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Abstract

Recent developments in gradient-based attention

modeling have seen attention maps emerge as a powerful

tool for interpreting convolutional neural networks. Despite

good localization for an individual class of interest, these

techniques produce attention maps with substantially

overlapping responses among different classes, leading to

the problem of visual confusion and the need for discrimi-

native attention. In this paper, we address this problem by

means of a new framework that makes class-discriminative

attention a principled part of the learning process. Our key

innovations include new learning objectives for attention

separability and cross-layer consistency, which result in

improved attention discriminability and reduced visual

confusion. Extensive experiments on image classification

benchmarks show the effectiveness of our approach in terms

of improved classification accuracy, including CIFAR-100

(+3.33%), Caltech-256 (+1.64%), ILSVRC2012 (+0.92%),

CUB-200-2011 (+4.8%) and PASCAL VOC2012 (+5.73%).

1. Introduction

Visual recognition has seen tremendous progress in the

last few years, driven by recent advances in convolutional

neural networks (CNNs) [13, 17]. Understanding their

predictions can help interpret models and provide cues to

design improved algorithms.

Recently, class-specific attention has emerged as a

powerful tool for interpreting CNNs [5, 31, 45]. The big-

picture intuition that drives these techniques is to answer

the following question- where is the target object in the

image? Some recent extensions [20] make attention end-to-

end trainable, producing attention maps with better local-

izability. While these methods consider the localization

problem, this is insufficient for image classification, where

the model needs to be able to tell various object classes

apart. Specifically, existing methods produce attention

maps corresponding to an individual class of interest that
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Figure 1. The baseline CNN attends to similar regions, i.e. the

central areas, when it comes to the relevant pixels for classes

“treadmill,” “basketball hoop,” and “tripod.” The CNN with our

proposed framework is able to tell the three classes apart and has

high confidence to classify the input as “basketball hoop.”

may not be discriminative across classes. Our intuition,

shown in Figure 1, is that such separable attention maps can

lead to improved classification performance. Furthermore,

we contend that false classifications stem from patterns

across classes which confuse the model, and that elimi-

nating these confusions can lead to better model discrim-

inability. To illustrate this, consider Figure 2 (a), where

we use the VGG-19 model [33] to perform classification

on the ILSVRC2012 [30] dataset, we collect failure cases

and generate the attention maps via Grad-CAM [31] and

we show the top-5 predictions. Figure 2 (a) depicts that,

while the attention maps of the last feature layer are reason-

ably well localized, there are large overlapping regions

between the attention of the ground-truth class (marked by

red bounding boxes) and the false positives, demonstrating

the problem, and the need for discriminative attention.

To overcome the above attention-map limitations, we

need to address two key questions: (a) can we reduce

visual confusion, i.e., make class-specific attention maps
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Figure 2. Grad-CAM [31] attention maps of the VGG-19 [33] top-

5 predictions. Predictions with red-bounding boxes correspond

to the ground-truth class. (a) Ground-truth class attention maps

from the last layer (Conv5) have a large overlap with false posi-

tives (top-1 predictions). (b) Inner-layer attention maps (Conv4)

are more separable than their last-layer counterparts.

separable and discriminative across different classes?, and

(b) can we incorporate attention discriminability in the

learning process in an end-to-end fashion? We answer

these questions in a principled manner, proposing the first

framework that makes attention maps class discrimina-

tive. Furthermore, we propose a new attention mechanism

to guide model training towards attention discriminability,

which provides end-to-end supervisory signals by explicitly

enforcing attention maps of various classes to be separable.

Attention separability and localizability are key aspects

of our proposed learning framework for image classifica-

tion. Non-separable attention maps from the last layer, as

shown in Figure 2 (a), prompted us to look “further inside”

the CNN and Figure 2 (b) shows attention maps from an

intermediate layer. This illustration shows that these inner-

layer attention maps are more separable than those from the

last layer. However, the inner-layer attention maps are not

as well-localized as the last layer. So, another question we

ask is- can we get the separability of the inner-layer atten-

tion and the localization of the last-layer attention at the

same time? Solving this problem would result in a “best-of-

both-worlds” attention map that is separable and localized,

which is our goal. To this end, our framework also includes

an explicit mechanism that enforces the ground-truth class

attention to be cross-layer consistent.

We conduct extensive experiments on five compet-

itive benchmarks (CIFAR-100 [19], Caltech-256 [12],

ILSVRC2012 [30], CUB-200-2011 [36] and PASCAL

VOC 2012 [10]), showing performance improvements of

3.33%, 1.64%, 0.92%, 4.8%, and 5.73%, respectively.

In summary, we make the following contributions:

• We propose channel-weighted attention Ach, which

has better localizability and avoids higher-order

derivatives computation, compared to existing

approaches for attention-driven learning.

• We propose attention separation loss LAS , the

first learning objective to enforce the model to

produce class-discriminative attention maps, resulting

in improved attention separability.

• We propose attention consistency loss LAC , the first

learning objective to enforce attention consistency

across different layers, resulting in improved localiza-

tion with “inner-layer” attention maps.

• We propose “Improving Classification with Attention

Separation and Consistency” (ICASC), the first frame-

work that integrates class-discriminative attention and

cross-layer attention consistency in the conventional

learning process. ICASC is flexible to be used with

available attention mechanisms, i.e. Grad-CAM [31]

and Ach, providing the learning objectives for training

CNN with discriminative and consistent attention,

which results in improved classification performance.

2. Related work

Visualizing CNNs. Much recent effort has been

expended in visualizing internal representations of CNNs

to interpret the model better. Erhan et al. [9] synthesized

images to maximally activate a network unit. Mahendran et

al. [24] and Dosovitskiy et al. [8] analyzed the visual coding

to invert latent representations, performing image recon-

struction by feature inversion with an up-convolutional

neural network. In [32, 34, 41], the gradient of the predic-

tion was computed w.r.t. the specific CNN unit to high-

light important pixels. These approaches are compared in

[25, 31]. The visualizations are fine-grained but not class-

specific, where visualizations for different classes are nearly

identical [31].

Our framework is inspired by recent works [5, 31, 45]

addressing class-specific attention. CAM [45] generated

class activation maps highlighting task-relevant regions

by replacing fully-connected layers with convolution and

global average pooling. Grad-CAM [31] solved CAM’s

inflexibility where without changing the model architec-

ture and retraining the parameters, class-wise attention

maps were generated by means of gradients of the final

prediction w.r.t. pixels in feature maps. However, we

observe that directly averaging gradients in Grad-CAM [31]

results in the improper measurement of channel impor-

tance, producing substantial attention inconsistency among

various feature layers. Grad-CAM++ [5] proposed to intro-

duce higher-order derivatives to capture pixel importance,

while its high computational cost in calculating the second-
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Figure 3. The framework of Improving Classification with Atten-

tion Separation and Consistency (ICASC).

and third-order derivatives makes it impractical to be used

during training.

Attention-guided network training. Several recent

methods [14, 17, 38, 40] have attempted to incorporate

attention mechanisms to improve the performance of CNNs

in image classification. Wang et al. [38] proposed Residual

Attention Network, modifying ResNet [13] by adding the

hourglass network [26] to the skip-connection, generating

attention masks to refine feature maps. Hu et al. [14]

introduced a Squeeze-and-Excitation (SE) module which

used globally average-pooled features to compute channel-

wise attention. CBAM [27, 40] modified the SE module

to exploit both spatial and channel-wise attention. Jetley

et al. [17] estimated attentions by considering the feature

maps at various layers in the CNN, producing a 2D matrix

of scores for each map. The ensemble of output scores was

then used for class prediction. While these methods use

attention for downstream classification, they do not explic-

itly use class-specific attention as part of model training for

image classification.

Our work, to the best of our knowledge, is the first to use

class-specific attention to produce supervisory signals for

end-to-end model training with attention separability and

cross-layer consistency. Furthermore, our proposed method

can be considered as an add-on module to existing image

classification architectures without needing any architec-

tural change, unlike other methods [14, 17, 38, 40]. While

class-specific attention has been used in the past for weakly-

supervised object localization and semantic segmentation

tasks [6, 20, 39, 43], we model attention differently. The

goal of these methods is singular - to make the attention well

localize the ground-truth class, while our goal is two-fold -

good attention localizability as well as discriminability. To

this end, we devise novel objective functions to guide model

training towards discriminative attention across different

classes, leading to improved classification performance as

we show in the experiments section.

Figure 4. The Grad-CAM [31] attentions of different VGG-19 [33]

feature layers for the ’tench’ class. In both rows, the target is the

fish while the model attention shifts across the layers.

3. Approach

In Figure 3, we propose “Improving Classification

with Attention Separation and Consistency” (ICASC), the

first end-to-end learning framework to improve model

discriminability for image classification via attention-driven

learning. The main idea is to produce separable attention

across various classes, providing supervisory signals for the

learning process. The motivation comes from our obser-

vations from Figure 2 that the last layer attention maps

computed by the existing methods such as Grad-CAM [31]

are not class-separable, although they are reasonably well

localized. To address this problem, we propose the atten-

tion separation loss LAS , a new attention-driven learning

objective to enforce attention discriminability.

Additionally, we observe from Figure 2 that inner layer

attention at higher resolution has the potential to be sepa-

rable, which suggests we consider both intermediate and

the last layer attention to achieve separability and local-

izability at the same time. To this end, we propose the

attention consistency loss LAC , a new cross-layer atten-

tion consistency learning objective to enforce consistency

among inner and last layer attention maps. Both proposed

learning objectives require that we obtain reasonable atten-

tion maps from the inner layer. However, Grad-CAM [31]

fails to produce intuitively satisfying inner layer attention

maps. To illustrate this, we depict two Grad-CAM [31]

examples in Figure 4, where we see the need for better inner

layer attention. To this end, we propose a new channel-

weighted attention mechanism Ach to generate improved

attention maps (explained in Sec. 3.1). We then discuss how

we use them to produce supervisory signals for enforcing

attention separability and cross-layer consistency.

3.1. Channel-weighted attention Ach

Commonly-used techniques to compute gradient-based

attention maps given class labels include CAM [45], Grad-

CAM [31], and Grad-CAM++ [5]. We do not use CAM

because (a) it is inflexible, requiring network architecture

modification and model re-training, and (b) it works only

for the last feature layer.

Compared to CAM [45], Grad-CAM [31] and Grad-
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CAM++ [5] are both flexible in the sense that they only

need to compute the gradient of the class prediction score

w.r.t. the feature maps to measure pixel importance. Specif-

ically, given the class score Y c for the class c and the

feature map F k in the k-th channel, the class-specific

gradient is determined by computing the partial derivative

(∂Y c)/(∂F k). The attention map is then generated as

A = ReLU(
P

k α
c
kF

k), where αc
k indicates the impor-

tance of F k in the k-th channel. In Grad-CAM [31], the

weight αc
k is a global average of the pixel importance in

(∂Y c)/(∂F k):

α
c
k =

1

Z

X

i

X

j

∂Y c

∂F k
ij

(1)

where Z is the number of pixels in F k. Grad-CAM++ [5]

further introduces higher-order derivatives to compute αc
k

so as to model pixel importance.

Although Grad-CAM [31] and Grad-CAM++ [5] are

more flexible than CAM [45], they have several drawbacks

that hinder their use as is for our purposes of providing

separable and consistent attention guidance for image clas-

sification. First, there are large attention shifts among atten-

tion maps of different feature layers in Grad-CAM [31]

which are caused by negative gradients while computing

channel-wise importance. A key aspect of our proposed

framework ICASC is to exploit the separability we observe

in inner layer attention in addition to good localization from

the last layer attention. While we observe relatively less

attention shift with Grad-CAM++ [5], the high computa-

tional cost of computing higher-order derivatives precludes

its use in ICASC since we use attention maps from multiple

layers to guide model training in every iteration.

To address these issues, we propose channel-weighted

attention Ach, highlighting the pixels where the gradients

are positive. In our exploratory experiments, we observed

that the cross-layer inconsistency of Grad-CAM [31], noted

above, is due to negative gradients from background pixels.

In Grad-CAM [31], all pixels of the gradient map contribute

equally to the channel weight (Eq. 1). Therefore, in cases

where background gradients dominate, the model tends to

attend only to small regions of target objects, ignoring

regions that are important for class discrimination.

We are motivated by prior work [5, 34, 41] that observes

that positive gradients w.r.t. each pixel in the feature map

F k strongly correlate with the importance for a certain

class. A positive gradient at a specific location implies

increasing the pixel intensity in F k will have a positive

impact on the prediction score, Y c. To this end, driven

by positive gradients, we propose a new channel-weighted

attention mechanism Ach:

Ach =
1

Z
ReLU(

X

k

X

i

X

j

ReLU(
∂Y c

∂F k
ij

)F k) (2)

Figure 5. The comparison of attention maps from different VGG-

19 [33] layers. Ours has less attention shift than Grad-CAM [31].

In the marked areas, ours attends to the target objects, i.e. bird,

while Grad-CAM [31] tends to highlight the background pixels.

Our attention does not need to compute higher-order

derivatives as in Grad-CAM++ [5], while also resulting

in well-localized attention maps with relatively less shift

unlike Grad-CAM [31], as shown in Figure 5.

3.2. Attention separation loss LAS

We use the notion of attention separability as a princi-

pled part of our learning process and propose a new learning

objective LAS . Essentially, given the attention map of a

ground-truth class AT and the most confusing class AConf ,

where AConf comes from the non-ground truth class with

the highest classification probability, we enforce the two

attentions to be separable. We reflect this during training by

quantifying overlapping regions between AT and AConf ,

and minimizing it. To this end, we propose LAS which is

defined as:

LAS = 2 ·

P
ij(min(AT

ij ,A
Conf
ij ) ·Maskij)

P
ij(A

T
ij +A

Conf
ij )

, (3)

where the · operator indicates scalar product, and AT
ij and

AConf
ij represent the (i, j)th pixel in attention maps AT and

AConf respectively. The proposed LAS is differentiable

which can be used for model training.

Additionally, to reduce noise from background pixels,

we apply a mask to focus on pixels within the target object

region for the LAS computation. In Eq. 3, Mask indicates

the target object region generated by thresholding the atten-

tion map AT from the last layer:

Maskij =
1

1 + exp(�ω(AT
ij � σ))

, (4)

where we empirically choose values of σ and ω to be 0.55⇥
max(AT

ij) and 100 respectively.

The intuition of LAS is illustrated in Figure 6. If

the model attends to the same or overlapped regions for

different classes, it results in visual confusion. We penalize

the confusion by explicitly reducing the overlap between the

attention maps of the target and the most confusing class.

Specifically, we minimize LAS , which is differentiable with

values ranging from 0 to 1.
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Figure 6. The top row demonstrates higher visual confusion than

the bottom row. The two attention maps in the top row have

high responses localized at the bird’s head, while as shown in the

bottom, the ground-truth class attention highlights the bird’s head,

and the confusing class attention addresses the lower body.

The proposed LAS can be considered an add-on module

for training a model without changing the network archi-

tecture. Besides applying LAS to the last feature layer, we

can also compute LAS for any other layers, which makes it

possible for us to analyze model attention at various scales.

While the proposed LAS helps enforce attention separa-

bility, it is not sufficient for image classification since inner

layer attention maps are not as spatially well-localized as

the last layer. We set out to achieve an attention map to be

well-localized and class-discriminative, and to this end, we

propose a new cross-layer attention consistency objective

LAC that enforces the target attention map from an inner

layer to be similar to that from the last layer.

3.3. Attention consistency loss LAC

In higher layers (layers closer to output), the model

attention captures more semantic information, covering

most of the target object [5, 31, 45]. For the intermediate

layers with the smaller receptive fields of the convolution

kernels, the model attends to more fine-grained patterns as

shown in Figures 4 and 5. Compared to higher-layer atten-

tion, lower-layer attention contains more noise, highlighting

background pixels.

To address these issues, we propose the attention consis-

tency loss LAC to correct the model attention so that the

highlighted fine-grained attention is primarily localized in

the target region:

LAC = θ �

P
ij(A

in
ij ·Maskij)P
ij A

in
ij

, (5)

where Ain indicates attention maps from the inner feature

layers, Maskij (defined in Eq. 4) represents the target

region, and θ is set to 0.8 empirically. As can be noted

from Eq. 5, the intuition of LAC is that by exploiting last

layer attention’s good localizability, we can guide the inner

layer attention to be chiefly concentrated within the target

region as well. This guidance LAC helps maintain cross-

layer attention consistency.

3.4. Overall framework ICASC

We apply the constraints of attention separability and

cross-layer consistency jointly as supervisory signals to

guide end-to-end model training, as shown in Figure 3.

Firstly, we compute inner-layer attention for the loss Lin
AS

with the purpose of enforcing inner-layer attention separa-

bility. For example, with ResNet, we use the last convo-

lutional layer in the penultimate block. We empirically

adopt this to compute Lin
AS in consideration of the low-

level patterns and semantic information addressed by the

inner-layer attention. In Figure 5, this inner-layer attention,

with twice resolution as the last layer, highlights more fine-

grained patterns while still preserving the semantic infor-

mation, thus localizing the target object. We also apply

the LAS constraint on the attention map from the last layer,

giving us Lla
AS . Secondly, we apply the cross-layer consis-

tency constraint LAC between the attention maps from

these two layers. Finally, for the classification loss LC ,

we use cross-entropy and multilabel-soft-margin loss for

single and multi-label image classification respectively. The

overall training objective of ICASC, L, is:

L = LC + Lin
AS + Lla

AS + LAC (6)

ICASC can be used with available attention mecha-

nisms including Grad-CAM [31] and Ach. We use

ICASCGrad−CAM and ICASCAch
to refer to our frame-

work used with Grad-CAM [31] and Ach as the attention

mechanisms respectively.

4. Experiments

Our experiments contain two parts, (a) evaluating the

class discrimination of various attention mechanisms, and

(b) demonstrating the effectiveness of the proposed ICASC

by comparing it with the corresponding baseline model

(having the same architecture) without the attention super-

vision. We conduct image classification experiments

on various datasets, consisting of three parts: generic

image classification on CIFAR-100 (DCI ) [19], Caltech-

256 (DCa) [12] and ILSVRC2012 (DI ) [30], fine-grained

image classification on CUB-200-2011 (DCU ) [36], and

finally, multi-label image classification on PASCAL VOC

2012 (DP ) [10]. For simplicity, we use the shorthand in the

parenthesis after the dataset names above to refer to each

dataset and its associated task, and summarize all experi-

mental parameters used in Table 1. We perform all experi-

ments using PyTorch [28] and NVIDIA Titan X GPUs. We

use the same training parameters as those in the baselines

proposed by the authors of the corresponding papers for fair

comparison.

4.1. Evaluating class discriminability

We first evaluate class-discriminability of our proposed

attention mechanism Ach by measuring both localizability
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Task DCI DCa DI DCU DP

BNA RN-18 VGG RN-18 RN-50 RN-18

RN-18 RN-101

WD 5e−4 1e−3 1e−4 5e−4 1e−3

MOM 0.9 0.9 0.9 0.9 0.9

LR 1e−1 1e−2 1e−1 1e−3 1e−2

BS 128 16 256 10 16

OPM SGD CCA SGD SGD CCA

# epoch 160 20 90 90 20

Exp. setting [13] [12] [30] [35] [10]

Table 1. Experimental (exp.) settings used in this paper. VGG,

RN-18, RN-50, and RN-101 denote VGG-19 [32], ResNet-

18 [13], ResNet-50, and ResNet-101, respectively. We use the

same parameters as the references in the last row unless other-

wise specified, putting more details in the supplementary mate-

rial. Acronyms: BNA: base network architecture; WD: weight

decay; MOM: momentum; LR: initial learning rate; BS: batch

size; OPM: optimizer; SGD: stochastic gradient descent [3]; CCA:

cyclic cosine annealing [15].

(identifying target objects) and discriminability (separating

different classes). We conduct experiments on the PASCAL

VOC 2012 dataset. Specifically, with a VGG-19 model

trained only with class labels (no pixel-level segmentation

annotations), we generate three types of attention maps

from the last feature layer: Grad-CAM, Grad-CAM++, and

Ach. The attention maps are then used with DeepLab [7]

to generate segmentation maps, which are used to report

both qualitative (Figure 7 and 8) and quantitative results

(Table 2), where we train Deeplab1 in the same way

as SEC [18] is trained in [21], using attention maps as

weak localization cues. The focus of our evaluation here

is targeted towards demonstrating class discriminability,

and segmentation is merely used as a proxy task for this

purpose.

Figure 7 shows that Ach (ours) has better localiza-

tion for the two classes, “Bird” and “Person” compared

to Grad-CAM and Grad-CAM++. In “Bird,” both Grad-

CAM and Grad-CAM++ highlight false positive pixels in

the bottom-left area, whereas in “Person,” Grad-CAM++

attends to a much larger region than Grad-CAM and

Ach. Figure 8 qualitatively demonstrates better class-

discriminative segmentation maps using Ach. In Figure 8

top row, as expected for a single object, all methods,

including Ach, show good performance localizing the

sheep. The second row shows that Grad-CAM covers more

noise pixels of the grassland, while Ach produces similar

results as Grad-CAM++, both of which are better than

Grad-CAM in identifying multiple instances of the same

class. Finally, for multi-class images in the last row, Ach

demonstrates superior results when compared to both Grad-

CAM and Grad-CAM++. Specifically, Ach is able to tell

1https://github.com/tensorflow/models/tree/master/research/deeplab

Figure 7. Multi-class attention maps (‘bird’ and ‘person’).

Figure 8. Segmentation masks generated from attention maps by

DeepLab [7] (best view in color, zoom in). From left to right: the

Input Image, Ground Truth, Grad-CAM, Grad-CAM++ and ours.

Attention Mechanism Score

Grad-CAM [31] 56.65

Grad-CAM++ [5] 51.70

Ach (ours) 57.97

Table 2. Results on Pascal VOC 2012 segmentation validation set.

Method Top-1 ∆

ResNet-50 81.70 -

+ L
in

AS 85.15 3.45

+ L
in

AS + LAC 85.77 4.07

+ L
in

AS + L
la

AS + LAC 86.20 4.50

Table 3. Ablation study on CUB-200-2011 (∆=performance

improvement; “Top-1”: top-1 accuracy (%)).

the motorcycle, the person, and the car apart in the last row.

We also obtain the quantitative results and report the score

from the Pascal VOC Evaluation server in Table 2, where

Ach outperforms both Grad-CAM and Grad-CAM++. The

qualitative and quantitative results show that Ach localizes

and separates target objects better than the baselines, moti-

vating us to use Ach in ICASC, which we evaluate next.

4.2. EvaluatingLAS andLAC for image classification

4.2.1 Ablation study

Table 3 shows an ablation study with the CUB-200-2011

dataset, which provides a challenging testing set given its

fine-grained nature. We use the last convolutional layer in
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Figure 9. The KS-Chart on the CUB-200-2011 testing set. “Ours”

stands for ResNet-50 + L
in

AS + L
la

AS + LAC in Table 3.

the penultimate block of ResNet-50 for computing Lin
AS and

the last layer attention map for Lla
AS . We see that Lin

AS +

Lla
AS + LAC achieves the best performance. The results

show that the attention maps from the two different layers

are complementary: last-layer attention has more semantic

information, well localizing the target object, and inner

layer attention with higher resolution provides fine-grained

details. Though the inner-layer attention is more likely to

be noisy than the last layer, LAC provides the constraint to

guide the inner-layer attention to be consistent with that of

the last layer and be concentrated within the target region.

We quantitatively measure the degree of visual confusion

reduction with our proposed learning framework. Specif-

ically, as shown in Figure 9, we compute Kolmogorov-

Smirnov (KS) statistics [1] on the CUB-200-2011 testing

set, measuring the degree of separation between the ground-

truth (Target) class and the most confusing (Confused) class

distributions [23]. We rank non-ground truth classes in

descending order according to their classification proba-

bilities and determine the most confusing class as the one

ranked highest. In Figure 9, for the baseline model, the

largest margin is 0.64 at the classification probability 0.51

whereas our proposed model has a KS margin of 0.74 at the

classification probability 0.55. This demonstrates that our

model is able to recognize 10% more testing samples with

higher confidence when compared to the baseline.

4.2.2 Generic image classification

Tables 4-6 (in all tables, 4 indicates performance improve-

ment of our method over baseline) show that the models

trained with our proposed supervisory principles outper-

form the corresponding baseline models with a notable

margin. The most noticeable performance improvements

are observed with the CIFAR-100 dataset in Table 4, which

shows that, without changing the network architecture, the

dolphin: 0.28 Wolf:0.20 leopard: 0.11 mountain: 0.09 lizard: 0.07

Input Image

Label: leopard

leopard: 0.63 Wolf:0.10 lizard: 0.08 turtle: 0.03 crocodile: 0.02

Figure 10. Qualitative results with CIFAR-100. We show top-5

predictions with classification scores given by ResNet-110 (top

row) and ResNet-110 + ICASCAch
(bottom row).

Method Top-1 4

ResNet-110 [16] 72.78 -

ResNet-110 with Stochastic Depth [16] 75.42 -

ResNet-164 (pre-activation) [16] 75.63 -

ResNet-110 + ICASCGrad−CAM 74.02 1.24

ResNet-110 + ICASCAch
76.11 3.33

Table 4. Image classification results on CIFAR-100.

Method
N=30 N=60

Top-1 Top-5 ∆ Top-1 Top-5 ∆

RN-18 [13] 76.77 92.48 - 80.01 94.12 -

RN-18 + ICASCAch
78.01 92.87 1.24 81.32 94.57 1.31

VGG-19 [33] 74.52 90.05 - 78.16 92.17 -

VGG-19 + ICASCAch
75.60 90.85 1.08 79.80 93.25 1.64

Table 5. Results on Caltech-256. “Top-5”: top-5 accuracy (%).

“RN-18”: ResNet-18. “N”: # of training images per class. We

follow [12] to randomly select 30 or 60 training images per class.

Method Top-1 Top-5 4

ResNet-18 [13] 69.51 88.91 -

ResNet-18 + ICASCAch
69.90 89.71 0.39

ResNet-18 + tenCrop [13] 72.12 90.58 -

ResNet-18 + tenCrop + ICASCAch
73.04 90.65 0.92

Table 6. Results on ILSVRC2012.

top-1 accuracy of ResNet-110 with our proposed supervi-

sion outperforms the baseline model by 3.33%. Our super-

vised ResNet-110 also outperforms the one with stochastic

depth and even the much deeper model with 164 layers. As

can be observed from the qualitative results in Figure 10,

ICASCAch
equips the model with discriminative attention

where the ground-truth class attention is separable from the

confusing class, resulting in improved prediction.

4.2.3 Fine-grained Image Recognition

For fine-grained image recognition, we evaluate our

approach on the CUB-200-2011 dataset [36], which
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Method No Extra Anno. 1-Stage Top-1 ∆

ResNet-50 [35] 3 3 81.7 -

ResNet-101 [35] 3 3 82.5 0.8

MG-CNN [37] 8 8 83.0 1.3

SPDA-CNN [42] 8 3 85.1 3.4

RACNN [11] 3 3 85.3 3.6

PN-CNN [4] 8 8 85.4 3.7

RAM [22] 3 8 86.0 4.3

MACNN + 2parts [44] 3 3 85.4 3.7

ResNet-50 + MAMC [35] 3 3 86.2 4.5

ResNet-101 + MAMC [35] 3 3 86.5 4.8

ResNet-50 + ICASCAch
3 3 86.2 4.5

ResNet-101 + ICASCAch
3 3 86.5 4.8

Table 7. Results on CUB-200-2011. “No Extra Anno.” means

not using extra annotation (bounding box or part) in training. “1-

Stage” means the training is done in one stage.

contains 11788 images (5994/5794 for training/testing) of

200 bird species. We show the results in Table 7. We

observe that training with our learning mechanism boosts

the accuracy of the baseline ResNet-50 and ResNet-101 by

4.8% and 4.0% respectively. Our method achieves the best

overall performance against the state-of-the-art. Further-

more, with ResNet-50, our method outperforms even the

method that uses extra annotations (PN-CNN) by 0.8%.

ICASCAch
has better flexibility compared to the other

methods in Table 7. The existing methods are specifi-

cally designed for fine-grained image recognition where,

according to prior knowledge of the fine-grained species,

the base network architectures (BNA) are modified to

extract features of different objects parts [35, 42, 44]. In

contrast, ICASCAch
needs no prior knowledge and works

for generic image classification without changing the BNA.

4.2.4 Multi-class Image Classification

We conduct multi-class image classification on the

PASCAL VOC 2012 dataset, which contains 20 classes.

Different from the above generic and fine-grained image

classification where each image is associated with one class

label, for each of the 20 classes, the model predicts the prob-

ability of the presence of an instance of that class in the

test image. As our attention is class-specific, we can seam-

lessly adapt our pipeline from single-label to multi-label

classification. Specifically, we apply the one-hot encoding

to corresponding dimensions in the predicted score vector

and compute gradients to generate the attention for multiple

classes. As for the most confusing class, we consistently

determine it as the non-ground truth class with the highest

classification probability.

For evaluation, we report the Average Precision (AP)

from the PASCAL Evaluation Server [10]. We also compute

the AUC score via scikit-learn python module [29] as an

Method AUC Score AP (%) 4

ResNet-18 [13] 0.976 77.44 -

ResNet-18 + ICASCAch
0.981 83.17 5.73

Table 8. Results on Pascal VOC 2012.

Pascal VOC 2012 Top-1

ResNet-18 77.44

+ ICASCGrad−CAM 82.12

+ ICASCAch
83.17

Caltech-256 Top-1

ResNet-18 80.01

+ ICASCGrad−CAM 80.28

+ ICASCAch
81.32

CUB-200-2011 Top-1

ResNet-50 81.70

+ ICASCGrad−CAM 85.45

+ ICASCAch
86.20

ILSVRC2012 Top-1

ResNet-18 69.51

+ ICASCGrad−CAM 69.84

+ ICASCAch
69.90

Table 9. Comparing baseline, ICASCGrad−CAM and ICASCAch
.

additional evaluation metric [2]. Table 8 shows that ResNet-

18 [13] with Ach outperforms the baseline by 5.73%.

4.2.5 Comparing attention mechanisms

We compare the image classification performance when

ICASC is trained with Grad-CAM [31] and Ach. As can

be noted from the results in Table 4 and 9, the higher Top-1

accuracy of ICASCAch
shows that our attention mechanism

provides better supervisory signals for model training than

Grad-CAM [31]. Additionally, even ICASC with Grad-

CAM still outperforms the baseline, further validating our

key contribution of attention-driven learning for reducing

visual confusion. The proposed ICASC is flexible to be

used with any existing attention mechanisms as well, while

resulting in improved classification performance.

5. Conclusions

We propose a new framework, ICASC, which makes

class-discriminative attention a principled part of training a

CNN for image classification. Our proposed attention sepa-

ration loss and attention consistency loss provide supervi-

sory signals during training, resulting in improved model

discriminability and reduced visual confusion. Addition-

ally, our proposed channel-weighted attention has better

class discriminability and cross-layer consistency than

existing methods (e.g. Grad-CAM [31]). ICASC is appli-

cable to any trainable network without changing the archi-

tecture, giving an end-to-end solution to reduce visual

confusion. ICASC achieves performance improvements on

various medium-scale, large-scale, fine-grained, and multi-

class classification tasks. While we select last two feature

layers which contain most semantic information to generate

the attention maps, ICASC is flexible w.r.t. layer choices

for attention generation, and we plan to study the impact of

various layer choices in the future.
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