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Figure 1. Person-in-WiFi. Top: WiFi antennas as sensors for person perception. Receiver antennas record WiFi signals as inputs to

Person-in-WiFi. The rest rows are, images used to annotate WiFi signals, and two outputs: person segmentation masks and body poses.

Abstract

Fine-grained person perception such as body segmenta-

tion and pose estimation has been achieved with many 2D

and 3D sensors such as RGB/depth cameras, radars (e.g.

RF-Pose), and LiDARs. These solutions require 2D images,

depth maps or 3D point clouds of person bodies as input.

In this paper, we take one step forward to show that fine-

grained person perception is possible even with 1D sensors:

WiFi antennas. Specifically, we used two sets of WiFi an-

tennas to acquire signals, i.e., one transmitter set and one

receiver set. Each set contains three antennas horizontally

lined-up as a regular household WiFi router. The WiFi sig-
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nal generated by a transmitter antenna, penetrates through

and reflects on human bodies, furniture, and walls, and then

superposes at a receiver antenna as 1D signal samples. We

developed a deep learning approach that uses annotations

on 2D images, takes the received 1D WiFi signals as input,

and performs body segmentation and pose estimation in an

end-to-end manner. To our knowledge, our solution is the

first work based on off-the-shelf WiFi antennas and stan-

dard IEEE 802.11n WiFi signals. Demonstrating compara-

ble results to image-based solutions, our WiFi-based person

perception solution is cheaper and more ubiquitous than

radars and LiDARs, while invariant to illumination and has

little privacy concern comparing to cameras.
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1. Introduction

To conduct fine-grained person perception like human

body segmentation and pose estimation, three main cate-

gories of sensors have been used: cameras (2D images),

radars (depth maps), and LiDARs (3D point clouds). These

approaches require a minimal spatial resolution of sensor

outputs. For instance, pixel resolution of 300⇥ 300 pixels

from cameras [30], depth resolution of 2 cm for radars [59],

or angular resolution comparable to 32-beam LiDARs [54,

33]. Moreover, camera-based solutions are limited by tech-

nical challenges such as variety of clothing, background,

lighting and occlusion, and social limitations such as pri-

vacy concerns. Radar sensors require dedicated hardware,

e.g., RF-Pose [59] and RF-Capture [1] produce depth maps

by the Frequency Modulated Continuous Wave (FMCW)

technology, which requires carefully assembled and syn-

chronized 16 + 4 T-shaped antenna array with very broad

bandwidth (1.78 GHz). High-definition LiDARs are very

expensive and power-consuming, therefore are difficult to

apply to daily and household use.

In this paper, we propose a fine-grained person percep-

tion solution using prevalent WiFi antennas and standard

IEEE 802.11n WiFi signals. Such WiFi devices is wildly

available in warehouse, hospital, office, home where the low

illumination, blind spots, privacy issues make cameras not

applicable, while radars and LiDARs are too expensive and

power-consuming to install. The challenge is that a WiFi

antenna can only receive signal as the amplitude/phase of

Electromagnetic (EM) waves. The received amplitude is an

one dimensional summary of the 3D space. Reconstruct-

ing fine-grained spatial information from the 1D summary

is a severely ill-posed problem. It is even more challeng-

ing for person perception: (1) Joint interference on WiFi

signal by the human body and environment via the multi-

ple propagation path effect [57]. (2) Variety of EM prop-

erties among bodies due to bone, muscle and fat distribu-

tion [51]. (3) Temporal physical changes due to breath and

heartbeats [52]. Due to these challenges, WiFi antennas

have only been explored preliminarily on detecting the pres-

ence or a rough body mass even with a large antenna array

[23, 22]. To the best of our survey, using WiFi devices on

fine-grained person perception has never been addressed.

To solve above ill-posed problem, our solution learns

from many 1D samples of the environment and human bod-

ies. Specifically, we used two sets of off-the-shelf WiFi

devices, one as transmitter set (T ) and the other as re-

ceiver set (R). Three antennas were lined up in each set

similar to a standard WiFi router (shown in Figure 1).

WiFi signals were recorded at 30 frequencies centered at

2.4 GHz (IEEE 802.11n WiFi communication standard).

We recorded RGB videos and computed body segmentation

masks and body joints to annotate the signals. This setting

provides 9 propagating pairs among T and R antennas, 30

1D superposing patterns per antenna pairs, and multiple 2D

spatial annotations of human bodies. We developed a deep

learning approach that uses annotations from RGB videos,

WiFi samples as input, and reconstructs 2D body segmenta-

tion mask and body joint coordinates. Experiments showed

that our approach has a comparable ability of person per-

ception as what computer vision approaches can achieve

on 2D images. Figure 1 shows examples of our Person-

in-WiFi approach. To our knowledge, this is the first work

that demonstrates:

1. Fine-grained person perception can be achieved using

pervasive WiFi antennas.

2. To sense the human body in 2D, the physical spatial

layout of sensors can be as low as one dimension.

3. A deep learning solution to map WiFi signals to human

body segmentation mask and joint coordinates.

2. Related Work on Person Perception

Camera-based. Deep learning has significantly ad-

vanced human pose estimation [48, 47, 10, 14, 37, 55, 55,

9] on images captured by monocular cameras, as well as

those with optical flow and motion captures [24, 16, 36, 61].

Recent prevalent approaches [20, 11, 15, 35, 56] use a pow-

erful person detector such as Faster R-CNN [42], SSD [30]

Yolo [41], FPN [29] to crop Region-of-Interest of each per-

son from image feature maps. Then, body-wise pose esti-

mation is done independently on the cropped feature maps.

This two-stage schema gains higher performance than pre-

vious approaches those are based on global joint heat maps

such as OpenPose [9].

Unfortunately, we cannot benefit from this two-stage

schema because it is not possible to crop 2D pixels of the

human body from WiFi signals. Inspired by [9], we de-

veloped a deep learning approach to generate Joint Heat

Maps (JHMs) and Part Affinity Fields (PAFs) directly from

WiFi signals. Each JHM encodes one type of joint of all

persons, and each PAF encodes the direction and length of

person limbs. Then person-wise poses are computed from

the JHMs and PAFs similar to [9].

Radar-based. Adib et.al. [2] introduced a Frequency

Modulated Continuous Wave (FMCW) radar system with

broad bandwidth from 5.56 GHz to 7.25 GHz for indoor hu-

man localization, obtaining a locating resolution of 8.8 cm.

This system is built with the Software-Defined Radar (SDR)

toolkit and T-shaped antenna arrays. Besides, this sys-

tem is well-synchronized to enable computation on Time-

of-Flight (ToF) of EM wave undergoing transmission, re-

fraction, and reflection, before being received. The ToFs

are then used to generate depth maps of the environment.

In [1], they promoted the system by focusing on moving
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Figure 2. WiFi CSI samples recorded during single person moving and multiple person interaction around 320 seconds. The orange curve

contains CSI samples of one WiFi signal frequency between one transmitter antenna and one receiver antenna.

person, and generate a rough single person outline with se-

quential depth maps. Recently, they applied deep learning

approaches to do fine-grained human pose estimation using

a similar system, termed RF-Pose [59].

LiDAR-based. LiDAR captures 3D point clouds and has

been widely used in autonomous robots for Simultaneous

Localization and Mapping (SLAM) [21, 13], person detec-

tion [54, 33], tracking [45, 28] and surveillance [7, 8, 44].

LiDAR sensors provide less spatial resolution than cameras.

For instance, a Full HD camera with 90� diagonal field-of-

view provides an angular resolution of ⇡ 0.03�, whereas

the most advanced LiDARs on the market can provide up

to ⇡ 0.08� resolution . Affordable LiDARs usually have at

least one magnitude lower angular resolution than the much

more affordable cameras. Moreover, LiDARs have sam-

pling rate in the range of 5-20 Hz, which is much lower than

other sensors such as cameras (20-60 Hz) or WiFi adapters

(100 Hz). To increase robustness, many researchers com-

bine LiDAR with RGB cameras [38, 32, 19] or with motion

sensors [12] for pedestrian detection.

WiFi-based. WiFi has been only explored for coarse-

grained perception such as indoor localization with EM

propagating models [3, 27] and classifying a closed-set of

activities, such as opening a door [39], keystroke [4] , and

hand control [50]. Wision [23] generated a bubble-like 2D

heatmap to image single static person using a 8 ⇥ 8 WiFi

antenna array. [22] generated the hologram of static objects

by sweeping a WiFi antenna in 2D space and recording sig-

nals, which virtually simulates a 2D antenna array.

Till now, fine-grained person perception with WiFi sig-

nal, such as body segmentation and pose estimation, has not

been well-explored. In this paper, we take one step forward

to make this happen.

3. Person Perception with WiFi Signals

3.1. Methodology

We first consider the simplest setting W(·) of a WiFi

sensing system (Figure 3 (a)): one transmitting antenna, one

receiving antenna and one EM frequency. A person stands

still between two antennas, and one pulse signal broadcasts

from the transmitting antenna. Due to the different EM

properties of the human body from the floor, ceiling, fur-

(a)
 

 
(b)

𝐻1 =𝒲(𝑃,𝐸,𝑇1,𝑅1,ℱ1) 𝑇1 

𝑇1 𝑇2 𝑇3 

Settings CSI Equations

𝐻1×1×1 =𝒲(𝑃,𝐸,𝑇1,𝑅1,ℱ1) 

𝐻3×3×30 =𝒲(𝑃,𝐸,𝑇3,𝑅3,ℱ30) 
𝐻2×2×30 =𝒲(𝑃,𝐸,𝑇2,𝑅2,ℱ30) 

𝑅1 
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𝒲(∙) 

Figure 3. WiFi sensing system. H: CSI sample, P : person body,

E: environment, T : transmitter antenna, R: receiver antenna, F :

EM frequency.

niture, etc., the signal penetrates, refracts and reflects at

countless points and directions on the body. This process

may probe rich spatial information of both human body (P )

and environment (E) for person perception.

Unfortunately, when the penetrated, refracted and re-

flected signals arrive at the receiving antenna, they super-

pose as a single signal sample, which is then extracted as

Channel State Information (CSI) [18]. As a result, the spa-

tial information probed by WiFi signals is collapsed to a

single CSI numeric, from which reconstructing the fine-

grained spatial information of human body is an ill-posed

problem. For instance, if we want to perceive human body

in a 100⇥100 px image coordinate (denoted by I(P )) from

one CSI signal (denoted by H), we have to solve 104 un-

knowns given one I(P ) = f(H) equation.

We alleviate this problem by using the following two so-

lutions: (1) Increasing the number of equations. In our per-

son perception equipment, as shown in Figure 3 (b), we use

3 transmitting antennas (T ), 3 receiving antennas (R) and

30 EM frequencies (F ). As a reward, the 3⇥ 3 = 9 propa-

gation pairs between antennas can capture the signals from

different paths. The 30 EM frequencies generate 30 differ-

ent superposing patterns at receiver antennas. This is be-

cause signals of different wavelengths can perceive objects

at different scales. Moreover, we record I as video frames

at 20 FPS and the CSI signals H at 100 Hz, such that each
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I corresponds to 5 sequential CSI samples. As a result, the

system in Figure 3 (b) generates 3 ⇥ 3 ⇥ 30 ⇥ 5 = 1350
equations of H for one setting W(·) of person (P ) and en-

vironment (E). Our problem is reduced to learn a less ill-

posed function I(P ) = f(H), with 1350 equations and 104

unknowns. Note that the number of antennas, EM frequen-

cies and CSI sampling rate are subject to IEEE 802.11n/ac

WiFi communication standard and cannot be increased in-

definitely. (2) Constraining the mapping complexity. We

generate multiple spatial representations of person body

from I(P ) and learn to map CSI to them using a multi-task

DNNs. All these representations share the same spatial lay-

out while highlight different body structures such as body

mask, joints and limbs. This approach basically augments

the data labels and further relieves the ill-posed problem.

3.2. WiFi Signal, CSI, and Hardware

In the prevalent IEEE 802.11n/ac WiFi communication

system, digital packages are carried in parallel by EM waves

with multiple frequencies, called orthogonal frequency divi-

sion multiplexing (OFDM) technology. These packages are

transmitted between multiple antenna pairs, called multiple-

input-multiple-output (MIMO). CSI is computed from sig-

nals between each pair of antennas at each frequency. A

CSI sample, ci , is computed as ci = yi /xi , where xi and yi

are the transmitted and received digital packages. Because

of this, ci is irrelevant to the digital content of packages,

but a measure of signal changes due to the reflection, re-

fraction, absorption of EM wave with the person body and

environment. Using CSI of WiFi, person perception is fun-

damentally possible.

To record CSI samples, we used Intel 5300 WiFi NICs

and leveraged an open source tool [18], recorded CSI of

30 EM waves with a bandwidth of 20 MHz centering at

the standard 2.4 GHz WiFi. The 2.4 GHz EM signal has a

wavelength of around 12.5 cm. Similar to standard house-

hold WiFi routers, we uniformly spaced three receiver an-

tennas within a wavelength, 12.5 cm. This setting maxi-

mizes the difference of CSI captured at different receiver

antennas. Figure 2 shows CSI samples corresponding to

different person poses and locations under the same scene.

4. Deep Learning for Person-in-WiFi

4.1. Data and Annotations

We recorded CSI at 100 Hz from receiver antennas and

videos at 20 FPS from an RGB camera attached with re-

ceiver antennas. The videos are only used for annotating

CSI. We synchronized CSI samples and video frames ac-

cording to time stamps. In order to reduce the correlation

between person body and environment, we collected data

under 6 scenes in a laboratory office and 10 scenes in a

classroom, shown in Figure 4. Eight volunteers were asked

Figure 4. Data collection under 16 indoor scenes.

Figure 5. Example of annotations from a video frame: body seg-

mentation mask computed by Mask R-CNN [20], JHMs and PAFs

computed by OpenPose [9].

# P 1 2 3 4 5 Total

# F 99,366 13,030 20,476 20,214 1,541 154,627

Table 1. Statistics of data: Number of concurrent persons (#P) and

number of video frames (#F).

to perform daily activities while the number of concurrent

persons in the video varied from 1 to 5 (See Table 1).

From each video frame, we generated ground truth an-

notation for CSI as follows. For body segmentation, we

used Mask R-CNN [20] to produce Segmentation Masks

(SM) of persons, a 1 ⇥ 46 ⇥ 82 tensor, where 46 and 82
are height and width, respectively. For pose estimation, as

explained in Section 2, we cannot use a person detector like

Faster R-CNN [42], SSD [30] or Yolo [41] to crop a per-

son from the input CSI. We used the latest Body-25 model

of OpenPose [9] to output body Joint Heat Maps (JHMs)

and Part Affinity Fields (PAFs). For each frame, JHMs is a

26⇥ 46⇥ 82 tensor, where the 26 corresponds to 25 joints

and 1 background. The PAFs is a 52⇥46⇥82 tensor where

52 is for x and y coordinates of 26 limbs. Figure 5 shows

an example of annotations on a video frame.

4.2. Networks

Our deep neural networks (Figure 6) maps a CSI tensor

to three output tensors: SM, JHMs and PAFs, where JHMs

and PAFs are used later for the joint association as in [9].

The input tensor (150⇥3⇥3) contains 5 CSI samples cor-
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