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Figure 1: Point-to-Point (P2P) Video Generation. Given a pair of (orange) start- and (red) end-frames in the video and 3D

skeleton domains, our method generates videos with smooth transitional frames of various lengths. The superb controllability

of p2p generation naturally facilitates the modern video editing process.

Abstract

While image synthesis achieves tremendous break-

throughs (e.g., generating realistic faces), video genera-

tion is less explored and harder to control, which limits

its applications in the real world. For instance, video edit-

ing requires temporal coherence across multiple clips and

thus poses both start and end constraints within a video se-

quence. We introduce point-to-point video generation that

controls the generation process with two control points: the

targeted start- and end-frames. The task is challenging

since the model not only generates a smooth transition of

frames, but also plans ahead to ensure that the generated

end-frame conforms to the targeted end-frame for videos

of various lengths. We propose to maximize the modified

variational lower bound of conditional data likelihood un-

der a skip-frame training strategy. Our model can generate

end-frame-consistent sequences without loss of quality and

diversity. We evaluate our method through extensive experi-

ments on Stochastic Moving MNIST, Weizmann Action, Hu-

man3.6M, and BAIR Robot Pushing under a series of sce-

narios. The qualitative results showcase the effectiveness

and merits of point-to-point generation.

∗indicates equal contribution

1. Introduction

The significant advancements in deep generative mod-

els bring impressive results in a wide range of domains

such as image synthesis, text generation, and video predic-

tion. Despite the huge success, unconstrained generation

is still a few steps away from practical applications since it

lacks intuitive and handy mechanisms to incorporate human

manipulation into the generation process. In view of this

incapability, conditional and controllable generative mod-

els have received an increasing amount of attention. Most

existing work achieves controllability by conditioning the

generation on the attribute, text, user inputs, or scene graph

[17, 39, 43, 45]. However, regardless of the considerable

progress in still image generation, controllable video gener-

ation is yet to be well explored.

Typically, humans create a video through breaking down

the entire story into separate scenes, taking shots for each

scene individually, and finally merging every piece of

footage to form the final edit. This requires a smooth tran-

sition across not only frames but also different video clips,

posing constraints on both start- and end-frames within a

video sequence so as to align with the preceding and sub-

sequent context. We introduce point-to-point video gener-
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ation (p2p generation) that controls the generation process

with two control points—the targeted start- and end-frames.

Enforcing consistency on the two control points allows us to

regularize the context of the generated intermediate frames,

and it also provides a straightforward strategy for merging

multiple videos. Moreover, in comparison with the stan-

dard video generation setting [32], which requires a consec-

utive sequence for initial frames, p2p generation only needs

a pair of individual frames. Such a setting is more acces-

sible in real-world scenarios, e.g., generating videos from

images with similar content crawled on the Internet. Fi-

nally, p2p generation is preferable to attribute-based meth-

ods for more sophisticated video generation tasks that in-

volve hard-to-describe attributes. Attribute-based methods

heavily depend on the available attributes provided in the

datasets, whereas p2p generation can avoid the burden of

collecting and annotating meticulous attributes.

Point-to-point generation has two major challenges: i)

The control point consistency (CPC) should be achieved

without the sacrifice of generation quality and diversity. ii)

The generation with various lengths should all satisfy the

control point consistency. Following the recent progress in

video generation and future frame prediction, we introduce

a global descriptor, which carries information about the tar-

geted end-frame, and a time counter, which provides tempo-

ral hints for dynamic length generation to form a conditional

variational encoder (CVAE [31]). In addition, to balance

among generation quality, diversity, and CPC, we propose

to maximize the modified variational lower bound of condi-

tional data likelihood. Besides, we inject an alignment loss

to ensure that the latent space in the encoder and decoder

aligns with each other. We further present the skip-frame

training strategy to reinforce our model to be more time-

counter-aware. Our model adjusts its generation procedure

accordingly, and thus achieves better CPC. Extensive ex-

periments are conducted on Stochastic Moving MNIST (or

SM-MNIST) [32, 3], Weizmann Human Action [8], Hu-

man3.6M (3D skeleton data) [13], and BAIR Robut Pushing

[5] to evaluate the effectiveness of the proposed method. A

series of qualitative results further highlight the merits of

p2p generation and the capability of our model.

2. Related Work
Our problem is most related to video generation [29, 33,

35] and the controllability of video generation [9, 10, 12, 20,

24, 41]. It also has a connection with video interpolation.

We briefly review these topics in this section.

Video Generation. Many approaches use GANs [1, 33,

35] or adversarial loss during training for generating videos

[1, 21, 23, 25, 30, 35, 36]. Vondrick et al. [35] use a gener-

ator with two pathways to predict the foreground and back-

ground, and a discriminator to distinguish a video as real or

fake. On the other hand, it can be tackled by learning how to

transform observed frames to synthesize the future frames

[6, 15, 22, 36, 40]. Furthermore, strategies based on decom-

posing a video into a static part that can be shared along (i.e.

content) and the varying part (i.e. motion) are also proposed

to describe the video dynamics [4, 11, 33, 34, 38]. Denton et

al. [4] encode motion and content into different subspaces

and use an adversarial loss on the motion encoder to achieve

disentanglement.

Several methods rely on VAE [18] to capture the un-

certain nature in videos [2, 3, 7, 10, 19, 21, 37, 42].

Babaeizadeh et al. [2] extend [6] with variational infer-

ence framework such that their model can predict multiple

frames of plausible futures on real-world data. Jayaraman et

al. [14] predict the most certain frame first and break down

the original problem such that the predictor can complete

the semantic sub-goals coherently.

While the methods mentioned above achieve good re-

sults on video prediction, the generation process is often

uncontrollable and hence leads to unconstrained outputs. In

order to preserve the ability of generating diversified out-

puts while achieving control point consistency, we manage

to build upon VAE for point-to-point video generation.

Video Interpolation (VI). The problem setting of p2p

generation has connection to VI [16, 26, 27, 28, 46] but with

essential differences. VI aims to increase the frame-rate

of a video. Thus both the number of inserted frames and

the time interval of interpolation are assumed to be small,

whereas p2p generation involves a much longer-term syn-

thesis of in-between frames, posing a different challenge.

Besides, VI methods typically are deterministic (i.e., pro-

ducing only one interpolated result). Instead, our work is

akin to video generation where the synthesized frames are

required to be both temporally coherent and diverse in con-

text. Finally, automatic looping (i.e., generating a looping

video given identical start-frame and end-frame) can be ac-

complished by p2p generation but not by VI (see Sec. 4.8

for detailed analysis).

Controllability on Video Generation. Several methods

are proposed to guide the video generation process. Hu et

al. [12] use an image and a motion stroke to synthesize the

video. Hao et al. [9] condition on the start frame and a tra-

jectory provided by user to steer the motion and appearance

for the next frames. He et al. [10] propose an attribute-

based approach for transient control by exploiting the at-

tributes (e.g., identity, action) in the dataset. Text or lan-

guage features can also be used as the instruction for con-

trols [20, 24, 41]. Although the existing methods all pro-

vide freedom for controlling the generation, they come with

some limitations. Conditioning on language would suffer

from its ambiguous nature, which does not allow precise

control [24]. Attribute control depends on the data labels

and is not available in an unsupervised setting. User pro-

vided input is intuitive but requires annotations during train-

ing. Instead, our method i) only conditions on the target
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frame which can be acquired without any cost, ii) can incor-

porate detailed descriptions of the control points (e.g., the

precise look and action of a person, or joints of a skeleton)

to provide exact control, and iii) can be trained in a fully

unsupervised fashion. The advantage over previous meth-

ods in having the controllability of start- and target-frames

motivates our point-to-point generation.

3. Methodology
Given a pair of control points (the targeted start- and end-

frames {x1, xT }) and the generation length T , we aim to

generate a sequence x̂1:T with the specified length such that

their start- and end-frames {x̂1, x̂T } are consistent with the

control points. To maintain quality and diversity in p2p gen-

eration, we present a conditional video generation model

(Sec. 3.2) that maximizes the modified variational lower

bound (Sec. 3.3). To further improve CPC under various

lengths, we propose a novel skip-frame training strategy

(Sec. 3.4) and a latent alignment loss (Sec. 3.5).

3.1. VAE and Video Generation

Variational Autoencoder (VAE) leverages a simple prior

pθ(z) (e.g., Gaussian) and a complex likelihood pθ(x|z)
(e.g., a neural network) on latent variable z to maximize

the data likelihood pθ(x), where x = [x1, x2, . . . , xT ]. A

variational neural network qφ(z|x) is introduced to approx-

imate the intractable latent posterior pθ(z|x), allowing joint

optimization over θ and φ,

log pθ(x) = log

∫

z

pθ(x|z)p(z) dz

≥ Eqφ(z|x) log pθ(x|z)−DKL(qφ(z|x)||p(z)) .

(1)

The intuition behind the inequality is to reconstruct data x

with latent variable z sampled from the posterior qφ(z|x),
simultaneously minimizing the KL-divergence between the

prior p(z) and posterior qφ(z|x).
Video generation commonly adopts VAE framework ac-

companied by a recurrent model (e.g., LSTM), where the

VAE handles generation process and the recurrent model

captures the dynamic dependencies in sequential genera-

tion. However, in VAE, the simple choice for prior p(z)
such as a fixed Gaussian N (0, I) is confined to drawing

samples randomly at each timestep regardless of temporal

dependencies across frames. Accordingly, existing works

resort to parameterizing the prior with a learnable function

pψ(zt|x1:t−1) conditioned on previous frames x1:t−1. The

variational lower bound throughout the entire sequence is

Lθ,φ,ψ(x1:T ) =

T
∑

t=1

[

Eqφ(z1:t|x1:t) log pθ(xt|x1:t−1, z1:t)

−DKL(qφ(z1:t|x1:t)||pψ(zt|x1:t−1))
]

.

(2)

In comparison with a standard VAE, the former term

describes the reconstruction sampled from the posterior

qφ(z1:t|x1:t) conditioned on data up to the current frame.

The latter term ensures that the prior pψ(zt|x1:t−1) condi-

tioned on data up to the previous frame does not deviate

from the posterior. Meanwhile, it also serves as a regular-

ization on the learning of posterior. In this work, we in-

herit and modify the network architecture of [3], and adapt

Lθ,φ,ψ(x1:T ) for p2p generation.

3.2. Global Descriptor and Time Counter

For a deep network to achieve p2p generation under var-

ious lengths, i) the model should be aware of the informa-

tion of control points and ii) the model should be able to

perceive time lapse and generate the targeted end-frame at

the designated timestep. While the targeted start-frame is

already fed as an initial frame, we adopt a straightforward

strategy to incorporate the control points into the model at

every timestep by feeding features encoded from the tar-

geted end-frame hT to our model. Besides, to enforce our

model to be aware of when to generate the targeted end-

frame given the generation length T , we introduce a time

counter τt ∈ [0, 1], where τt = 0.0 indicates the beginning

of the sequence and τt = 1.0 indicates reaching the targeted

end-frame. As shown in Fig. 2(a), qφ and pψ are modeled

by a shared-weight encoder and two different LSTMs, and

pθ is modeled by the third LSTM along with a decoder to

map latent vectors to image space. The inference process

during training at timestep t is shown as

hT = Enc(xT ), τt = t/T,

µtφ, σ
t
φ = LSTMφ(ht, hT , τt), ht = Enc(xt),

zt ∼ N (µtφ, σ
t
φ),

gt = LSTMθ(ht−1, zt, τt), ht−1 = Enc(xt−1),

x̂t = Dec(gt) .

(3)

During test time, as we have no access to current xt, the

latent variable zt is sampled from the prior distribution pψ ,

µtψ, σ
t
ψ = LSTMψ(ht−1, hT , τt),

zt ∼ N (µtψ, σ
t
ψ) .

(4)

Recall that the KL divergence in (2) enforces the alignment

between qφ and pψ , allowing pψ to serve as a proxy of qφ at

test time. Besides, by introducing the global descriptor hT
and time counter τt, (2) is extended to a variational lower

bound of conditional data likelihood Lθ,φ,ψ(x1:T |c), where

c is the conditioning on the targeted end-frame and time

counter. In addition, we further propose a latent space align-

ment loss within ht and gt to mitigate the mismatch between

the encoding and the decoding process, as shown in (6).

3.3. Control Point Consistency on Prior

Although introducing the time counter and the global

descriptor of control points provides the model with capa-

bility of achieving CPC, we are not able to further rein-

force the generated end-frame to conform to the targeted
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Figure 2: An overview of the novel components of p2p generation. (a) Our model is a VAE consisting of posterior qφ,

prior pψ , and generator pθ (all with an LSTM for temporal coherency). We use KL-divergence to encourage pψ to be similar

to qφ. To control the generation, we encode the targeted end-frame xT into a global descriptor. Both qφ and pψ are computed

by considering not only the input frame (xt or xt−1), but also the “global descriptor” and “time counter”. We further use the

“alignment loss” to align the encoder and decoder latent space to reinforce the control point consistency. (b) Our skip-frame

training has a probability to skip the input frame in each timestamp where the input will be ignored completely and the hidden

state will not be propagated at all (see the dashed line). (c) The control point consistency is achieved by posing CPC loss on

pψ without harming the reconstruction objective of qφ (highlighted in bold).

end-frame. While the conditioning happens to be a part of

the reconstruction objective, naively increasing the weight

αcpc at timestep T in the reconstruction term of (2), i.e.,
∑T−1
t=1 Eqφ log pθ(xt) + αcpcEqφ log pθ(xT ), results in un-

stable training behavior and degradation of generation qual-

ity and diversity. To tackle this problem, we propose to sin-

gle out the CPC from the reconstruction loss on the poste-

rior and pose it on the prior. The modified lower bound of

conditional data likelihood with a learnable prior pψ is

Lp2p
θ,φ,ψ(x1:T |c) =

T
∑

t=1

[

Eqφ(z1:t|x1:t,c) log pθ(xt|x1:t−1, z1:t, c)

− DKL(qφ(z1:t|x1:t, c)||pψ(zt|x1:t−1, c))
]

+ Epψ(zT |x1:T−1,c) log pθ(xT |x1:T−1, z1:T , c) .

(5)

While the first two terms are the same as the bound of con-

ditional VAE (CVAE), the third term of the above formu-

lation benefits a more flexible tuning on the behavior of

the additionally-introduced condition without degrading the

maximum likelihood estimate in the first term.

3.4. Skip­Frame Training
A well-functioning p2p generation model should be

aware of the time counter in order to achieve CPC under

various lengths. However, most video datasets have a fixed

frame rate. As a result, the model may exploit the fixed

frequency across frames and ignore the time counter. We

introduce skip-frame training to further enhance the model

to be more aware of the time counter. Basically, we ran-

domly drop frames while computing the reconstruction loss

and KL divergence (the first two terms in (5)). The LSTMs

are hence forced to take time counter into consideration so

as to handle the random skipping in the recurrence. Such

adaption in the maximum likelihood estimate of posterior

qφ further incorporates CPC into the learning of posterior.

3.5. Final Objective
To summarize, our final objective that maximizes the

modified variational lower bound of conditional data like-

lihood under a skip-frame training strategy is

Lfull
θ,φ,ψ(x1:T |c) =

T
∑

t=1

Mt

[

Eqφ(z1:t|x1:t,c) log pθ(xt|x1:t−1, z1:t, c)

− βDKL(qφ(z1:t|x1:t, c)||pψ(zt|x1:t−1, c))

− αalign||ht − gt||2
]

+ αcpcEpψ(zT |x1:t−1,c) log pθ(xT |x1:T−1, z1:T , c) ,

(6)

where Mt ∼ Bernoulli(1 − pskip), MT = 1. β, αcpc,

and αalign are hyperparameters to balance among KL term,

CPC, and latent space alignment. The constant pskip ∈
[0, 1] determines the rate of skip-frame training.

4. Experiment

To evaluate the effectiveness of our method, we conduct

qualitative and quantitative analysis on four datasets: SM-
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Method
SSIM (± indicates 95% confidence interval) PSNR (± indicates 95% confidence interval)

S-Best � S-Div (1E-3) � S-CPC � R-Best � S-Best � S-Div � S-CPC � R-Best �

SVG [3] 0.780±0.006 2.349±0.076 0.621±0.004 0.850±0.005 15.774±0.161 0.816±0.019 12.105±0.047 18.001±0.201

+ C 0.768±0.002 2.482±0.048 0.729±0.003 0.840±0.004 15.373±0.049 0.914±0.014 14.024±0.054 17.751±0.094

+ C + A 0.755±0.003 2.377±0.085 0.735±0.005 0.816±0.005 15.117±0.103 0.804±0.014 14.141±0.069 16.884±0.147

Ours 0.755±0.004 2.525±0.052
0.769

±0.005 0.832±0.005 15.265±0.079 0.815±0.009
15.185

±0.096 17.581±0.172

Table 1. Evaluation on SM-MNIST (+C: CPC loss on pψ only. +C+A: CPC loss and Alignment loss. Ours: Our full model).

Method
SSIM (± indicates 95% confidence interval) PSNR (± indicates 95% confidence interval)

S-Best � S-Div (1E-3) � S-CPC � R-Best � S-Best � S-Div � S-CPC � R-Best �

SVG [3] 0.819±0.008 1.992±0.351 0.734±0.008 0.819±0.009 25.234±0.355 1.904±0.357 22.236±0.242 25.039±0.400

+ C 0.814±0.005 2.574±0.402 0.730±0.004 0.808±0.006 24.898±0.110 2.186±0.346 22.028±0.084 24.624±0.211

+ C + A 0.823±0.005 1.225±0.178 0.767±0.009 0.822±0.005 25.092±0.186 1.266±0.170 22.855±0.197 24.848±0.145

Ours 0.824±0.004 1.106±0.078
0.783

±0.003 0.842±0.006 24.993±0.103 1.039±0.057
23.334

±0.105 25.660±0.154

Table 2. Evaluation on Weizmann (+C: CPC loss on pψ only. +C+A: CPC loss and Alignment loss. Ours: Our full model).

Method S-Best � S-Div � S-CPC � R-Best �

SVG [3] 6.49±0.31 0.68±0.05 10.83±0.90 5.75±0.17

+ C 8.25±0.65 0.64±0.06 12.08±0.65 8.97±0.53

+ C + A 4.96±0.18 0.80±0.03 6.66±0.82 4.74±0.17

Ours 4.46±0.35 0.88±0.06
0.72

±0.06 1.23±0.04

Table 3. Evaluation on Human3.6M (with MSE).

Method S-Best � S-Div (1E-3) � S-CPC � R-Best �

SVG [3] 0.845
±.006

0.716
±.166

0.775
±.008

0.926
±.003

SV2P [2] 0.841
±.010

0.186
±.021

0.770
±.009

0.847
±.004

Ours 0.847
±.004

0.664
±.049

0.824
±.015

0.907
±.006

Table 4. Evaluation on BAIR Robot Pushing (with SSIM).

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
Generation Sequence Length

0

2

4

6

8

10

12

14

CP
C 

[M
SE

]

SVG
SVG + CPC

SVG + CPC + Align
Ours

Figure 3: Control Point Consistency (CPC) with various

generation lengths shows that our final model (in red) is

more stable and can steadily approach the targeted end-

frame. (Figures are best viewed in color.)

MNIST [3], Weizmann Action [8], Human3.6M [13], and

BAIR Robut Pushing [5] to measure the CPC, quality, and

diversity. The following section is organized as follows: we

start by describing the datasets in Sec. 4.1 and the evaluation

metrics in Sec. 4.2; the quantitative results are shown in 4.3-

4.6; the qualitative results are presented in Sec. 4.7; finally

the comparisons with VI are discussed in 4.8.
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Figure 4: We show the generation quality and diversity with

different CPC weights. The results show that posing CPC

on prior is more stable than on posterior; the latter is sensi-

tive to large CPC weights and tends to harm the quality.
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Figure 5: The generation diversity through normalized

time-steps shows that Ours (in red) presents a desired

behavior—diversity increases until the middle of genera-

tion, and then converges (decreases) at targeted end-frames.

4.1. Datasets

We evaluate our method on four common testbeds:

Stochastic Moving MNIST is introduced by [3] (a mod-

ified version from [32]). The training sequence is gener-
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ated by sampling one or two digits from the training set of

MNIST, and then the trajectory is formed by sampling start-

ing locations within the frame and an initial velocity vector,

(∆x,∆y) ∈ [−4, 4] × [−4, 4]. The velocity vector will

be re-sampled each time the digits reach the border. Weiz-

mann Action contains 90 videos of 9 people performing 10

actions. We center-crop each frame and follow the setting

in [10] to form the training and test sets. Human3.6M is

a large-scale dataset with 3.6 million 3D human poses cap-

tured by 11 professional actors, providing more than 800

sequences in total. We use normalized 3D skeletons of 17

joints for experiments. Following [42], we use subjects 1,

5, 6, 7, and 8 for training and subjects 9 and 11 for testing.

BAIR Robut Pushing [5] features a robotic arm moving

randomly to push diverse objects. With the large degree of

stochasticity and cluttered background, it is widely used for

evaluating video prediction/generation.

4.2. Evaluation Metrics

We measure the structural similarity (SSIM) and peak

signal-to-noise ratio (PSNR) for SM-MNIST, Weizmann,

and BAIR as [2, 3, 6]. For Human3.6M, we calculate mean

squared error (MSE) as [42]. To assess the learning of pψ
and qφ, we adopt the concept of [42] by introducing Sam-

pling and Reconstruction metric (referred to as “S-” and “R-

”), where the evaluation is performed on generation from

prior and posterior respectively. For each test sequence, we

generate 100 samples and compute the following metrics in

95% confidence interval:

• Control Point Consistency (S-CPC): We compute the

mean SSIM/PSNR/MSE between the generated end-

frame and the targeted end-frame since CPC should be

achieved for all samples.

• Quality (S-Best): We compute the best

SSIM/PSNR/MSE among all samples as [2, 3, 42].

It is a better way to assess the quality for stochastic

methods because the best sample’s score allows us to

check if the true outcome is included in the generations.

• Diversity (S-Div): Adapting the concept from [44], we

compute the variance of SSIM/PSNR across all samples

with the ground-truth sequences as reference. For MSE,

we calculate the variance of difference between gener-

ated and ground-truth sequences instead because MSE

only measures the distance between joints while ignor-

ing their relative positions, which will result in biased

estimation for diversity.

4.3. Quantitative Results

We show quantitative analysis on generation quality,

diversity, and CPC over SM-MNIST, Weizmann, Hu-

man3.6M, and BAIR—in Tables 1, 2, & 3, as well as the

comparison with more baselines in Table 4. From R-Best

we know that the posteriors learn well in all setting. In

Tables 1, 2, & 3, the model with CPC+Alignment losses

(+C+A) outperforms the model with only CPC loss (+C)

in S-CPC. This shows the effectiveness of alignment loss.

Recall from Sec. 3.2 that there are two LSTMs that separate

the encoder and decoder, the alignment loss aligns the two

latent spaces to alleviate the mismatch between the encod-

ing and the decoding process. Moreover, the model (Ours)

with skip-frame training further improves over +C+A in S-

CPC, where the gain mainly results from a better usage of

time counter. Finally, S-CPC gain in Weizmann is less than

SM-MNIST and Human3.6M since unlike the latter two, its

data are captured in cluttered background with visible noise

that is more challenging for CPC. On the other hand, when

compared with more baselines [2, 3], our method success-

fully models the robot’s movements while maintaining CPC

without hurting diversity and quality as shown in Table 4.

On the generation quality, all four tables show compara-

ble results in S-Best, which means that our method is able

to maintain the quality while achieving CPC. Besides, the

S-Best in Table 3 demonstrates an interesting finding that

Ours not only achieves extremely superior performance in

S-CPC but also in S-Best. The main reason is that Hu-

man3.6M contains 3D skeletons with highly diverse ac-

tions, giving rise to considerably flexible generation. A

long-term generation may easily deviate from the others,

causing high S-Best error, but our method gradually con-

verges to the targeted end-frames, confining the S-Best error

(see Sec. 4.5).

Regarding the generation diversity, our method attains

either comparable or better performance in Tables 1 and

3. This suggests that our method generates diverse samples

while reaching the same targeted end-frame. However, our

method suffers from a larger performance drop on S-Div in

Table 2. This is expected since Weizmann data often in-

volve video sequences with unvarying actions, e.g. walking

in a fixed speed, and therefore, posing constraints at the end-

frame significantly reduces the possible generation trajecto-

ries and thus leads to low diversity. Overall, our method

has a significant improvement on CPC while reaching com-

parable generation quality and diversity with the baseline.
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Figure 7: Given a pair of (orange) start- and (red) end-frames, we show the results of various-length generation on Weizmann

and Human3.6M (The number beneath each frame indicates the timestamp). Our model can achieve high-intermediate-

diversity and targeted end-frame consistency while being aware of various-length generation at the same time.

30292827987651 432

Figure 8: We set the (orange) start- and (red) end-frame with the same frame to achieve loop generation. Our model can

generate videos that form infinite loops while preserving diversity. See more results in the supplementary materials.

4.4. CPC in Generation with Various Lengths

We show the CPC performance of all models under gen-

eration of different lengths on Human3.6M dataset in Fig. 3.

The models achieve CPC under various lengths even though

they have only seen the sequences with length around 30,

showing that our models generalize well to various lengths.

It is worth noting that with skip-frame training (red line),

our model achieves CPC even further compared with other

variations since it is able to leverage the information pro-

vided from the time counter. However, our method per-

forms a bit worse at length 10 comparing to longer lengths

because the model has less time budget for planning its tra-

jectory and the training data do not contain any sequences

with length less than 20.

4.5. Diversity Through Time

We evaluate the diversity of our method by investigat-

ing its behaviour through time in Fig. 5. The downward

trend can be observed around the end of the green line,

which means it tries to reach the targeted end-frame as

the time-counter approaches the end. However, with the

skip-frame training (red line), the diversity becomes higher

around the middle segment and converges near the start- and

end-frame. Our full model knows its precise status such as

how far it is to the end-frame or how much time budget re-

mains, and thus can plan ahead to achieve CPC. Since our

model perceives well about its time budget, it can “go wild”,

i.e., explore all possible trajectories while still being capa-

ble of getting back to the targeted end-frame on time.
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Figure 9: Given multiple pairs of (orange) start- and (red) end-frames, we can merge multiple generated clips into a longer

video, which is similar to the modern video editing process. The number beneath each frame indicates the timestamp.
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Figure 10: Longer time-interval video generation on BAIR.

Same

Start/End

End1

S
u
p
e
r

S
lo
M
o

O
u
rs

2 28 29 3013 14 15 16

Figure 11: Automatic looping generation on BAIR Pushing.

4.6. CPC Weight on Prior vs. Posterior

We assess the effect of posing different CPC weights

on prior pψ versus posterior qφ by comparing the quality

and diversity in SSIM (Fig. 4). With different weights, the

behavior of diversity for pψ and qφ is comparable. How-

ever, CPC on pψ (blue line) does not result in degradation

throughout all CPC weights in comparison with posing CPC

on qφ. This shows that our method is more robust to differ-

ent CPC weights.

4.7. Qualitative Results

Generation with various lengths. In Fig. 6, we show

roughly how p2p generation works by comparing with [3]

on BAIR dataset. Fig. 7 shows various examples across

other datasets. Our model maintains high CPC for all

lengths while producing diverse results.

Multiple control-points generation. In Fig. 9, we show

the generated videos with multiple control points. The first

row highlights transition across different attributes or ac-

tions (i.e., “run” to “skip” in Weizmann dataset). The sec-

ond and third rows show two generated videos with the

same set of multiple control points (i.e., stand; sit and lean

to the left side). Note that these are two unique videos with

diverse frames in transitional timestamps. By placing each

control point as a breakpoint in a generation, we can achieve

fine-grained controllability directly from frame exemplars.

Loop generation. Figs. 8 & 11 show that our method can

be used to generate infinite looping videos by forcing the

targeted start- and end-frames to be the same.

4.8. Comparison with Video Interpolation

To elaborate the essential difference between VI and p2p

generation, we conduct a task of inserting 28 frames be-

tween start- and end-frame where the temporal distance be-

tween the targeted start- and end-frames is large (Fig. 10).

Note that Super SloMo [16] produces artifacts such as dis-

tortion or two robot arms (indicated by red arrows in the

15th and 17th frames). VI methods typically are deter-

ministic approaches while p2p generation is able to synthe-

size diverse frames (see Fig. 7). Finally, automatic loop-

ing can be accomplished by p2p generation but not by VI.

Given the same start- and end-frames, we confirm that Su-

per SloMo [16] will interpolate all the same frames as if the

video is freezing (Fig. 11).

5. Conclusion
The proposed point-to-point (p2p) generation controls

the generation process with two control points—the tar-

geted start- and end-frames—to provide better controllabil-

ity in video generation. To achieve control point consis-

tency (CPC) while maintaining generation quality and di-

versity, we propose to maximize the modified variational

lower bound for conditional video generation model, fol-

lowed by a novel skip-frame training strategy and a latent

space alignment loss to further reinforce CPC. We show

the effectiveness of our model via extensive quantitative

analysis. The qualitative results further highlight the mer-

its of p2p generation. However, our current model can-

not handle high-resolution videos. Modeling all the de-

tails such as small objects or noisy background in high-res

videos is still an open problem for the existing video gener-

ation/prediction methods. We will explore this direction in

the future. Overall, our work opens up a new dimension in

video generation that is promising for further exploration.
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