(d, χ) = 0. For xi ∈ (0, 1), if

di > 0, g(d, χ) > 0. When Θ̂+diag(d) � 0, χ⊤(θ̂−d)+

χ⊤(Θ̂ + diag(d))χ is a convex approximation of χ⊤θ̂ +
χ⊤Θ̂χ, with approximation gap |g(d, χ)|. For a fixed χ,

minimizing the approximation gap leads to

mind |g(d, χ)|, s.t. Θ̂ + diag(d) � 0.

Since we do not know χ, we seek a vector d works well for

all χ, i.e. minimizing E[|g(d, χ)|]. Assuming uniform prior

of χ gives rise to,

mind ‖d ‖1, s.t. Θ̂ + diag(d) � 0, (12)

which means we seek a diagonal modification vector d such

that the ℓ1 norm of the vector is minimum.

Proposition 2 The solution of problem (12) is

d∗ = [d∗k]
N
k=1, where d∗k =

∑N

j=1
|Θ̂k,j |. (13)

The proof of the above proposition is provided in the sup-

plementary material. We would like to point out that this

result does not carry over to general QP problems with ar-

bitrary quadratic matrices including the QP relaxations for

MAP inference with known graph structures as in [14, 19].

However, for our problem, the above proposition provides

a strong theoretical justification for approximation the non-

convex QP (9) as follows:

min
χ

χ⊤q+ χ⊤ Qχ s.t. χ ∈ O, (14)

where Q = Θ̂ + diag(d∗), q = θ̂ − d∗.

4.3. Comparing the QP and LP Relaxations

Problem Size. We begin by comparing the relaxations in

terms of the problem size. Note that, unlike the two LP re-

laxations, the convex QP relaxation does not introduce any

additional variables λij(yi, yj). Furthermore, the variables

µij(yi, yj) ∀i = j, yi 6= yj and zii ∀i ∈ V do not play a role

in the objective function of the convex QP, and can there-

fore be removed. This implies that the convex QP relax-

ation contains significantly fewer variables than the two LP

relaxations. It also contains significantly fewer constraints,

namely those specified by the set O, which is a subset of the

constraints used in the two LP relaxations (see Table 1 for

the exact numbers of problem sizes).

Tightness. The following proposition establishes the rela-

tionship between the convex QP relaxation and the two LP

relaxations in terms of tightness.

Proposition 3 The LP-W and LP-M relaxations are tighter

than the convex QP relaxation (14).

The proof of the above proposition is provided in the sup-

plementary material. As will be seen in section 5, the the-

oretical advantage of the LP-M and LP-W relaxations over

the convex QP relaxation translates to better performance in

practice. However, the convex QP provides a natural way to

initialize the approximate algorithm for the non-convex QP

relaxation, which is described in the Section 4.4.

4.4. CCCP Algorithm for Non­Convex QP

The non-convex QP relaxation (9) can be formulated as

a difference-of-convex program as follows:

argminχ F (χ) s.t. χ ∈ O, (15)

F (χ) = χ⊤θ̂ + χ⊤ Qχ
︸ ︷︷ ︸

Fvex(χ)

−χ⊤ diag(d∗)χ
︸ ︷︷ ︸

Fcave(χ)

. (16)

It is easy to see that Fvex, Fcave are convex and concave

functions of χ as Q and −diag(d∗) are positive semidef-

inite and negative semidefinite respectively. The above

observation allows us to obtain a local minimum or sad-

dle point solution of problem (15) using the CCCP algo-

rithm [28]. Starting with an initial solution χ(0), the CCCP

algorithm iteratively decreases the objective value of prob-

lem (15) by finding a solution χ(t+1) using the current so-

lution χ(t) such that it satisfies the following condition:

∇Fvex(χ
(t+1)) = −∇Fcave(χ

(t)). (17)

The solution χ(t+1) satisfying the above condition can be

found by minimizing Fvex(χ) + χ⊤∇Fcave(χ
(t)), that is,

minχ χ⊤(θ̂ − 2diag(d∗)χ(t)) + χ⊤ Qχ

s.t. χ ∈ O . (18)

Note (18) is a convex QP which can be solved by any off-

the-shelf QP solvers such as Mosek [1].

The CCCP algorithm is guaranteed to converge for any

feasible initialization. We refer the reader to Theorem 10 in

[22] for a proof. In our experiments, we use the solution of

the convex QP (14) to initialize the CCCP algorithm. Al-

ternatively, one can initialize by random feasible points or

solutions of the LP relaxations. However, no matter what

initialization is used, we still need to solve a convex QP (18)

iteratively, which is based on our QP formulation (9).

QP+CCCP Algorithm. We name the above CCCP-style

update procedure the QP+CCCP algorithm and its pseu-

docode is provided in the supplementary material.

5. Experiments

In this section we first evaluate different inference algo-

rithms on synthetic data. In each case we report both the

9939



176 768 1776 3200 5040

problem size

-70

-60

-50

-40

-30

-20

-10

0

a
v
e

ra
g

e
 e

n
e

rg
y

LP-W

LP-M

convex QP

LP-W+B&B

QP+CCCP

(a) Linear

176 768 1776 3200 5040

problem size

-250

-200

-150

-100

-50

0

50

a
v
e

ra
g

e
 e

n
e

rg
y

LP-W

LP-M

convex QP

LP-W+B&B

QP+CCCP

(b) Quadratic

176 768 1776 3200 5040

problem size

-25

-20

-15

-10

-5

0

a
v
e

ra
g

e
 e

n
e

rg
y

LP-W

LP-M

convex QP

LP-W+B&B

QP+CCCP

(c) Potts

36 176 768 1776 3200 5040

number of variables

0

20

40

60

80

100

a
v
e

ra
g

e
 r

u
n

n
in

g
 t

im
e

 (
s
e

c
)

LP-W

LP-M

convex QP

LP-W+B&B

QP+CCCP

(d) Linear

36 176 768 1776 3200 5040

number of variables

0

20

40

60

80

100

120

a
v
e

ra
g

e
 r

u
n

n
in

g
 t

im
e

 (
s
e

c
)

LP-W

LP-M

convex QP

LP-W+B&B

QP+CCCP

(e) Quadratic

36 176 768 1776 3200 5040

number of variables

0

20

40

60

80

100

a
v
e

ra
g

e
 r

u
n

n
in

g
 t

im
e

 (
s
e

c
)

LP-W

LP-M

convex QP

LP-W+B&B

QP+CCCP

(f) Potts

Figure 2: Comparisons of energy (the objective in (1), top row)

an run time (bottom) using three types of synthetic data (Linear,

Potts, Quadratic). Our LP-M relaxation and QP+CCCP algorithm

perform increasingly better than other methods as the problem size

goes larger. For time-consuming, LP-M is the fastest and QP is

marginally worse than LP-M, see the text for explanation.

final value of the potential function (equation (1)) and the

running time. We then show how to apply the inference

technique to the human activity recognition task. Additional

results are provided in the supplementary material.

To solve the inference problem (2), we use: 1) LP-W,

solving the problem (3) proposed in [24]; 2) LP-W+B&B–

the branch and bound algorithm proposed in [24], where

the bounds are computed by solving LP-W problems; 3)

LP-M; 4) QP–the convex QP; 5) QP+CCCP. The number

of iterations for LP-W+B&B and QP+CCCP is 50. One

may argue that the original optimization (2) can be exactly

solved using off-the-shelf integer quadratic programming

(IQP) solvers such as CPLEX MIQP. However, even for

optimizations with 6 nodes and 5 classes, based on our tests

IQP takes around 2 minutes compared to 0.1 seconds for

QP+CCCP, while the obtained objectives of them are quite

close, which makes the use of IQP solvers undesirable.

Synthetic Data. We generate synthetic data using a

method similar to that used in [19]. The node potential

θi(yi) ∼ U(−1, 1), while the edge potentials are created

as θij(yi, yj) = s × dis(yi, yj). Here the couple strength

s ∼ U(−η, η), and dis(yi, yj) is one of three types of dis-

tance functions including linear: dis(yi, yj) = |yi − yj |,
quadratic: dis(yi, yj) = (yi − yj)

2, Potts: dis(yi, yj) =
✶(yi = yj). Here η = 1, the graph degree parameter h = 2.

More results using different η and h are provided in the sup-

plementary material.

Two comparisons are made here. First, we compare the

LP-M QP+CCCP
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Figure 3: Paired-sample t-test on synthetic data. Estimated ener-

gies for each paired samples are connected by dashed lines. Here

p equals 0.98 × 10
−7, 0.96 × 10

−2, 0.4 × 10
−9 respectively for

linear, quadratic and Potts results. Since p < 0.05 for all tests the

null hypothesis at the 5% significance level is rejected.

estimated potential, i.e. the value of (1). We report results

for problems with a range of different sizes. For a problem

with n nodes and c classes (assuming the cardinalities of

the spaces of all random variables are the same), the size is

calculated by
n(n−1)

2 (1 + c2) + nc. Here n = {4, · · · , 20}
and c = 5. For each problem size, twenty examples are

generated and we report the mean potential of these ex-

amples, see Figure 2. Tighter relaxations translate to bet-

ter performance: LP-M performs better than LP-W which

performs slightly better than (initial convex) QP. Overall,

QP+CCCP performs the best, due to its iterative approxi-

mation to the non-convex QP, which is the tightest among

all relaxations here. We observe that QP+CCCP converges

within 50 iterations for all data here, but LP-W+B&B does

not converge within 50 iterations in most cases, which leads

to inferior results. Statistically, the differences between our

QP+CCCP method and LP-M are significant since the null

hypothesis is usually rejected at the 0.05 level in the stan-

dard paired t-tests (ttest in Matlab), see Figure 3. In other

words, our QP+CCCP method is more accurate. Second,

we compare the running time of different methods on prob-

lems with a size of 5,040. For each distance function 100
examples are tested and the average running time is reported

in Figure 2. Overall LP-W+B&B and QP+CCCP are much

slower than other methods as expected. The fastest is LP-

M. Although both QP and LPs are solved using the interior

point method, the interior point method for QP is computa-

tionally more expensive than that for LP. This might be be-

cause: 1) both problems translate to solving linear systems,

essentially; 2) however, the coefficient matrix (see equation

(16.58) in [17]) in the system corresponding to QP is more

costly to factor than that of the LPs (see (14.9) in [17]), be-

cause of the hessian matrix of QP. We refer the reader to

Page 482 of [17] for details.

Predict Human Group Activities. We now consider hu-

man activity recognition on the CAD dataset [3], which is

a benchmark for this task. For clarity, the term activity is
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Cross Wait Queue Walk Talk Precision Recall F1-score Time (second)

tree-structured 45.0 47.2 95.3 65.2 96.1 71.6 69.8 70.7 1.0× 10−2

Lan [15] 55.9 59.7 94.6 62.2 99.5 73.3 74.4 73.8 6.0× 10−2

LP-W [24] 60.7 60.4 93.6 47.3 99.5 72.6 72.3 73.6 4.1× 10−2

LP-W+B&B [24] 55.9 61.8 95.7 55.4 99.5 73.6 73.7 73.6 4.0× 10−1

QP (ours) 55.9 61.8 92.5 48.7 99.5 71.8 71.7 71.7 3.5× 10−2

LP-M (ours) 60.7 59.7 93.6 56.8 99.5 73.9 74.0 73.9 3.0× 10−2

QP+CCCP (ours) 62.1 61.1 95.7 55.4 98.9 74.3 74.6 74.4 2.0× 10−1

Table 2: Group activity recognition performance on the CAD dataset. Accuracies for different action-classes span from column two to six

from left to right. Column seven to nine reports overall precision, recall and F1-score for all classes. QP+CCCP is the best except for time.

Figure 4: Visualisation of recognition results by LP-W+B&B, Lan, LP-M and QP+CCCP (from left to right), using two examples (each

row corresponds to one example) in CAD. The predicted action and pose labels are shown in cyan and green boxes. The red edges represent

the learned graph structures within the action layer. For action names, CR, WK, QU, WT indicate cross, walk, queue and wait. For poses,

B, L, R, F, BL, BR, FR, FL denote back, left, right, front, back-left, back-right, front-right and front-left respectively. Note our approaches

(two rightmost columns) can predict meaningful long-range connections between targets, which helps to predict consistent action labels

for different people within the same group.

used to describe the behavior of a group of people, while

the term action refers to the behavior of an individual. CAD

contains 44 videos and 5 action classes: cross, wait, queue,

walk and talk. In each image most people perform the same

action. Like [15], the activity label for an image is defined

as the dominant action performed by these people. Our aim

is to assign each testing image an activity label. The prob-

lem is modeled by MRFs in a manner similar to that used in

[15] 1. Specifically, the MRF has two layers. The first layer

is the activity layer that contains one node representing the

activity variable. The second layer, the action layer, con-

tains a number of nodes representing the action variables

corresponding to different people. During both training and

prediction the dependency among action variables, thus the

graph structure in the action layer will be estimated together

with the activity and action variables. The interaction be-

tween both layers is fixed by connecting each action node

to the activity node. The potentials used here are similar to

those used in [15] with differences including: 1) rather than

predicting human body poses jointly with actions, we use

fixed human body poses during training and testing, which

reduces the computational burden significantly. To estimate

poses, we train a multi-class SVM classifier based on HoG

features [4] extracted from human body areas; 2) to obtain

the image features we extract HoG features from the whole

1Feature extraction and Lan method are implemented by ourselves.

image, as compared to taking an average of HoG features

extracted from all human body areas as in [15]. Details of

the potential function can be found in [15].

The inference problem here is estimating the best activ-

ity, action labels and graph structure in the action layer.

Since there is only one activity variable, we exhaustively

search all possible activities. For each fixed activity, the

problem reduces to finding the best actions and graph struc-

ture in the action layer, which is solved via different meth-

ods. For training, we use the method employed in [15].

For comparison we also consider MRFs with known

graphs. In particular, we have used minimum spanning trees

that maintain the smallest Euclidean distance over all body

detections. In such cases the inference problems can be ex-

actly solved via belief propagation, and the model parame-

ters are learned by using structured SVM [23]. Results are

reported in Table 2. Clearly the methods which estimate the

graph structure outperform those using fixed tree-structured

graphs significantly. Among all methods that estimate the

graphs, QP+CCCP performs best in terms of precision, re-

call and F1-score. LP-M performs second best in terms

of precision and F1-score, and performs best in terms of

speed. We visualize some recognition results in Figure 4

using LP-W+B&B, Lan, LP-M and QP+CCCP, from which

one can observe our new relaxations yield competitive re-

sults in terms of action classification, consequently better

activity recognition results are achieved.

9941



No-Int Handshake Highfive Hug Kiss Precision Recall F1-score Time (second)

tree-structured 20.2 51.1 61.3 58.2 46.4 48.4 47.4 47.9 1.0× 10−3

two stream Net [21] 54.7 38.4 35.4 54.8 58.6 49.3 48.4 48.8 –

Lan [15] 11.3 52.1 58.4 55.0 67.2 49.5 48.8 49.1 5.0× 10−3

LP-W [24] 59.0 49.0 49.2 65.2 71.5 59.5 58.8 59.1 5.0× 10−3

LP-W+B&B [24] 49.1 56.3 63.0 70.0 69.2 60.7 61.5 61.1 5.6× 10−2

QP (ours) 65.3 40.8 54.8 62.0 66.8 60.8 58.0 59.4 4.1× 10−3

LP-M (ours) 57.5 50.7 48.7 66.8 74.7 60.6 59.7 60.1 3.2× 10−3

QP+CCCP (ours) 61.4 60.8 45.2 69.0 71.0 62.9 61.5 62.2 1.5× 10−2

Table 3: Person-wise instantaneous interaction recognition results (%) on TVHI dataset. Here “No-Int” means no-interaction. Our

QP+CCCP performs best in terms of overall precision, recall and F1-score.

No-Int BX HS HF HG KK BD PT PS Precision Recall F1-score Time (second)

ResNet [8] 95.7 5.8 53.6 15.5 66.9 76.4 59.6 27.5 36.5 60.3 48.6 53.8 –

LP-W+B&B [24] 95.5 5.6 53.6 15.4 69.0 75.3 62.0 28.7 36.5 60.4 49.1 54.2 3.0× 10
−1

LP-M (ours) 95.6 5.8 53.2 15.2 69.8 77.0 62.2 28.5 36.5 60.5 49.3 54.3 6.9× 10
−3

QP+CCCP (ours) 95.7 6.0 53.6 15.5 69.9 76.7 62.4 28.5 36.7 60.5 49.4 54.4 3.0× 10
−2

Table 4: Person-wise instantaneous interaction recognition results (%) on BIT dataset. Here “No-Int, BX, HS, HF, HG, KK, BD, PT, PS”

means no-interaction, box, handshake, highfive, hug, kick, bend, pat, push respectively.

Estimated Energy. We compute the mean of the esti-

mated energies using the entire CAD-testing set. For fair

comparison we use the same potential functions (θ) across

different inference algorithms. The results for Lan, LP-M

and QP+CCCP, are −9.62,−10.13,−10.28 (lower is bet-

ter) respectively, which indicates that the proposed solvers

(both LP-M and QP+CCCP) are more accurate.

Predict Instantaneous Human Interactions. Here the

task is to predict an interaction label for each person in

each frame, which is much more challenging than video-

wise action recognition predicts each video an interaction

category. We use two datasets. The first is television human

interaction (TVHI) dataset introduced in [18]. Each video

in TVHI contains at least two persons who either are in-

teracting (handshake, highfive, hug or kiss) with each other

or simply have no interactions. The second is BIT dataset

[13] which consists of nine classes of human interactions,

i.e. box, handshake, highfive, hug, kick, bend, pat, push and

others (i.e. interactions beyond the first eight classes). Each

class contains 50 videos with cluttered backgrounds. The

train-test splits for both dataset follow the suggestions of

their authors. For TVHI, since MRFs with unknown graphs

have been used to model the human interactions [24], for

fair comparison we use the same MRF representation and

experimental settings as [24], while the estimation of labels

and graph structures is solved using the methods proposed

in this work. For BIT, we use the same MRF model as

TVHI, but extract features using ResNet [8]. Here we set

h = 1. Recognition results are presented in Table 3 and Ta-

ble 4, for TVHI and BIT respectively. Clearly the proposed

QP+CCCP performs best. Overall LP-M is only second to

QP+CCCP, and is occasionally worse than LP+B&B (see

Table 3). However, it is the best in terms of running time

among all methods learning MRF-structures. In addition,

we experiment MRF with known fully connected graphs

(with inference solved via tree-reweighted message passing

[11]) on TVHI. The resulting precision, recall and F1-score

are 56.5, 54.8 and 55.6 respectively, which are much worse

then our best results. Hence it is beneficial to infer MRF

graphs for human interaction recognition compared against

using fixed known graphs.

6. Conclusion

We presented two relaxations to the problem of jointly

estimating the labels and the structure of Markov random

field, a new LP relaxation, and a non-convex QP relaxation

both tighter than the existing relaxation. The non-convex

QP can be efficiently solved by using CCCP by solving a

number of convex QP problems. We show that our convex

QP is optimal in some sense. Experimental results on both

synthetic data and human activity recognition tasks demon-

strate that our QP in conjunction with CCCP performs best

in terms of accuracy and objective value. The proposed new

LP relaxation performs second best in terms of accuracy and

objective value, and best in terms of running time.
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