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fectiveness for several tasks, including hand segmentation,
retina vessel segmentation, and road segmentation. We also
introduce a large-scale dataset for hand segmentation.

1. Introduction

While recent semantic segmentation methods achieve
impressive results [0, 17, 18, 46], they require very deep
networks and their architectures tend to focus on high-
resolution and large-scale datasets and to rely on pre-trained
backbones. For instance, state-of-the-art models, such as
Deeplab [5, 6], PSPnet [46] and RefineNet [17], use a
ResNet101 [15] as their backbone. This results in high
GPU memory usage and inference time, and makes them
less than ideal for operation in power-limited environments
where real-time performance is nevertheless required, such
as when segmenting hands using the onboard resources of
an Augmented Reality headset. This has been addressed by
architectures such as the ICNet [45] at the cost of a sub-
stantial performance drop. Perhaps even more importantly,
training very deep networks usually requires either massive
amounts of training data or image statistics close to that of
ImageNet [10], which may not be appropriate in fields such
as biomedical image segmentation where the more compact
U-Net architecture remains prevalent [33].

In this paper, we argue that these state-of-the-art meth-
ods do not naturally generalize to resource-constrained sit-
uations and introduce a novel recurrent U-Net architecture
that preserves the compactness of the original U-Net [33],
while substantially increasing its performance to the point

*Equal contributions.

(a) Frame per second (FPS)

Ground truth
Figure 1: Speed vs accuracy. Each circle represents the perfor-
mance of a model in terms frames-per-second and mloU accuracy
on our Keyboard Hand Dataset using a Titan X (Pascal) GPU. The
radius of each circle denotes the models’ number of parameters.
For our recurrent approach, we plot these numbers after 1, 2, and
3 iterations, and we show the corresponding segmentations in the
bottom row. The performance of our approach is plotted in red
and the other acronyms are defined in Section 4.2. ICNet [45] is
slightly faster than us but at the cost of a significant accuracy drop,
whereas RefineNet [17] and DeepLab [6] are both slower and less
accurate on this dataset, presumably because there are not enough
training samples to learn their many parameters.

where it outperforms the current state of the art on 5 hand-
segmentation datasets, one of which is showcased in Fig. 1,
and a retina vessel segmentation one. With only 0.3 million
parameters, our model is much smaller than the ResNet101-
based DeepLabv3+ [6] and RefineNet [17], with 40 and
118 million weights, respectively. This helps explain why
we can outperform state-of-the-art networks on speclalized
tasks: The pre-trained ImageNet features are not neces-
sarily the best and training sets are not quite as large as
CityScapes [9]. As a result, the large networks tend to over-
fit and do not perform as well as compact models trained
from scratch.

The standard U-Net takes the image as input, processes
it, and directly returns an output. By contrast, our recurrent
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Figure 2: Recurrent segmentation. (a) The simple strategy
of [21, 24] consists of concatenating the previous segmentation
mask s¢—1 to the image «, and recurrently feeding this to the net-
work. (b) For sequence segmentation, to account for the network’s
internal state, one can instead combine the CNN with a standard
recurrent unit as in [41]. Here, we build upon the U-Net architec-
ture of [33] (¢), and propose to build a recurrent unit over several
of its layers, as shown in (d). This allows us to propagate higher-
level information through the recurrence, and, in conjunction with
a recurrence on the segmentation mask, outperforms the two sim-
pler recurrent architectures (a) and (b).

architecture iteratively refines both the segmentation mask
and the network’s internal state. This mimics human per-
ception as in the influential AutoContext paper [39]: When
we observe a scene, our eyes undergo saccadic movements,
and we accumulate knowledge about the scene and contin-
uously refine our perception [29]. To this end we retain the
overall structure of the U-Net, but build a recurrent unit over
some of its inner layers for internal state update. By contrast
with the simple CNN+RNN architecture of Fig. 2(b), often
used for video or volumetric segmentation [41, 27, 3], this
enables the network to keep track of and to iteratively up-
date more than just a single-layer internal state. This gives
us the flexibility to choose the portion of the internal state
that we exploit for recursion purposes and to explore varia-
tions of our scheme.

We demonstrate the benefits of our recurrent U-Net on
several tasks, including hand segmentation, retina vessel
segmentation and road segmentation. Our approach consis-
tently outperforms earlier and simpler approaches to recur-
sive segmentation [21, 27, 41]. For retina vessel segmenta-
tion, it also outperforms the state-of-the-art method of [19]
on the DRIVE [38] dataset, and for hand segmentation, the
state-of-the-art RefinetNet-based method of [40] on several
modern benchmarks [11, 4, 40]. As these publicly avail-
able hand segmentation datasets are relatively small, with
at most 4.8K annotated images, we demonstrate the scal-
ability of our approach, along with its applicability in a
keyboard typing scenario, by introducing a larger dataset
containing 12.5K annotated images. It is the one we used

to produce the results shown in Fig. 1. Both the date-
set and code are available at https://github.com/
WeiWangTrento/Recurrent-U-Net.

Our contribution is therefore an effective recurrent ap-
proach to semantic segmentation that can operate in envi-
ronments where the amount of training data and computa-
tional power are limited. It does not require more memory
than the standard U-Net thanks to parameter sharing and
does not require training datasets as large as other state-of-
the-art networks do. It is practical for real-time application,
reaching 55 frames-per-second (fps) to segment 230x 306
images on an NVIDIA TITAN X with 12G memory. Fur-
thermore, as shown in Fig. 1, we can trade some accuracy
for speed by reducing the number of iterations. Finally,
while we focus on resource-constrained applications, our
model can easily be made competitive on standard bench-
marks such as Cityscapes by modifying its backbone archi-
tecture. We will show that replacing the U-Net encoder by a
VGG16 backbone yields performance numbers comparable
to the state of the art on this dataset.

2. Related Work

Compact Semantic Segmentation Models. State-of-the-
art semantic segmentation techniques [6, 17, 18, 46] rely
on very deep networks, which makes them ill-suited in
resource-constrained scenarios, such as real-time applica-
tions and when there are only limited amounts of training
data. In such cases, more compact networks are preferable.
Such networks fall under two main categories.

The first group features encoder-decoder architec-
tures [33, 28, 2, 31, 25, 35, 12]. Among those, U-Net [33]
has demonstrated its effectiveness and versatility on many
tasks, in particular for biomedical image analysis where it
remains a favorite. For example, a U-net like architecture
was recently used to implement the flood-filling networks
of [16] and to segment densely interwoven neurons and
neurites in teravoxel-scale 3D electron-microscopy image
stacks. This work took advantage of the immense amount
of computing power that Google can muster but, even then,
it is unlikely that this could have been accomplished with
much heavier architectures.

The second type involves multi-branch structures [26,

, 45] to fuse low-level and high-level features at different
resolutions. These require careful design to balance speed
against performance. By contrast, the U-Net relies on sim-
pler skip connections and, thus, does not require a specific
design, which has greatly contributed to its popularity.

Recurrent Networks for Segmentation. The idea of re-
current segmentation predates the deep learning era and was
first proposed in AutoContext [39], and recurrent random
forest [36]. It has inspired many recent approaches, includ-
ing several that rely on deep networks. For example, in [21],
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the segmentation mask produced by a modified U-Net was
passed back as input to it along with the original image,
which resulted in a progressive refinement of the segmenta-
tion mask. Fig. 2(a) illustrates this approach. A similar one
was followed in the earlier work of [24], where the resolu-
tion of the input image patch varied across the iterations of
the refinement process.

Instead of including the entire network in the recursive
procedure, a standard recurrent unit can be added at the out-
put of the segmentation network, as shown in Fig. 2(b). This
was done in [32] to iteratively produce individual segmen-
tation masks for scene objects. In principle, such a convo-
lutional recurrent unit [3, 27, 41] could also be applied for
iterative segmentation of a single object and we will evalu-
ate this approach in our experiments. We depart from this
strategy by introducing gated recurrent units that encompass
several U-Net layers. Furthermore, we leverage the previ-
ous segmentation results as input, not just the same image
at every iteration.

Iterative refinement has also been used for pose estima-
tion [30, 42, 22]. The resulting methods all involve consec-
utive modules to refine the predictions with a loss function
evaluated on the output of each module, which makes them
similar in spirit to the model depicted by Fig. 2(a). Unlike
in our approach, these methods do not share the parameters
across the consecutive modules, thus requiring more param-
eters and moving away from our aim to obtain a compact
network. Furthermore, they do not involve RNN-inspired
memory units to track the internal hidden state.

3. Method

We now introduce our novel recurrent semantic segmen-
tation architecture. To this end, we first discuss the overall
structure of our framework, and then provide the details of
the recurrent unit it relies on. Finally, we briefly discuss the
training strategy for our approach.

3.1. Recurrent U-Net

We rely on the U-Net architecture of [33] as backbone
to our approach. As shown in Fig. 3(a), the U-Net has an
encoder-decoder structure, with skip connections between
the corresponding encoding and decoding layers that allow
the network to retain low-level features for the final pre-
diction. Our goal being to operate in resource-constrained
environments, we want to keep the model relatively sim-
ple. We therefore rely on a U-Net design where the first
convolutional unit has 8 feature channels, and, following
the original U-Net strategy, the channel number doubles af-
ter every pooling layer in the encoder. The decoder relies
on transposed convolutions to increase the model’s repre-
sentation power compared to bilinear interpolation. We use
group-normalization [43] in all convolutional layers since
we usually rely on very small batch sizes.

Our contributions are to integrate recursions on 1) the
predicted segmentation mask s and 2) multiple internal
states of the network. The former can be achieved by sim-
ply concatenating, at each recurrent iteration ¢, the previous
segmentation mask s;_ to the input image, and passing the
resulting concatenated tensor through the network. For the
latter, we propose to replace a subset of the encoding and
decoding layers of the U-Net with a recurrent unit. Below,
we first formalize this unit, and then discuss two variants of
its internal mechanism.

To formalize our recurrent unit, let us consider the pro-
cess at iteration ¢ of the recurrence. At this point, the
network takes as input an image x concatenated with the
previously-predicted segmentation mask s;_1. Let us then
denote by ¢! the activations of the /" encoding layer, and
by d? those of the corresponding decoding layer. Our recur-
rent unit takes as input ef, together with its own previous
hidden tensor h;_1, and outputs the corresponding activa-
tions d¢, along with the new hidden tensor h,. Note that, to
mimic the computation of the U-Net, we use multiple en-
coding and decoding layers within the recurrent unit.

In practice, one can choose the specific level ¢ at which
the recurrent unit kicks in. In Fig. 3 (b), we illustrate the
whole process for £ = 3. When ¢ = 0, the entire U-Net
is included in the recurrent unit, which then takes the con-
catenation of the segmentation mask and the image as input.
Note that, for £ = 4, the recurrent unit still contains several
layers because the central portion of the U-Net in Fig. 3(a)
corresponds to a convolutional block. In our experiments,
we evaluate two different structures for the recurrent units,
which we discuss below.

3.2. Dual-gated Recurrent Unit

As a first recurrent architecture, we draw inspiration
from the Gated Recurrent Unit (GRU) [8]. As noted above,
however, our recurrent unit replaces multiple encoding and
decoding layers of the segmentation network. We therefore
modify the equations accordingly, but preserve the under-
lying motivation of GRUs. Our architecture is shown in
Fig. 3(c).

Specifically, at iteration ¢, given the activations e} and the
previous hidden state h;_1, we aim to produce a candidate
update h for the hidden state and combine it with the pre-
vious one according to how reliable the different elements
of this previous hidden state tensor are. To determine this
reliability, we use an update gate defined by a tensor

z = U(fz(ef)) ) 0

where f,(-) denotes an encoder-decoder network with the
same architecture as the portion of the U-Net that we re-
place with our recurrent unit.

Similarly, we obtain the candidate update as

h = tanh(fn(r © el)) , 2
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Figure 3: Recurrent UNet (R-UNet). (a) As illustrated in Fig. 2(d), our model incorporates several encoding and decoding layers in a
recurrent unit. The choice of which layers to englobe is defined by the parameter ¢. (b) For £ = 3, the recurrence occurs after the third
pooling layer in the U-Net encoder. The output of the recurrent unit is then passed through three decoding up-convolution blocks. We
design two different recurrent units, the Dual-gated Recurrent Unit (DRU) (c) and the Single-gated Recurrent Unit (SRU) (d). They differ
by the fact that the first one has an additional reset gate acting on its input. See the main text for more detail.

where f,(-) is a network with the same architecture as f,(-),
but a separate set of parameters, ® denotes the element-wise
product, and r is a reset tensor allowing us to mask parts of
the input used to compute h. 1tis computed as

r=o(f(ef)), 3)

where f,.(-) is again a network with the same encoder-
decoder architecture as before.

Given these different tensors, the new hidden state is
computed as

ht:Zth,1+(1—2)@iL. 4

Finally, we predict the output of the recurrent unit, which
corresponds to the activations of the /*" decoding layer as

df = fo(he) (5)

where, as shown in Fig. 3(c), fs(+) is a simple convolutional
block. Since it relies on two gates, r and z, we dub this re-
current architecture Dual-gated Recurrent Unit (DRU). One
main difference with GRUs is the fact that we use multi-
layer encoder-decoder networks in the inner operations in-
stead of simple linear layers. Furthermore, in contrast to
GRUs, we do not directly make use of the hidden state h;_1
in these inner computations. This allows us not to have to
increase the number of channels in the encoding and decod-
ing layers compared to the original U-Net. Nevertheless, the
hidden state is indirectly employed, since, via the recursion,
ef depends on d!_,, which is computed from h;_;.

3.3. Single-Gated Recurrent Unit

As evidenced by our experiments, the DRU described
above is effective at iteratively refining a segmentation.
However, it suffers from the drawback that it incorpo-
rates three encoder-decoder networks, which may become
memory-intensive depending on the choice of ¢. To de-
crease this cost, we therefore introduce a simplified recur-
rent unit, which relies on a single gate, thus dubbed Single-
gated Recurrent Unit (SRU).

Specifically, as illustrated in Fig. 3(d), our SRU has a
structure similar to that of the DRU, but without the reset
tensor r. As such, the equations remain mostly the same
as above, with the exception of the candidate hidden state,
which we now express as

h = tanh(fu(ey)) - (6)

This simple modification allows us to remove one of the
encoder-decoder networks from the recurrent unit, which,
as shown by our results, comes at very little loss in segmen-
tation accuracy.

3.4. Training

To train our recurrent U-Net, we use the cross-entropy
loss. More specifically, we introduce supervision at each
iteration of the recurrence. To this end, we write our overall

loss as
N
L = Ztht, (7)
t=1
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Figure 4: Keyboard Hand (KBH) dataset. Sample images fea-
turing diverse environmental and lighting conditions, along with
associated ground-truth segmentations.

where N represents the number of recursions, set to 3 in
this paper, and L; denotes the cross-entropy loss at iteration
t, which is weighted by wy.

wy = a7t (8)

The weight, by setting @ < 1, increases monotonically with
the iterations. In our experiments, we either set « = 1, so
that all iterations have equal importance, or @ = 0.4, thus
encoding the intuition that we seek to put more emphasis
on the final prediction. A study of the influence of « is
provided in supplementary material, where we also discuss
our training protocol in detail.

4. Experiments

We compare the two versions of our Recurrent U-Net
against the state of the art on several tasks including hand
segmentation, retina vessel segmentation and road delin-
eation. The hyper-parameters of our models were obtained
by validation, as discussed in the supplementary material.
We further demonstrate that the core idea behind our idea
also applies to non-resource-constrained scenarios, such as
Cityscapes, by increasing the size of the U-Net encoder.

4.1. Datasets.

Hands. We report the performance of our approach
on standard hand-segmentation benchmarks, such as
GTEA [11], EYTH [40], EgoHand [4], and HOF [40].
These, however, are relatively small, with at most 4,800 im-
ages in total, as can be seen in Table 1. To evaluate our ap-
proach on a larger dataset, we therefore acquired our own.
Because this work was initially motivated by an augmented
virtuality project whose goal is to allow someone to type
on a keyboard while wearing a head-mounted display, we
asked 50 people to type on 9 keyboards while wearing an
HTC Vive [1]. To make this easier, we created a mixed-
reality application to allow the users to see both the camera

Resolution
Dataset Width Height Train Val. Test Total
KBH (Ours) 230 306 2300 2300 7936 12536

EYTH [40] 216 384 774 258 258 1290
HOF [40] 216 384 198 40 62 300
EgoHand [4] 720 1280 3600 400 800 4800
GTEA[11] 405 720 367 92 204 663

# Images

Table 1: Hand-segmentation benchmark datasets.

(b) Attributes

(a) Environment setup
Attribute  #IDs

Parameters ~ Amount Details
Desk 3 White, Brown, Black Bracelet 10
Desk position 3 - Watch 14
b c Brown-skin 2
Keyboard 9 _ o X
Lighting 8 3 sources on/off Nail-polish 1
Objects on desk 3 3 different objects Ring(s) 6

Table 2: Properties of our new KBH dataset.

view and a virtual browser showing the text being typed.
To ensure diversity, we varied the keyboard types, lighting
conditions, desk colors, and objects lying on them, as can
be seen in Fig. 4. We provide additional details in Table 2.

We then recorded 161 hand sequences with the device’s
camera. We split them as 20/ 20/ 60% for train/ validation/
test to set up a challenging scenario in which the training
data is not overabundant and to test the scalability and gen-
eralizability of the trained models. We guaranteed that the
same person never appears in more than one of these splits
by using people’s IDs during partitioning. In other words,
our splits resulted in three groups of 30, 30, and 101 sep-
arate videos, respectively. We annotated about the same
number of frames in each one of the videos, resulting in
a total of 12,536 annotated frames.

Retina Vessels. We used the popular DRIVE dataset [38].
It contains 40 retina images used for making clinical di-
agnoses, among which 33 do not show any sign of dia-
betic retinopathy and 7 show signs of mild early diabetic
retinopathy. The images have been divided into a training
and a test set with 20 images for each set.

Roads. We used the Massachusetts Roads dataset [20].
It is one of the largest publicly available collections of
aerial road images, containing both urban and rural neigh-
borhoods, with many different kinds of roads ranging from
small paths to highways. The data is split into 1108 training
and 49 test images, one of which is shown in Fig. 6.

Urban landscapes. We employed the recent Cityscapes
dataset. It is a very challenging dataset with high-resolution
10242048 images. It has 5,000 finely annotated im-
ages which are split into training/validation/test sets with
2975/500/1525 images. 30 classes are annotated, and 19 of
them are used in training and testing.
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Image U-Net-G Rec-Middle

Rec-Last

Rec-Simple Ground Truth

Figure 5: Example predictions on hand segmentation datasets. Note that our method yields accurate segmentations in diverse conditions,
such as with hands close to the camera, multiple hands, hands over other skin regions, and low contrast images in our KBH dataset. By
contrast, the baselines all fail in at least one of these scenarios. Interestingly, our method sometimes yields a seemingly a more accurate
segmentation than the ground-truth ones. For example, in our EYTH result at the top, the gap between the thumb and index finger is
correctly found whereas it is missing from the ground truth. Likewise, for KBH at the bottom, the watch band is correctly identified as not
being part of the arm even though it is labeled as such in the ground truth.

4.2. Experimental Setup

Baselines. We refer to the versions of our approach that
rely on the dual gated unit of Section 3.2 and the single
gated unit of Section 3.3 as Ours-SRU and Ours-DRU, re-
spectively, with, e.g., Ours-SRU(3) denoting the case where
¢ = 3 in Fig. 3. We compare them against the state-of-the-
art model for each task, i.e., RefineNet [40] for hand seg-
mentation, [19] for retina vessel segmentation and [21] for
road delineation, the general purpose DeepLab V3+ [6], the
real-time ICNet [45], and the following baselines.

e U-Net-B and U-Net-G [33]. We treat our U-Net back-
bone by itself as a baseline. U-Net-B uses batch-
normalization and U-Net-G group-normalization. For
a fair comparison, they, Ours-SRU, Ours-DRU, and the
recurrent baselines introduced below all use the same
parameter settings.

e Rec-Last. It has been proposed to add a recurrent unit
after a convolutional segmentation network to process
sequential data, such as video [27]. The correspond-
ing U-Net-based architecture can be directly applied
to segmentation by inputing the same image at all time
steps, as shown in Fig. 2(b). The output then evolves
as the hidden state is updated.

e Rec-Middle. Similarly, the recurrent unit can replace
the bottleneck between the U-Net encoder and de-
coder, instead of being added at the end of the net-
work. This has been demonstrated to handle volumet-
ric data [41]. Here we test it for segmentation. The

hidden state then is of the same size as the inner fea-
ture backbone, that is, 128 in our experimental setup.

e Rec-Simple [21]. We perform a recursive refinement
process, that is, we concatenate the segmentation mask
with the input image and feed it into the network. Note
that the original method of [21] relies on a VGG-19
pre-trained on ImageNet [37], which is far larger than
our U-Net. To make the comparison fair, we therefore
implement this baseline with the same U-Net back-
bone as in our approach.

Scaling Up using Pretrained Deep Networks as Encoder
While our goal is resource-constrained segmentation, our
method extends to the general setting. In this case, to further
boost its performance, we replace the U-Net encoder with a
pretrained VGG-16 backbone. This process is explained in
the supplementary material. We refer to the corresponding
models as U-Net-VGG16 and DRU-VGGI16.

Metrics. We report the mean intersection over union
(mIoU), mean recall (mRec) and mean precision (mPrec).

4.3. Comparison to the State of the Art

We now compare the two versions of our approach to
the state of the art and to the baselines introduced above on
the tasks of hand segmentation, retina vessel segmentation
and road delineation. We split the methods into the light
ones and the heavy ones. The light models contain fewer
parameters and are trained from scratch, whereas the heavy
ones use a pretrained deep model as backbone.
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Model ‘ EYTH [40] GTEA [11] EgoHand [4] HOF [40] KBH
‘ mIOU mRec mPrec mIOU mRec mPrec mIOU mRec mPrec mIOU mRec mPrec mIOU mRec mPrec
No pre-train
ICNet [45] 0.731 0915 0.764 0.898 0971 0.922 0.872 0.925 0.931 0.580 0.801 0.628 0.829 0.925 0.876
U-Net-B [33] 0.803 0912 0.830 0950 0973 0.975 0.815 0.869 0.876 0.694 0.867 0.778 0.870 0.943 00911
U-Net-G 0.837 0928 0.883 0952 0.977 0.980 0.837 0.895 0.899 0.621 0.741 0.712 0.905 0.949 0.948
Rec-Middle [27] | 0.827 0.920 0.877 0.924 0.979 0.976 0.828 0.894 0.905 0.654 0.733 0.796 0.845 0.924 0.898
= Rec-Last [41] 0.838 0920 0.894 0.957 0975 0980 0.831 0.906 0.897 0.674 0.807 0.752 0.870 0.930 0.924
E‘) Rec-Simple [21] | 0.827 0918 0.864 0.952 0.975 0976 0.858 0.909 0.931 0.693 0.833 0.704 0.905 0.951 0.944
Ours at layer (£)
Ours-SRU(0) 0.844 0924 0.890 0960 0976 0.981 0.862 0913 0.932 0.712 0.844 0.764 0.930 0.968 0.957
Ours-SRU(3) 0.845 0931 0.891 0956 0977 0.982 0.864 0913 0933 0.699 0.864 0.773 0.921 0.964 0.951
Ours-DRU(4) 0.849 0926 0.900 0958 0978 0.977 0.873 0924 0935 0.709 0.866 0.774 0.935 0.980 0.970
With pretrain
-, RefineNet [40] 0.688 0.776 0.853 0.821 0.869 0.928 0.814 0.919 0.879 0.766 0.882 0.859 0.865 0.954 0.921
% Deeplab V3+ [6] | 0.757 0.819 0.875 0.907 0.928 0.976 0.870 0.909 0.958 0.722 0.822 0.816 0.856 0.901 0.935
T U-Net-VGG16 0.879 0945 0921 0961 0978 0.981 0.879 0916 0951 0.849 0.937 0.893 0.946 0971 0.972
U-Net-ResNet50 | 0.893 0.942 0.939 0.959 0.978 0.980 0.900 0.936 0.954 0.867 0.949 0.904 0.948 0973 0.972
DRU-VGGI16 0.897 0.946 0.940 0964 0.981 0.982 0.892 0925 0958 0.863 0.948 0.901 0.954 0.973 0.979
DRU-ResNet50 | 0.902 0947 0945 0.959 0.980 0.978 0.898 0.937 0952 0.889 0.948 0.930 0.957 0.978 0.977

Table 3: Comparing against the state of the art. According to the mIOU, Ours-DRU(4) performs best on average, with Ours-SRU(0) a
close second. Generally speaking all recurrent methods do better than RefineNet, which represents the state of the art, on all datasets except
HOF. We attribute this to HOF being too small for optimal performance without pre-training, as in RefineNet. This is confirmed by looking
at DRU-VGG16, which yields the overall best results by relying on a pretrained deep backbone.

Hands. As discussed in Section 4.1, we tested our ap-
proach using 4 publicly available datasets and our own
large-scale one. We compare it against the baselines in Ta-
ble 3 quantitatively and in Fig. 5 qualitatively.

Overall, among the light models, the recurrent methods
usually outperform the one-shot ones, i.e, ICNet [45] and
U-Net. Besides, among the recurrent ones, Ours-DRU(4)
and Ours-SRU(0) clearly dominate with Ours-DRU(4) usu-
ally outperforming Ours-SRU(0) by a small margin. Note
that, even though Ours-DRU(4) as depicted by Fig. 3(a)
looks superficially similar to Rec-Middle, they are quite dif-
ferent because Ours-DRU takes the segmentation mask as
input and relies on our new DRU gate, as discussed at the
end of Section 3.1 and in Section 3.2. To confirm this, we
evaluated a simplified version of Ours-DRU(4) in which we
removed the segmentation mask from the input. The vali-
dation mIOU on EYTH decreased from 0.836 to 0.826 but
remained better than that of Rec-Middle which is 0.814.

Note that Ours-DRU(4) is better than the heavy Re-
fineNet model on 4 out of the 5 datasets, despite RefineNet
representing the current state of the art. The exception is
HOF, and we believe that this can be attributed to HOF
being the smallest dataset, with only 198 training images.
Under such conditions, RefineNet strongly benefits from
exploiting a ResNet-101 backbone that was pre-trained on
PASCAL person parts [7], instead of training from scratch
as we do. This intuition is confirmed by looking at the re-
sults of our DRU-VGG16 model, which, by using a pre-
trained deep backbone, yields the overall best performance.

l T=3 Ground Truth

Image T

Figure 6: Recursive refinement. Retina, hand and road images;
segmentation results after 1, 2, and 3 iterations; ground truth. Note
the progressive refinement and the holes of the vessels, hands and
roads being filled recursively. It is worth pointing out that even the
tiny vessel branches in the retina which are ignored by the human
annotators could be correctly segmented by our algorithm. Better
viewed in color and zoom in.

Model Performance, Size and Speed. Table 3 shows that
DRU-VGG16 outperforms Ours-DRU, e.g., by 0.02 mloU
points on KBH. This, however, comes at a cost. To be pre-
cise, DRU-VGG16 has 41.38M parameters. This is 100
times larger than Ours-DRU(4), which has only 0.36M pa-
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Models mIOU mRec mPrec mF1
ICNet [45] 0.618 0.796 0.690 0.739
= U-Net-G [33] 0.800 0.897 0.868 0.882
<» Rec-Middle [27] 0.818 0.903 0.886 0.894
3 Rec-Simple [21] 0.814 0.898 0.885 0.892
Rec-Last [41] 0.819 0.900 0.890 0.895
Ours-DRU(4) ‘ 0.821 0.902 0.891 0.896
2 DeepLab V3+ [0] 0.756 0.875 0.828 0.851
S U-Net-VGG16 0.804 0.910 0.862 0.886
T DRU-VGGI16 0.817 0.905 0.883 0.894

Table 4: Retina vessel segmentation results.

rameters. Moreover, DRU-VGGI16 runs only at 18 fps,
while Ours-DRU(4) reaches 61 fps. This makes DRU-
VGG16, and the other heavy models, ill-suited to embedded
systems, such as a VR camera, while Ours-DRU can more
easily be exploited in resource-constrained environments.

Retina Vessels. We report our results in Table 4. Our
DRU yields the best mIOU, mPrec and mF1 scores. In-
terestingly, on this dataset, it even outperforms the larger
DRU-VGG16 and DeepLab V3+, which performs compar-
atively poorly on this task. This, we believe, is due to the
availability of only limited data, which leads to overfitting
for such a very deep network. Note also that retina im-
ages significantly differ from the ImageNet ones, thus re-
ducing the impact of relying on pretrained backbones. On
this dataset, [19] constitutes the state of the art, reporting
an F1 score on the vessel class only of 0.822. According to
this metric, Ours-DRU(4) achieves 0.92, thus significantly
outperforming the state of the art.

Roads. Our results on road segmentation are provided
in Table 5. We also outperform all the baselines by a
clear margin on this task, with or without ImageNet pre-
training. In particular, Ours-DRU(4) yields an mIoU 8 per-
centage point (pp) higher than U-Net-G, and DRU-VGG16
Spp higher than U-Net-VGG16. This verifies that our re-
current strategy helps. Furthermore, Ours-DRU(4) also
achieves a better performance than DeepLab V3+ and U-
Net-VGG16. Note that, here, we also report two additional
metrics: Precision-recall breaking point (P/R) and F1-score.
The cutting threshold for all metrics is set to 0.5 except for
P/R. For this experiment, we did not report the results of
U-Net-B because U-Net-G is consistently better.

Note that a P/R value of 0.778 has been reported on this
dataset in [21]. However, this required using an additional
topology-aware loss and a U-Net much larger than ours,
that is, based on 3 layers of a VGG19 pre-trained on Ima-
geNet. Rec-Simple duplicates the approach of [21] without
the topology-aware loss and with the same U-Net as Ours-
DRU. Their mIoU of 0.723, inferior to ours of 0.757, shows
our approach to recursion to be beneficial.

Models | mIOU mRec mPrec P/R  mFl

ICNet [45] 0476 0.626 0.500 0.513 0.656
U-Net-G [33] 0479 0.639 0502 0.642 0.563
Rec-Middle [27] | 0.494 0.767 0.518 0.660 0.574
Rec-Simple [21] | 0.534 0.802 0.559 0.723 0.659
Rec-Last [41] 0.526 0.786 0.551 0.730 0.648

Ours-DRU(4) 0.560 0.865 0.583 0.757 0.691

Light

Deeplab V3+[6] | 0.529 0.763 0.555 0.710 0.643
U-Net-VGG16 0.521 0.836 0.544 0.745 0.659
DRU-VGG16 0.571 0.862 0.595 0.761 0.704

Heavy

Table 5: Road segmentation results.

Model mloU ‘ Model mloU
ICNet[45] 0.695 DeepLab V3 [5] 0.778
U-Net-G 0.429 U-Net-G x2 0.476
Rec-Last 0.502 Rec-Last x2 0.521
DRU®4) 0.532 DRU4) x2 0.627

DRU-VGG16 0.761

Table 6: Cityscapes Validation Set with Resolution 1024 x 2048.
%2 indicates that we doubled the number of channels in the U-Net
backbone. Note that, for our method, we do not use multi-scaling
or horizontal flips during inference.

Urban landscapes. The segmentation results on the
Cityscapes validation set are shown in Table 6. Note that
Ours-DRU is consistently better than U-Net-G and than the
best recurrent baseline, i.e., Rec-Last. Furthermore, dou-
bling the number of channels of the U-Net backbone in-
creases accuracy, and so does using a pretrained VGG-16 as
encoder. Ultimately, our DRU-VGG16 model yields com-
parable accuracy with the state-of-the-art DeepLab V3 one,
despite its use of a ResNet101 backbone.

5. Conclusion

We have introduced a novel recurrent U-Net architecture
that preserves the compactness of the original one, while
substantially increasing its performance. At its heart is the
fact that the recurrent units encompass several encoding and
decoding layers of the segmentation network. In the supple-
mentary material we demonstrate it running in real-time on
a virtual reality device. We also introduced a new hand seg-
mentation dataset that is larger than existing ones.

In future work, we will extend our approach of recur-
rent unit to other backbones than U-Net and to multi-scale
recurrent architectures.
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