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Abstract

In this paper, we analyze the inner product of weight

vector w and data vector x in neural networks from the

perspective of vector orthogonal decomposition and prove

that the direction gradient of w decreases with the angle

between them close to 0 or π. We propose the Projection

and Rejection Product (PR Product) to make the direction

gradient of w independent of the angle and consistently

larger than the one in standard inner product while keeping

the forward propagation identical. As a reliable substitute

for standard inner product, the PR Product can be applied

into many existing deep learning modules, so we develop the

PR Product version of fully connected layer, convolutional

layer and LSTM layer. In static image classification, the

experiments on CIFAR10 and CIFAR100 datasets demon-

strate that the PR Product can robustly enhance the ability

of various state-of-the-art classification networks. On

the task of image captioning, even without any bells and

whistles, our PR Product version of captioning model can

compete or outperform the state-of-the-art models on MS

COCO dataset. Code has been made available at:https:

//github.com/wzn0828/PR_Product.

1. Introduction

Models based on neural networks, especially deep con-

volutional neural networks (CNN) and recurrent neural

networks (RNN), have achieved state-of-the-art results in

various computer vision tasks [11, 10, 1]. Most of the

optimization algorithms for these models rely on gradient-

based learning, so it is necessary to analyze the gradient

of inner product between weight vector w ∈ Rd and data

vector x ∈ Rd, a basic operation in neural networks.

Denoted by P (w,x) = w
T
x the inner product, the gradient
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Figure 1. The orthogonal decomposition of the gradient w.r.t.

weight vector w in two-dimensional space. (a) The case of the

standard inner product. (b) The case of our proposed PR Product.

For the length gradient, both are the vector projection Px of x onto

w. However, the direction gradient is changed from the vector

rejection Rx in (a) to ‖x‖2Erx in (b), where Erx represents the

unit vector along Rx.

of P (w,x) w.r.t. w is exactly the data vector x which

can be orthogonally decomposed into the vector projection

Px on w and the vector rejection Rx from w, as shown

in Figure 1 (a). The vector projection Px is parallel to

the weight vector w and will update the length of w in

next training iteration, called the length gradient. While the

vector rejection Rx is orthogonal to w, it will change the

direction of w, called the direction gradient.

Driven by the orthogonal decomposition of the gradient

w.r.t. w, a question arises: Which is the key factor

for optimization, length gradient or direction gradient?

To answer this question, we optimize three 5-layer fully

connected neural networks on Fashion-MNIST [36] with

different variants of inner product: standard inner product,

a variant without length gradient and a variant without

direction gradient. The top-1 accuracy is 88.42%, 88.32%

and 38.59%, respectively. From these comparative exper-

iments we can observe that the direction gradient is the

key factor for optimization and is far more critical than the

length gradient, which might be unsurprising. However,

the direction gradient would be very small when w and x

are nearly parallel, which would hamper the update of the
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direction of weight vector w.

On the other hand, in Euclidean space, the geometric

definition of inner product is the product of the Euclidean

lengths of the two vectors and the cosine of the angle be-

tween them. That is P (w,x) = w
T
x = ‖w‖2‖x‖2 cos θ,

where we denote by ‖ ∗ ‖2 the Euclidean length of vector

∗ and by θ the angle between w and x with the range of

[0, 2π). From this formulation, we can see that the θ is

strongly connected with the direction of weight vector w.

The gradient of P w.r.t. θ is ∂P/∂θ = −‖w‖2‖x‖2 sin θ,

which becomes small with θ close to 0 or π and thus

hinders the optimization. Several recent investigations of

backpropagation [4, 43] focus on modifying the gradient

of activation function. However, few researches propose

variants of backpropagation for the inner product function.

In this paper, we propose the Projection and Rejection

Product(abbreviated as PR Product) which changes the

backpropagation of standard inner product to eliminate the

dependence of the direction gradient of w and the gradient

w.r.t. θ on the value of θ. We firstly prove that the standard

inner product of w and x only contains the information of

vector projection Px, which is the main cause of the above

dependence. While our proposed PR Product involves the

information of both the vector projection Px and the vector

rejection Rx through rewriting the standard inner product

into a different form and suitable components of that form

are held fixed during backward pass. We further analyze

the gradients of PR Product w.r.t. θ and w. For θ, the

absolute value of gradient changes from ‖w‖2‖x‖2 |sin θ|
to ‖w‖2‖x‖2. For w, the length of direction gradient

changes from ‖x‖2 |sin θ| to ‖x‖2, as shown in Figure 1.

There are several advantages of using PR Product:(a)The

PR Product gets a different backward pass while the for-

ward pass remains exactly the same as the standard inner

product; (b) Compared with the behavior of standard inner

product, PR increases the proportion of the direction gradi-

ent which is the key factor for optimization; (c) As the PR

Product maintains the linear property, it can be a reliable

substitute for inner product operation in the fully connected

layer, convolutional layer and recurrent layer. By reliable,

we mean it does not introduce any additional parameters

and matches with the original configurations such as activa-

tion function, batch normalization and dropout operation.

We showcase the effectiveness of PR Product on image

classification and image captioning tasks. For both tasks,

we replace all the fully connected layers, convolutional lay-

ers and recurrent layers of the backbone models with their

PR Product version. Experiments on image classification

demonstrate that the PR Product can typically improve the

accuracy of the state-of-the-art classification models. More-

over, our analysis on image captioning confirms that the PR

Product definitely change the dynamics of neural networks.

Without any tricks of improving the performance, like scene

graph and ensemble strategy, our PR Product version of

captioning model achieves results on par with the state-of-

the-art models.

In summary, the main contributions of this paper are:

• We propose the PR Product, a reliable substitute for

the standard inner product of weight vector w and

data vector x in neural networks, which changes the

backpropagation while keeping the forward propaga-

tion identical;

• We develop the PR-FC, PR-CNN and PR-LSTM,

which applies the PR Product into the fully

connected layer, convolutional layer and LSTM

layer respectively;

• Our experiments on image classification and image

captioning suggest that the PR Product is generally

effective and can become a basic operation of neural

networks.

2. Related Work

Variants of Backpropagation. Several recent investiga-

tions have considered variants of standard backpropagation.

In particular, [22] presents a surprisingly simple back-

propagation mechanism that assigns blame by multiplying

errors signals with random weights, instead of the synaptic

weights on each neuron, and further downstream. [2]

exhaustively considers many Hebbian learning algorithms.

The straight-through estimator proposed in [4] heuristically

copies the gradient with respect to the stochastic output

directly as an estimator of the gradient with respect to

the sigmoid argument. [43] proposes Linear Backprop

that backpropagates error terms only linearly. Different

from these methods, our proposed PR Product changes the

gradient of inner product function during backpropagation

while maintaining the identical forward propagation.

Image Classification. Deep convolutional neural net-

works [18, 32, 11, 12, 45, 37, 13] have become the dominant

machine learning approaches for image classification. To

train very deep networks, shortcut connections have become

an essential part of modern networks. For example, High-

way Networks [33, 34] present shortcut connections with

gating functions, while variants of ResNet [11, 12, 45, 37]

use identity shortcut connections. DenseNet [13], a more

recent network with several parallel shortcut connections,

connects each layer to every other layer in a feed-forward

fashion.

Image Captioning. In the early stage of vision to language

field, template-based methods [7, 20] generate the caption

templates whose slots are filled in by the outputs of object

detection, attribute classification and scene recognition,

which results in captions that sound unnatural. Recently,

inspired by the advances in the NLP field, models based
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encoder-decoder architecture [17, 16, 35, 14] have achieved

striking advances. These approaches typically use a pre-

trained CNN model as the image encoder, combined with an

RNN decoder trained to predict the probability distribution

over a set of possible words. To better incorporate the

image information into the language processing, visual

attention for image captioning was first introduced by [38]

which allows the decoder to automatically focus on the

image subregions that are important for the current time

step. Because of remarkable improvement of performance,

many extensions of visual attention mechanism [44, 5, 40,

9, 27, 1] have been proposed to push the limits of this

framework for caption generation tasks. Except for those

extensions to visual attention mechanism, several attempts

[31, 26] have been made to adapt reinforcement learning

to address the discrepancy between the training and the

testing objectives for image captioning. More recently,

some methods [41, 15, 25, 39] exploit scene graph to

incorporate visual relationship knowledge into captioning

models for better descriptive abilities.

3. The Projection and Rejection Product

In this section, we begin by shortly revisiting the stan-

dard inner product of weight vector w and data vector x.

Then we formally propose the Projection and Rejection

Product (PR Product) which involves the information of

both vector projection of x onto w and vector rejection

of x from w. Moreover, we analyze the gradient of PR

Product. Finally, we develop the PR Product version of

fully connected layer, convolutional layer and LSTM layer.

In the following, for the simplicity of derivation, we only

consider a single data vector x ∈ Rd and a single weight

vector w ∈ Rd except for the last subsection.

3.1. Revisit the Inner Product in Neural Networks

In Euclidean space, the inner product P of the two

Euclidean vectors w and x is defined by:

P (w,x) = w
T
x = ‖w‖2‖x‖2 cos θ (1)

where ‖ ∗ ‖2 is the Euclidean length of vector ∗, and θ is

the angle between w and x with the range of [0, 2π). From

this formulation, we can observe that the angle θ explicitly

affects the state of neural networks.

The gradient of P w.r.t. θ. Neither the weight vector w

nor the data vector x is the function of θ, so it is easy to get:

∂P

∂θ
= −‖w‖2‖x‖2 sin θ (2)

The gradient of P w.r.t. w. From Equation (1) and Figure

1 (a), it is easy to obtain the gradient function of P w.r.t. w:

∂P

∂w
= x = Px +Rx (3)

Here, Rx is the direction gradient of w. From Figure 1

(a) and Equation (2), we can see that either the value of the

gradient of P w.r.t. θ or the length of Rx is close to 0 with

θ close to 0 or π, which would hamper the optimization of

neural networks.

From Figure 1 (a),we can easily get the length of Px:

‖Px‖2 = ‖x‖2 |cos θ| (4)

And the length of Rx is:

‖Rx‖2 = ‖x‖2 |sin θ| (5)

So equation (1) can be reformulated as:

P (w,x) =

{

−‖w‖2‖Px‖2, if π/2 ≤ θ < 3π/2;

‖w‖2‖Px‖2, otherwise.

= sign(cos θ)‖w‖2‖Px‖2

(6)

where sign(*) denotes the sign of *. We can observe that

this formulation only contains the information of vector

projection of x on w, Px. As shown in Figure 1, the

vector projection Px changes very little when θ is near 0

or π, which may be a block to the optimization of neural

networks. Although the length of the rejection vector Rx is

small when θ is close to 0 or π, it varies greatly and thus is

able to support the optimization of neural networks. That is

our basic motivation for the proposed PR Product.

3.2. The PR Product

In order to take advantage of the vector rejection, the
simplest way is to replace the ‖Px‖2 in Equation (6) with
‖Px‖2 + ‖Rx‖2. But the trends of ‖Px‖2 and ‖Rx‖2 with
θ are inconsistent, so we employ ‖x‖2 − ‖Rx‖2 to involve
the information of vector rejection. In addition, we utilize
two coefficients to maintain the linear property, which are
held fixed during the backward pass. To be more detailed,
we derive the PR Product as follows:

PR(w,x)

=sign(cos θ)‖w‖2

[

‖Rx‖2
‖x‖2

‖Px‖2 +
‖Px‖2
‖x‖2

(‖x‖2 − ‖Rx‖2)

]

=‖w‖2
[

|sin θ|‖Px‖2sign(cos θ) + cos θ(‖x‖2 − ‖Rx‖2)
]

=‖w‖2‖x‖2
[

|sin θ| cos θ + cos θ(1− |sin θ|)
]

(7)

For clarity, we denote by PR the proposed product func-

tion. Note that the * denotes detaching * from neural

networks. By detaching, we mean * is considered as a

constant rather than a variable during backward propaga-

tion. Compared with the standard inner product formulation

(Equation (6) or (1)), this formulation involves not only

the information of vector projection Px but also the one of

vector rejection Rx without any additional parameters. We
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call this formulation the Projection and Rejection Product

or PR Product for brevity.

Although the PR Product does not change the outcome

during forward pass, compared with the standard inner

product, it changes the gradients during backward pass. In

the following, we theoretically derive the gradient of PR
w.r.t. θ and w during backpropagation.

The gradient of PR w.r.t. θ. We just need to calculate the

gradients of trigonometric functions except for the detached

ones in Equation (7). When θ is in the range of [0, π), the

gradient of PR w.r.t. θ is:

∂PR

∂θ
= ‖w‖2‖x‖2

(

− sin2 θ − cos2 θ
)

= −‖w‖2‖x‖2

(8)

When θ is in the range of [π, 2π), the gradient of PR w.r.t.

θ is:

∂PR

∂θ
= ‖w‖2‖x‖2

(

sin2 θ + cos2 θ
)

= ‖w‖2‖x‖2

(9)

We use the following unified form to express the above two

cases:

∂PR

∂θ
= ‖w‖2‖x‖2sign (− sin θ) (10)

Compared with the standard inner product (Equation

(2)), the PR Product changes the gradient w.r.t. θ from a

smoothing function to a hard one. One advantage of this

is the gradient w.r.t. θ does not decrease as θ gets close to

0 or π, providing continuous power for the optimization of

neural networks.

The gradient of PR w.r.t. w. Above we discussed the

gradient w.r.t. θ, an implicit variable in neural networks. In

this part, we explicitly take a look at the differences between

the gradients of the standard inner product and our proposed

PR Product w.r.t. w .

For the PR Product, we derive the gradient of PR w.r.t.

w from Equation (7) and Equation (10) as follows :

∂PR

∂w

=
w

‖w‖2
‖x‖2 cos θ + ‖w‖2‖x‖2sign(− sin θ)

∂θ

∂w

=Px + ‖w‖2‖x‖2sign(− sin θ)
dθ

d cos θ

∂ cos θ

∂w

=Px +
‖w‖2‖x‖2
| sin θ|

∂
(

wTx
‖w‖2‖x‖2

)

∂w

=Px +
‖w‖2‖x‖2
| sin θ|

(I −Mw )x

‖w‖2‖x‖2

=Px +
Rx

| sin θ|

=Px + ‖x‖2
Rx

‖Rx‖2

=Px + ‖x‖2Erx, with Mw =
ww

T

‖w‖22

(11)

Where Mw is the projection matrix that projects onto the

weight vector w, which means Mwx = Px, and Erx is

the unit vector along the vector rejection Rx. Similar to

Equation (3), the Px is the length gradient part and the

‖x‖2Erx is the direction gradient part. For the length gra-

dient, the cases in P and PR are identical. For the direction

gradient part, however, the one in PR is consistently larger

than the one in P , except for the almost impossible cases

when θ is equal to π/2 or 3π/2. So PR increases the

proportion of the direction gradient. In addition, the length

of direction gradient in PR is independent of the value of θ.

Figure 1 shows the comparison of the gradients of the two

formulations w.r.t. w.

3.3. PRX

The PR Product is a reliable substitute for the standard

inner product operation, so it can be applied into many

existing deep learning modules, such as fully connected

layer(FC), convolutional layer(CNN) and LSTM layer. We

denote the module X with PR Product by PR-X. In this

section, we show the implementation of PR-FC, PR-CNN

and PR-LSTM.

PR-FC. To get PR-FC, we just replace the inner product

of the data vector x and each weight vector in the weight

matrix with the PR Product. Suppose the weight matrix W

contains a set of n column vectors, W = (w1,w2, ...,wn),
so the output vector of PR-FC can be calculated as follows:

PR-FC(W ,x)

= (PR(w1,x), PR(w2,x), ..., PR(wn,x)) + b
(12)

where b represents an additive bias vector if any.

PR-CNN. To apply the PR Product into CNN, we convert

the weight tensor of the convolutional kernel and the data
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Model CIFAR10 CIFAR100

ResNet110 6.23 28.08

PR-ResNet110 5.97 27.88

PreResNet110 5.99 27.08

PR-PreResNet110 5.64 26.82

WRN-28-10 4.34 19.50

PR-WRN-28-10 4.03 19.57

DenseNet-BC-100-12 4.63 22.88

PR-DenseNet-BC-100-12 4.46 22.64

Table 1. Error rates on CIFAR10 and CIFAR100. The best

results are highlighted in bold for the models with the same

backbone architectures. All values are reported in percentage. The

PR Product version can typically outperform the corresponding

backbone models.

tensor in the sliding window into vectors in Euclidean

space, and then use the PR Product to calculate the out-

put. Suppose the size of the convolution kernel w is

(k1, k2, Cin), so the output at position (i, j) is:

PR-CNN(w,x)ij

=PR(flatten(w), f latten(x[ij])) + b
(13)

where flatten(w) and flatten(x[ij]) ∈ Rk1∗k2∗Cin , x[ij]

represents the data tensor in the sliding window correspond-

ing to output position (i,j), and b represents an additive bias

if any.
PR-LSTM. To get the PR Product version of LSTM, just
replace all the perceptrons in each gate function with the
PR-FC. For each element in input sequence, each layer
computes the following function:

it = σ
(

PR-FC(Wii ,xt) + PR-FC(Whi ,h(t−1)) + bi

)

ft = σ
(

PR-FC(Wif ,xt) + PR-FC(Whf ,h(t−1)) + bf

)

gt = tanh
(

PR-FC(Wig ,xt) + PR-FC(Whg ,h(t−1)) + bg

)

ot = σ
(

PR-FC(Wio ,xt) + PR-FC(Who ,h(t−1)) + bo

)

ct = ft ∗ c(t−1) + it ∗ gt

ht = ot ∗ tanh(ct)

(14)

where σ is the sigmoid function, and * is the Hadamard

product.

In the following, we conduct experiments on image

classification to validate the effectiveness of PR-CNN. And

then we show the effectiveness of PR-FC and PR-LSTM on

image captioning task.

4. Experiments on Image Classification

4.1. Classification Models

We employ various classic networks such as

ResNet [11], PreResNet [12], WideResNet [45] and

DenseNet-BC [13] as the backbone networks in our

Language PR-LSTM

Attention PR-LSTM

Visual 

Attention

Softmax

{v1, ..., vk}

tv̂

2

1h
t

1

1h
t

1h
t

2h
t

1h
t

2h
t

ty

gve tW 
Figure 2. Decoder module used in our captioning model. The

input to the Attention PR-LSTM consists of the global image

representation vg and the embedding of the previously generated

word WeΠt. The input to the Language PR-LSTM consists of the

attended image representation v̂t concatenated with the output of

the Attention PR-LSTM. The dotted arrows represent the transfer

of the hidden states of PR-LSTM layers.

experiments. In particular, we consider ResNet with 110

layers denoted by ResNet110, PreResNet with 110 layers

denoted by PreResNet110, and WideResNet with 28 layers

and a widen factor of 10 denoted by WRN-28-10, as

well as DenseNet-BC with 100 layers and a growth rate

of 12 denoted by DenseNet-BC-100-12. For ResNet110

and PreResNet110, we use the classic basic block. To

get the corresponding PR Product version models, all

the fully connected layers and the convolutional layers in

the backbone models are replaced with our PR-FC and

PR-CNN respectively, and we denote them by PR-X, such

as PR-ResNet110, PR-PreResNet110, PR-WRN-28-10 and

PR-DenseNet-BC-100-12 respectively.

4.2. Dataset and Settings

We conduct our image classification experiments on the

CIFAR dataset [19], which consists of 50k and 10k images

of 32 × 32 pixels for the training and test sets respectively.

The images are labeled with 10 and 100 categories, namely

CIFAR10 and CIFAR100 datasets. We present experiments

trained on the training set and evaluated on the test set. We

follow the simple data augmentation in [21] for training:

4 pixels are padded on each side and a 32 × 32 crop is

randomly sampled from the padded image or its horizontal

flip. For testing, we only evaluate the single view of the

original 32 × 32 image. Note that our focus is on the

effectiveness of our proposed PR Product, not on pushing

the state-of-the-art results, so we do not use any more data

augmentation and training tricks to improve accuracy.
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Product B1 B2 B3 B4 M RL C S

P 76.7 60.8 47.3 36.8 28.1 56.9 116.0 21.1

R 76.3 60.4 46.7 36.0 27.7 56.5 113.3 20.6

PR 76.8 61.0 47.5 37.0 28.2 57.1 116.1 21.1

P∗ 80.3 64.9 50.4 38.6 28.6 58.4 127.2 22.4

R∗ 80.0 64.6 49.8 37.6 28.3 57.8 125.5 22.0

PR∗ 80.4 64.9 50.5 38.7 28.8 58.5 128.3 22.4

Table 2. Performance comparison of different products on the

test portion of Karpathy splits on MS COCO dataset, where Bn

is short for BLEU-n, M is short for METEOR, RL is short for

ROUGE-L, C is short for CIDEr, and S is short for SPICE. The

top part is for cross-entropy training, and the bottom part is for

CIDEr optimization (marked with ∗). All values are reported in

percentage, with the highest value of each entry highlighted in

boldface.

4.3. Results and Analysis

For fair comparison, not only are the PR-X models

trained from scratch but also the corresponding backbone

models, so our results may be slightly different from the

ones presented in the original papers due to some hyper-

parameters like random number seeds. The strategies

and hyper-parameters used to train the respective back-

bone models, such as the optimization solver, learning rate

schedule, parameter initialization method, random seed for

initialization, batch size and weight decay, are adopted

to train the corresponding PR-X models. The results are

shown in Table 1 and some training curves are shown in

the supplementary material, from which we can see that the

PR-X can typically improve the corresponding backbone

models on both CIFAR10 and CIFAR100. On average, it

reduces the top-1 error by 0.27% on CIFAR10 and 0.16%

on CIFAR100. It is worth emphasizing that the PR-X

models don’t introduce any additional parameters and keep

the same hyper-parameters as the corresponding backbone

models.

5. Experiments on Image Captioning

5.1. Captioning Model

We utilize the widely used encoder-decoder framework

[1, 27] as our backbone model for image captioning.

Encoder. We use the Bottom-Up model proposed in [1] to

generate the regional representations and the global repre-

sentation of a given image I . The Bottom-Up model em-

ploys Faster R-CNN [29] in conjunction with the ResNet-

101 [11] to generate a variably-sized set of k represen-

tations, A = {a1, ...,ak}, ai ∈ R2048, such that each

representation encodes a salient region of the image. We

use the global average pooled image representation ag =
1
k

∑

i ai as our global image representation. For modeling

convenience, we use a single layer of PR-FC with rectifier
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Figure 3. The minimum of | sin θ| of the hidden-hidden transfer

part in the Attention LSTM.

activation function to transform the representation vectors

into new vectors with dimension d:

vi = ReLU (PR-FC(Wa ,ai)) ,vi ∈ Rd (15)

vg = ReLU (PR-FC(Wg ,ag)) ,vg ∈ Rd (16)

where Wa and Wg are the weight parameters. The

transformed V = {v1, ...,vk} is our defined regional

image representations and vg is our defined global image

representation.

Decoder. For decoding image representations V and vg

to sentence description, as shown in Figure 2, we utilize an

visual attention model with two PR-LSTM layers according

to recent methods [1, 28, 41], which are characterized as

Attention PR-LSTM and Language PR-LSTM respectively.

We initialize the hidden state and memory cell of each PR-

LSTM as zero.

Given the output h
1
t of the Attention PR-LSTM, we

generate the attended regional image representation v̂t

through the attention model, which is broadly adopted in

recent previous work [5, 27, 1]. Here, we use the PR

Product version of visual attention model expressed as

follows:

f1 = tanh
(

PR-FC(Wv ,V ) + PR-FC(Wh1 ,h
1
t )
)

f2 = PR-FC(Wz , f1)

αt = softmax (f2)

v̂t =

k
∑

i=1

αt,ivi

(17)

where Wv ,Wh1 and Wz are learned parameters, f1 and f2

are the outputs of the first layer and the second layer in the

attention model respectively. αt is the attention weight over

k regional image representations, and v̂t is the attended

image representation at time step t.

5.2. Dataset and Settings

Dataset. We evaluate our proposed method on the MS

COCO dataset [23]. MS COCO dataset contains 123287
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

LSTM-A [42] 73.5 56.6 42.9 32.4 25.5 53.9 99.8 18.5

SCN-LSTMΣ [8] 74.1 57.8 44.4 34.1 26.1 - 104.1 -

Adaptive [27] 74.2 58.0 43.9 33.2 26.6 - 108.5 -

SCST:Att2allΣ [31] - - - 32.2 26.7 54.8 104.7 -

Up-Down [1] 77.2 - - 36.2 27.0 56.4 113.5 20.3

Stack-Cap [9] 76.2 60.4 46.4 35.2 26.5 - 109.1 -

ARNet [6] 74.0 57.6 44.0 33.5 26.1 54.6 103.4 19.0

NBT [28] 75.5 - - 34.7 27.1 - 107.2 20.1

GCN-LSTMsem [41] 77.3 - - 36.8 27.9 57.0 116.3 20.9

Ours:PR 76.8 61.0 47.5 37.0 28.2 57.1 116.1 21.1

EmbeddingReward∗ [30] 71.3 53.9 40.3 30.4 25.1 52.5 93.7 -

LSTM-A∗ [42] 78.6 - - 35.5 27.3 56.8 118.3 20.8

SCST:Att2allΣ∗ [31] - - - 35.4 27.1 56.6 117.5 -

Up-Down∗ [1] 79.8 - - 36.3 27.7 56.9 120.1 21.4

Stack-Cap∗ [9] 78.6 62.5 47.9 36.1 27.4 56.9 120.4 20.9

GCN-LSTM∗
sem [41] 80.5 - - 38.2 28.5 58.3 127.6 22.0

CAVP∗ [25] - - - 38.6 28.3 58.5 126.3 21.6

SGAE∗ [39] 80.8 - - 38.4 28.4 58.6 127.8 22.1

Ours:PR∗ 80.4 64.9 50.5 38.7 28.8 58.5 128.3 22.4

Table 3. Performance compared with the state-of-the-art methods on the Karpathy test split of MS COCO. Σ indicates ensemble. The top

part is for cross-entropy training, and the bottom part is for REINFORCE-based optimization (marked with ∗). All values are reported in

percentage, with the highest value of each entry highlighted in boldface.

images labeled with at least 5 captions. There are 82783

training images and 40504 validation images, and it pro-

vides 40775 images as the test set for online evaluation as

well. For offline evaluation, we use a set of 5000 images for

validation, a set of 5000 images for test and the remains for

training, as given in [16]. We truncate captions longer than

16 words and then build a vocabulary of words that occur at

least 5 times in the training set, resulting in 9487 words.

Implementation Details. In the captioning model, we

set the number of hidden units in each LSTM or PR-

LSTM to 512, the embedding dimension of a word to

512, and the embedding dimension of image representation

to 512. All of our models are trained according to the

following recipe. We train all models under the cross-

entropy loss using ADAM optimizer with an initial learning

rate of 5 × 10−4 and a momentum parameter of 0.9. We

anneal the learning rate using cosine decay schedule and

increase the probability of feeding back a sample of the

word posterior by 0.05 every 5 epochs until we reach a

feedback probability 0.25 [3]. We then run REINFORCE

training to optimize the CIDEr metric using ADAM with a

learning rate 5 × 10−5 with cosine decay schedule and a

momentum parameter of 0.9. During CIDEr optimization

mode and testing mode, we use a beam size of 5. Note

that in all our model variants, the untransformed image

representations A and ag from the Encoder are fixed and

not fine-tuned. As our focus is on the effectiveness of

our proposed PR Product, so we just exploit the widely

used backbone model and settings, without any additional

tricks of improving the performance, like scene graph and

ensemble strategy.

5.3. Performance Comparison and Experimental
Analysis

The effectiveness of PR Product. To test the effectiveness

of PR Product, we first compare the performance of models

using the following different substitutes for inner product

on Karpathy’s split of MS COCO dataset:

• P Product: This is just the standard inner product.

In Euclidean geometry, it is also called projection

product, so we abbreviate it as P Product.

• R Product: Contrary to P Product, R Product only

involves the information of vector rejection of x from

w. To keep the same range and sign as P Product, we

formulate the R Product as follows:

R(w,x) = sign(cos θ)‖w‖2(‖x‖2 − ‖Rx‖2) (18)

• PR Product: This is the proposed PR Product. Ev-

idently, the PR Product is the combination of the P

Product and R Product with the relationship as follows:

PR(w,x) = | sin θ|P (w,x) + | cos θ|R(w,x) (19)

For fair comparison, results are reported for models

trained with cross-entropy loss and models optimized for
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BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

C5 C40 C5 C40 C5 C40 C5 C40 C5 C40 C5 C40 C5 C40

SCN-LSTMΣ [8] 74.0 91.7 57.5 83.9 43.6 73.9 33.1 63.1 25.7 34.8 54.3 69.6 100.3 101.3

AdaptiveΣ [27] 74.8 92.0 58.4 84.5 44.4 74.4 33.6 63.7 26.4 35.9 55.0 70.5 104.2 105.9

SCST:Att2all∗Σ [31]78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7

Up-Down∗Σ [1] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

LSTM-A [42] 78.7 93.7 62.7 86.7 47.6 76.5 35.6 65.2 27.0 35.4 56.4 70.5 116.0 118.0

PG-BCMR∗ [26] 75.4 91.8 59.1 84.1 44.5 73.8 33.2 62.4 25.7 34.0 55.0 69.5 101.3 103.2

MAT [24] 73.4 91.1 56.8 83.1 42.7 72.7 32.0 61.7 25.8 34.8 54.0 69.1 102.9 106.4

Stack-Cap∗ [9] 77.8 93.2 61.6 86.1 46.8 76.0 34.9 64.6 27.0 35.6 56.2 70.6 114.8 118.3

Ours:PR∗ 79.9 94.5 64.3 88.2 49.6 79.0 37.7 68.3 28.4 37.5 58.0 73.0 122.3 124.1

Table 4. Performance compared with the state-of-the-art methods on the online MS COCO test server. Σ indicates ensemble, and ∗ indicates

fine-tuned by REINFORCE-based optimization. The top part is for the ensemble models, and the bottom part is for the singles. All values

are reported in percentage, with the highest value of each entry highlighted in boldface.

CIDEr score on Karpathy’s split of MS COCO dataset,

as shown in Table 2. Although the R Product does not

perform as well as the P Product or PR Product, the results

show that the vector rejection of data vector from weight

vector can be used to optimize neural networks. Compared

with the P Product and R Product, the PR Product achieves

performance improvement across all metrics regardless of

cross-entropy training or CIDEr optimization, which exper-

imentally proves the cooperation of vector projection and

vector rejection is beneficial to the optimization of neural

networks. To intuitively illustrate the advantage of the PR

Product, we show some examples of image captioning in

supplementary material.

To better understand how the PR Product affects neural

networks, we plot the minimum of | sin θ| to investigate

the dynamics of neural networks to some extent. Figure 3

shows the statistic of the hidden-hidden transfer part in the

Attention LSTM, and plots for more layers can be found

in the supplementary material. For most of the layers, the

minimum of | sin θ| in PR Product version is larger than the

one in P Product, which means the weight vector and data

vector in PR Product are more orthogonal. We argue this is

the reason for PR Product to take effect.

Comparison with State-of-the-Art Methods. To further

verify the effectiveness of our proposed method, we also

compare the PR Product version of our captioning model

with some state-of-the-art methods on Karpathy’s split of

MS COCO dataset. Results are reported in Table 3, of

which the top part is for cross-entropy loss and the bottom

part is for CIDEr optimization.

Among those methods, SCN-LSTM [8] and

SCST:Att2all [31] use the ensemble strategy. GCN-

LSTM [41], CAVP [25] and SGAE [39] exploit information

of visual scene graphs. Even though we do not use any

of the above means of improving performance, our PR

Product version of captioning model achieves the best

performance in most of the metrics, regardless of cross-

entropy training or CIDEr optimization. In addition, we

also report our results on the official MS COCO evaluation

server in Table 4. As the scene graph models can greatly

improve the performance, for fair comparison, we only

report the results of methods without scene graph models.

It is noteworthy that we just use the same model as reported

in Table 3, without retraining on the whole training and

validation images of MS COCO dataset. We can see

that our single model achieves competitive performance

compared with the state-of-the-art models, even though

some models exploit ensemble strategy.

6. Conclusion

In this paper, we propose a reliable substitute for the

inner product of weight vector w and data vector x, the PR

Product, which involves the information of both the vector

projection Px and the vector rejection Rx. The length of

the direction gradient of PR Product w.r.t. w is consistently

larger than the one in standard inner product. In particular,

we show the PR Product version of the fully connected

layer, convolutional layer and LSTM layer. Applying

these PR Product version modules to image classification

and image captioning, the results demonstrate the robust

effectiveness of our proposed PR Product. As the basic

operation in neural networks, we will apply the PR Product

to other tasks like object detection.

Acknowledgement. This work was supported in part by

the NSFC Project under Grants 61771321 and 61872429,

in part by the Guangdong Key Research Platform of Uni-

versities under Grants 2018WCXTD015, in part by the

Science and Technology Program of Shenzhen under Grants

KQJSCX20170327151357330, JCYJ20170818091621856,

and JSGG20170822153717702, and in part by the Interdis-

ciplinary Innovation Team of Shenzhen University.

6020



References

[1] Peter Anderson, Xiaodong He, Chris Buehler, Damien

Teney, Mark Johnson, Stephen Gould, and Lei Zhang.

Bottom-up and top-down attention for image captioning and

visual question answering. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

volume 3, page 6, 2018.

[2] Pierre Baldi and Peter Sadowski. A theory of local learning,

the learning channel, and the optimality of backpropagation.

Neural Networks, 83:51–74, 2016.

[3] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam

Shazeer. Scheduled sampling for sequence prediction

with recurrent neural networks. In Advances in Neural

Information Processing Systems, pages 1171–1179, 2015.

[4] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
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