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Abstract

In this work, we construct a large-scale dataset for vehi-
cle re-identification (RelD), which contains 137k images of
13k vehicle instances captured by UAV-mounted cameras.
To our knowledge, it is the largest UAV-based vehicle RelD
dataset. To increase intra-class variation, each vehicle is
captured by at least two UAVs at different locations, with
diverse view-angles and flight-altitudes. We manually label
a variety of vehicle attributes, including vehicle type, color,
skylight, bumper, spare tire and luggage rack. Furthermore,
for each vehicle image, the annotator is also required to
mark the discriminative parts that helps them to distinguish
this particular vehicle from others. Besides the dataset, we
also design a specific vehicle RelD algorithm to make full
use of the rich annotation information. It is capable of ex-
plicitly detecting discriminative parts for each specific vehi-
cle and significantly outperforming the evaluated baselines
and state-of-the-art vehicle RelD approaches.

1. Introduction

With the rapid development of the Unmanned Aerial Ve-
hicles (UAVs), the UAV-based vision applications have been
drawing an increasing attentions from both industry and
academia [47]. Existing UAV-related research and datasets
in computer vision are mainly focused on the tasks of ob-
ject detection [46, 43, 45], single or multiple object track-
ing [23, 2,48, 32,33, 31], action recognition [ |, 25, 29] and
event recognition [24]. However, the UAV-based vehicle re-
identification is rarely studied, although it has a variety of
potential applications such as long-term tracking, visual ob-
jectretrieval, efc. One of the reasons is the lack of the corre-
sponding publicly available dataset, which will take a large
amount of human efforts for UAV flying, video capture and
data annotation. Existing vehicle RelD datasets [42, 19, 21]
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Figure 1. Illustration of our collected dataset for UAV-based ve-
hicle ReID. Can you figure out which two images belong to the
same vehicle instance in each row? The answer is at the end of our
paper. To aid in-depth research, a rich set of information is anno-
tated in our dataset, including color, vehicle type, Skylight (Sky.),
Bumper (Bum.), Spare tire (Spa.), Luggage rack (Lug.) and dis-
criminative parts.

are collected by fixed surveillance cameras, which differs
from UAV-mounted cameras in the view-angles and image
qualities.

In this paper, we construct a large-scale vehicle RelD
dataset for UAV-based intelligent applications, named Vehi-
cle Re-identification for Aerial Image (VRAI). The VRAI
dataset consists of 137,613 images of 13,022 vehicle in-
stances. The images of each vehicle instance are captured
by cameras of two DJI consumer UAVs at different lo-
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Figure 2. Comparison of our VRAI dataset with other vehicle RelD datasets. Our dataset not only provides a diversity range of view-angles,
but also additional annotations of discriminative parts for each particular vehicle instance. The annotated discriminative parts offer strong

supervision information for fine-grained recognition.

cations, with a variety of view-angles and flight-altitudes
(15m to 80m). As shown in Figure 1, the task of UAV-based
vehicle RelD is typically more challenging than the coun-
terpart based on fixed surveillance cameras, as vehicles in
UAV-captured images are featured in larger pose variation
and wider range of resolution.

To support in-depth research, we collect a rich set of an-
notations, including vehicle IDs, vehicle attributes and dis-
criminative parts. Images of the same vehicle instance are
manually assigned with a unique ID, according to the ap-
pearance similarity and time dependency. For every im-
age, we also annotate the color (9 classes), vehicle type
(7 classes), and whether or not having skylight, bumper,
spare tire and luggage rack. Moreover, differing from the
tasks of vehicle detection [6], tracking [3, 40] and classifica-
tion [44, 17], vehicle re-identification relies more on small
regions containing fine-grained discriminative information.
To this end, we also ask annotators to mark these discrim-
inative parts using bounding boxes for each image in our
dataset. Figure 2 illustrates some examples of annotated
discriminative parts. We can see that many discriminative
parts correspond to interior decoration of frontal window,
skylight, bumper, and so on.

To summarize, the featured properties of our VRAI
dataset include:

Largest UAV-based vehicle RelD dataset to date. It con-
tains over 137,613 images of 13, 022 vehicles which is the
largest UAV-based vehicle RelD dataset to our knowledge.
Each vehicle has over 10 images in average.

Rich annotations. Besides unique IDs, we also annotate
the color, vehicle type, attributes e.g. whether it contains
skylight, spare tire efc. and discriminative parts of the im-
ages in the dataset.

Diverse view-angles and poses. The images are taken by
two moving UAVs in real urban scenarios, and the flight-
altitude ranges from 15m to 80m. It results in a large diver-

sity of view-angles and pose variations, and so increases the
difficulty of the corresponding RelD task.

Based on the rich annotation information of our dataset,
we propose a novel approach for vehicle RelD from aerial
images, which is capable of explicitly detecting discrimina-
tive parts for each specific vehicle and significantly outper-
forms other compared algorithms.

2. Related Work

In this section, we briefly review the related works from
the following three aspects.
Vehicle Image Datasets. Recently, more and more vehi-
cle related datasets have been collected for many research
fields. Yang et al. [42] provide a large scale vehicle dataset,
named CompCars, for fine-grained categorization and ver-
ification. The KITTI dataset [&] is collected to serve as a
benchmark dataset for the fundamental tasks of object de-
tection, tracking, semantic segmentation etc. Several vehi-
cle RelD datasets have also been constructed. Liu et al. [21]
construct a relatively small vehicle RelD dataset named
VeRi which includes 40, 000 bounding boxes of 619 vehi-
cles. VehicleID [19] is a much larger vehicle RelD dataset
with 221, 763 images of 26, 267 vehicles in total. We can
see from Figure 2 that, both the VeRi and VehiclelD contain
limited view-angles and vehicle poses, compared with our
presented dataset.
Aerial Visual Datasets. With the rapid development of
the commercial UAV, more and more aerial visual datasets
have been constructed to facilitate the research of aerial
vision tasks. DOTA [39] and NWPU VHR-10 [9] are
the datasets collected for object detection in aerial images
which are taken by UAVs from a relatively high flying al-
titude. UAV 123 [23] is a video dataset aimed to serve as a
target tracking dataset, which is taken by an UAV with a rel-
atively low flying altitude. The Visdrone2018 [47] dataset is
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collected to serve as a benchmark dataset for the challenge
of “Vision Meets Drones”. The main tasks of the challenge
are still object detection and tracking.

ReID Approaches. Person and vehicle are two impor-
tant object classes in urban surveillance scenarios. Person
RelD has been very attractive in recent years. For instance,
Wei et al. [37] adopt GAN to bridge the domain gap be-
tween different person Re-ID datasets. Liu et al. [20] pro-
pose a pose transferrable person RelD framework which
utilizes pose transferred sample augmentations to enhance
ReID model training. Li ef al. [15] incorporate a multi-
ple spatial attention model to learn the latent representa-
tions of face, torso and other body parts to improve the per-
formance of the model. Dai et al. [5] improve the RelD
performance between infrared and RGB images by adopt-
ing a novel cross-modality generative adversarial network
(termed cmGAN). Shen et al. [27] provide more precise fu-
sion information by proposing deep similarity-guided graph
neural network (SGGNN) and utilizing the relationship be-
tween probe-gallery pairs. Bak et al. [30] alleviate the di-
versity in lighting conditions by introduced a new synthetic
dataset and propose a novel domain adaptation technique.
Ge et al. [7] adopt a Feature Distilling Generative Adver-
sarial Network (FD-GAN) for learning identity-related and
pose-unrelated representations. There are also many other
researches in this field [35, 14, 41, 4, 16, 10].

Vehicle RelD also gains increasing attentions recently.
For example, Wang et al. [36] propose to utilize an orien-
tation invariant feature embedding module and a spatial-
temporal regularization module to improve the vehicle
RelD performance. Shen et al. [28] propose a two-stage
framework which incorporates complex spatio-temporal in-
formation for effectively regularizing the re-identification
results. MGN [34] uses the first three layers of Resnet50 to
extract shared image features, and relies on three indepen-
dent branches to extract the high-level semantic features.
The RNN-HA presented by Xiu ef al. in [38] consists of
three interconnected modules. The first module creates a
representation of the vehicle image, the second layer mod-
ule models the hierarchical dependencies, and the last atten-
tion module focuses on the subtle visual information dis-
tinguishing specific vehicles from each other. RAM [22]
extracts local features to assist in the extraction of global
features.

3. Dataset

In this section, we give details of the constructed VRAI
dataset, including the hardware sensors, collecting process,
and annotations.

3.1. Data Collection

We use two DJI Phantom4 UAVs to simultaneously
shoot videos at two adjacent locations (in total we select
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Figure 3. The statistical information about (a) color; (b) vehicle
type; (c) discriminative part number per image; (d) image num-
ber per vehicle. White, black and gray are the mainstream colors.
Sedan, SUV and lorry are more popular than other vehicle types.
About 91.8% instances are labeled with at least one discriminative
part. And 94.0% vehicles have more than 3 images.

11 location pairs), in order to capture images of individual
vehicles with different view-angles and context. The two
UAVs are controlled to have no overlaps in visible areas. To
increase the diversity of object resolutions, two UAVs are
kept in different altitudes, ranging from 15m to 80m. In the
process of controlling UAV, we adopt various sport modes
such as hovering, cruising, and rotating to collect data un-
dergoing viewpoint and scale changes.

With more than 200 man-hours of UAV flying and video
shooting, we finally collect 350 pairs of video clips, with
a total length of 34 hours (approximately 3 minutes each
clip). In each clip, we sample frames at every 0.5 second
and obtain 25, 2000 images in total.

3.2. Annotation

We develop a software to perform the following four
steps of annotation:

1) Object Bounding Box Annotation: In each image,
four corners of all visible vehicles are manually marked,
and the smallest rectangular bounding box containing all
the four corners is automatically calculated and stored. The
distribution of bounding box resolution is demonstrated in
Figure 4, with 42.90% not larger than 50k pixels and 8.8%
larger than 200k pixels. Besides, we can clearly see that
the image resolution of our dataset changes more than that
of VehicleID dataset. We use 1000 man-hours to finish this
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step of annotation.

2) Cross-Camera Vehicle Matching: The most time
consuming annotation step is cross-camera object match-
ing, in which instances of the same vehicle appearing in two
video clips need to be grouped together. As license plates
are not visible from aerial images, annotators can only rely
on the appearance similarity and temporal correspondence.
After spending around 2500 man-hours, we collect 137, 613
instances (bounding boxes) of 13,022 individual vehicles
(IDs). From Figure 3 (d), we can find that 94.0% vehicles
have more than 3 annotated bounding boxes taken by two
cameras.

3) Attributes Categorization: In this step, each of
137613 matched instances is manually labeled with several
attributes, including color (White, Black, Gray, Red, Green,
Blue, Yellow, Brown, and Other), vehicle type (Sedan,
Hatchback, SUV, Bus, Lorry, Truck and Other) and four bi-
nary attributes (if containing Skylight, Spare Tire, Bumper
or Luggage Rack). This annotation step takes in total 62
man-hours. The distributions of annotated color and vehicle
type are shown in Figure 3. We can find that While, Black
and Gray are the dominating colors, while Sedan, SUV and
Hatchback are the dominating vehicle types.

4) Discriminative Parts Annotation: Distinguishing
vehicles with similar attributes requires fine-grained infor-
mation for each specific ID. For each bounding box, we
manually annotate multiple discriminative parts with small
bounding boxes. These parts are considered by annota-
tors to be crucial for distinguishing a particular instance
from others. As shown in Figure 1, a large number of an-
notated discriminative parts are frontal windows, luggage
racks, skylights, and headlights.We also allow annotators to
skip this step, if he/she cannot find any part that is discrimi-
native. From Figure 3 (c), we can find that 91.8% instances
are labeled with at least one discriminative part, and 63.2%
instances come with 2 to 4 annotated parts. This step takes
1300 man-hours of annotation.

3.3. Comparison with Other Datasets

In Table 1, our dataset is compared with existing datasets
for vehicle re-identification or fine-grained recognition, in
terms of instance number, image number, attributes anno-
tation and discriminative parts annotation. The difference
between our dataset and other datasets is summarized as
follows.

1) Capturing Platform: To our best knowledge, the
proposed dataset is the first one for vehicle RelID in aerial
images. The images in our dataset are captured from a di-
verse set of view-angles by cameras mounted on moving
UAVs, while images in other vehicle datasets are captured
by fixed cameras. In addition, the images in our dataset are
shot by two UAVs controlled by different pilots.
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Figure 4. The image resolution distribution of VehicleID, VeRi
and VRAL From the figure we can see that VRAI has a wider
resolution distribution.

Dataset/Char. # ID | # Instances | Attr. | Dis. parts
CompCars [42] | 1716 208826 Vv X
VehicleID [19] | 26267 221763 Vv X
VeRi [21] 619 40215 X X
VRAI 13022 137613 4 v

Table 1. The “char.” represents characters, the “attr.” represents at-
tributes and the “Dis.” represents discriminative. Note that Comp-
Cars only contains the model annotation of each vehicle, and only
30% of the VehicleID images are marked with attribute informa-
tion. Our dataset is the only one providing discriminative part an-
notations.

2) Data Size: Our dataset contains an order of magni-
tude larger number of instances than CompCars [42] and
VeRi [21]. Besides, in our dataset each instance contains
over 10 images on average, while VehicleID [19] only con-
tains 8 images. Our dataset has certain advantages in the
richness of the counts of the training data.

3) Data Annotations: Among the listed datasets, ours
is the only one equipped with discriminative part annota-
tions, which offers strong supervision information for fine-
grained recognition. Besides, VRAI has also collected
color, type and other attributes annotations.

4) View-angle Variation: Since our dataset is collected
by UAVs, the view-angles of the shot images change fre-
quently. Compared with VehicleID [19] which collected by
fixed cameras, our dataset contains a more diverse range of
view-angles, as shown in Figure 2.

5) Image Resolution: During the data collect process,
the resolution of the shot image fluctuates due to the change
of the altitude of the UAVs. Under these circumstances, the
image resolution of our dataset changes more than that of
VehicleID dataset, which is shown in the Figure 4.
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Figure 5. The overall structure of our proposed model. Our model has two main components, one is a multi-task branch which trains model
through a series of classification losses and a triplet loss using the average feature. The triplet loss is trained with the training triplets,
i.e., (Anchor (A), Positive (P), Negative (N))s. The other branch is a Discriminative Part Detection module which uses weight matrix for
weighted pooling. And the Discriminative Part Detection module uses weighted feature to train model.

4. Approach

In this section, we present a RelD algorithm based on
the rich annotations of the proposed dataset, which is capa-
ble of explicitly detecting discriminative parts of a particu-
lar vehicle instance. Our RelD algorithm is detailed in the
following.

4.1. Overall Framework

As shown in Figure 5, the main structure of the proposed
method can be divided into two branches. The first one is a
multi-objective model whose backbone network is ResNet-
50 [11] pretrained on ImageNet [13]. In this branch, we
make full usage of the rich annotations to train a multi-
objective model for retrieval, ID classification and attributes
classification. In the other branch, a YOLOv2 [26] detec-
tor is separately trained with annotated discriminative parts.
The detected bounding boxes are used to construct a weight
matrix for aggregating convolutional features of ResNet-50.
Finally, the weighted features are employed to train another
retrieval model for ReID with the triplet loss.

4.2. Multi-Objective Learning

The convolutional feature after average pooling and
batch normalization is trained with multiple objectives, in-
cluding retrieval, ID classification, color, vehicle type and
attributes classification.

Several loss functions are used for different tasks respec-
tively. The cross entropy loss (L) is adopted for multi-
class problems such as ID, color and vehicle type classifica-
tion. For the multi-label attributes classification problems,
we use Binary Cross Entropy loss. The triplet loss function

is used for the retrieval task.

4.3. Discriminative Part Detection

In order to distinguish vehicles of similar color or type,
we train a detector based on YOLOvV2 [26] using the anno-
tations of discriminative parts. This detector is trained sep-
arately and all discriminative parts are treated as the same
class. Thanks to the huge number of annotated discrimi-
native parts in our dataset (322853), we are able to train
an effective detector. For example, the detector can extract
many valuable discriminative parts such as skylight, win-
dow, LOGO, even if the ground truth only provides the sky-
light. For each vehicle image, we extract top-3 bounding
boxes generated by the discriminative parts detector.

4.4. Weighted Feature Aggregation

In addition to average pooling, we also extract a
weighted feature based on the detected discriminative parts.
The backbone network in our model is ResNet-50, with the
input size of 352 x 352 and the output feature map size of
2048 x 11 x 11. An 11 x 11 weight matrix is generated by
increasing the weights of pixels inside discriminative parts:

. o 1 €D,
weight, = 1
g { 1 otherwise, M

where ¢ denotes a pixel index; «y is a predefined scalar larger
than 1; D denotes the region of detected discriminative
parts. With this weight matrix, we perform a weighted pool-
ing over the feature map of size 2048 x 11 x 11, rendering
a weighted feature of size 2048.
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Accuracy (%)
Color 86.25
Type 81.88
Skylight 90.16
. Bumper 82.44
Attributes Spare pTire 97.35
Luggage Rack 85.67

Table 2. The classification results of our model for color, vehicle
type, Skylight, Bumper, Spare tire and Luggage rack. It indicates
that skylight and spare tire are more distinguishable than others,
and the vehicle type and bumper are more difficult to classify.

5. Experiments

In this section, we show the experimental results of the
proposed vehicle ReID approach on our VRAI dataset, in-
cluding attribute classification, discriminative part detec-
tion, ablation studies, comparison experiments with base-
line and state-of-the-art vehicle ReID methods. We also
perform a human performance evaluation to measure the
potential of our dataset. To clarify, firstly we give the eval-
uation protocols and implementation details.

5.1. Evaluation Protocols and Implementation

The VRALI dataset is split into training set and test set,
among which the training set contains 66, 113 images with
6,302 IDs, and the test set contains 71,500 images with
6,720 IDs. The test set is further divided into a query set
(25% images) and a gallery set (75% images). Meanwhile,
for each image in the query set, it is ensured that at least one
image in the gallery has the same ID with that query while
being captured by different cameras. Consequently, there
are 15, 747 images in the query set and 55, 753 images in
the gallery set. At the test stage, each vehicle image in the
query set is used to retrieve the same vehicle in the gallery
set. As for evaluation criteria, we adopt the popular mean
Average Precision (mAP) and Cumulative Matching Cure
(CMC) as in other RelD works.

During experiments, we use Resnet-50 pre-trained on
ImageNet as backbone. Each image is resized into 352 x
352. In the training phase, we rotate each image with 90,
180 or 270 degrees clockwisely with a probability of 0.2,
and flip it horizontally with a probability of 0.5. The margin
of the triplet loss [ 18] is set to 0.3, and the mini-batch size is
set to 72 = 18 x 4, with 18 identities and 4 images for each
ID. We use the Adam optimizer with an initial learning rate
of 1073 and the learning rate starts to decay from the 151th
epoch. All models are trained with 300 epochs. To improve
the performance, we train the model using the BatchHard
Triplet Loss [12] and the ID classification loss jointly. Two
NVIDIA 1080Ti GPUs are used for model training.
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Figure 6. The confusion matrix of vehicle type classification. We
can see that the most classification errors are incorrect identifica-
tion between Hatchbacks and SUVs. These errors are caused by
the visual similarity between these two vehicle types, given that
actual vehicle sizes are somewhat difficult to estimate.

Figure 7. Sample results of discriminative part detection. Red and
green bounding boxes represent ground truth and predicted results
respectively. Only the top3 bounding boxes are depicted in the
predicted images. We can clearly find that our model has a good
performance so that there is little difference between the predicted
results and the ground truth.

5.2. Attributes Classification

The results of color, vehicle type and attributes classifi-
cation of our model are shown in Table 2. It can be seen
that all the evaluated accuracies are over 82%, except for
that of vehicle type. To further analyze the classification
result of vehicle type, the confusion matrix is illustrated in
Figure 6. We can find that Hatchback and SUV are the two
classes mostly confusing our classification model. And the
reason is probably that Hatchback and SUV are indeed visu-
ally similar from top-view, without taking vehicle size into
account.

5.3. Discriminative Part Detection

For the experiment of discriminative part detection, the
pre-trained darknet is used to fine-tune YOLOV2 [26] model
on VRAL For simiplicity, all discriminative parts are con-
sidered as one class. The multi-scale training scheme is
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Figure 8. Comparison of human performance and the performance
of our algorithm. The left, middle and right columns correspond to
queries, the results of our model and the results of human, respec-
tively. Correct and incorrect results are marked by green and red
boxes respectively. We find that the vehicle pose and the angles
of view are the main factor that causes the algorithm to generate
a wrong result. For human, the error occurs when the recognition
requires extremely fine-grained information.

adopted where the resolution of the input images is resized
ranging from 320 to 608. The learning rate is set to 0.001
and then decreased by a factor of 10 at the 10th and 15th
epochs. The mini-batch size is set to 72. The momentum is
set to 0.9 and the weight decay rate is 0.0005.

In the testing phase, we respectively set the confi-
dence threshold, NMS threshold, and IOU threshold to
0.25, 0.4, and 0.5 empirically, and achieve a result of
precision=44.07%, recall=49.48% and F-score=46.62%.
Fig. 7 showcases the detection results and the ground truth
of the discriminative parts.

5.4. Ablation Study

In this subsection, to verify the effectiveness of the pro-
posed method and to show how much each component of
the proposed model contribute to the final performance, we
report the vehicle RelD performance compared with several
baseline methods and the ablation study on model hyperpa-
rameters. The detailed experimental results are shown in
Table 3. The following four methods are chosen as base-
lines. 1) Triplet Loss. The model is trained with only a
triplet loss on the average feature; 2) Constrastive Loss.
The model is trained with only a constrastive loss on the
average feature; 3) ID Classification Loss. The model is
trained with a single ID classification loss; 4) Triplet+ID
Loss. The model is jointly trained with both the triplet
loss and ID classification loss on the average feature. With-
out using any extra attributes annotations, the four models
can be applied to any RelD data and served as baselines in
our experiments. From Table 3, it can be seen that the ID
classification loss contributes more in improving the perfor-
mance. We also evaluate different CNN backbones (Resnet-
50, Resnet-101 and Resnet-152) using the Triplet+ID Loss

baseline. We find that the ReID performance is slightly im-
proved with deeper CNN models, but at a cost of higher
computational burden.

Compared to Triplet+ID Loss, our Multi-task model
is trained with additional attribute classification losses, in-
cluding color, vehicle type and other attributes. With the
help of the attribute information, a slightly better accuracy is
achieved. As trained without the weighted feature, the base-
line methods and our Multi-task model do not rely on the
discriminative part detection branch of the proposed model.
While our Multi-task + DP model introduces an additional
triplet loss on the weighted feature, and the final model con-
sists of all the branched losses. The results of Multi-task +
DP validate that weighted features from detected discrimi-
native parts gives a significant improvement.

We also test the sensitivity of our Multi-task + DP
model to the weighting parameter v in Equation (1). As
shown in Table 5, the Multi-task + DP model outperforms
the Multi-task model using all the evaluated values of ~.

For our Multi-task + DP model, we also compare us-
ing the average feature and the weighted feature for dis-
tance computation. It can be clearly seen from Table 4 that
weighted feature significantly outperforms the average fea-
ture, in terms of all the mAP, CMC-1, CMC-5 and CMC-10,
which shows that the detected discriminative parts are in-
deed beneficial for recognizing individual vehicle instances.

5.5. Comparison with State-of-the-art Approaches

Although there is little vehicle ReID methods speci-
ficly designed for aerial images, to show the superme per-
formance of our algorithm, we compare the experimental
results of our methods with three state-of-the-art vehicle
ReID methods for ground-based scenarios. The three cho-
sen methods are MGN [34], RNN-HA [38] and RAM [22]
which we have introduced in detail. Here we analyze the
experimental results in this subsection.

The RNN-HA [38] only used ID classification loss and
the vehicle type annotation during the training stage. Its
performance is slightly better than ID Classification Loss
and lower than Triplet+ID Loss.

Both the MGN [34] and RAM [22] split the image hor-
izontally to extract the local feature. But there are wide
range of view-angle changes in our datasets as the images
are captured by UAVs. The two approaches cannot be sim-
ply transferred to our task, because it is not easy to align
corresponding parts if they only split the image horizon-
tally. Thus, these two algorithms do not achieve good per-
formance in our datasets.

For our method, we use triplet loss to improve the model,
and we use many kinds of attributes classification loss to
improve the performance of our algorithm. What’s more,
we have also focused on extracting the local feature by us-
ing the discriminative parts detector and weighted pooling.
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Backbone Attribute D.P. mAP (%) | CMC-1 (%) | CMC-5 (%) | CMC-10 (%)
Model Annotation | Annotation
MGN [34] Resnet-50 69.49 67.84 82.83 89.61
RAM [22] Resnet-50 69.37 68.58 82.32 89.88
RAM [22] VGG-16 57.33 72.05 81.62 56.82
RNN-HA [38] Resnet-50 Vv 74.52 77.43 87.38 92.65
Triplet loss Resnet-50 46.99 50.64 71.49 80.40
Contrastive loss Resnet-50 48.23 52.23 72.28 81.29
ID classification Loss | Resnet-50 72.96 75.96 87.01 92.70
Triplet + ID Loss Resnet-50 77.28 79.13 88.47 93.64
Triplet + ID Loss Resnet-101 77.48 79.59 88.31 93.69
Triplet + ID Loss Resnet-152 77.54 79.33 88.18 93.47
Ours Multi-task Resnet-50 vV 78.09 79.83 89.05 94.09
Ours Multi-task + DP | Resnet-50 Vv vV 78.63 80.30 88.49 94.45

Table 3. Our final model is compared with other baselines and intermediate models. We can find that the ID classification and weighted
feature have greater contribution for improving performance.

Feature tested | mAP (%) | CMC-1 (%) | CMC-5 (%) | CMC-10 (%)
Avg. Feat. 78.31 80.05 89.01 94.22
Weight. Feat. 78.63 80.30 88.49 94.45

Table 4. The comparison of our Multi-task + DP model using av-
erage feature and weighted feature respectively for distance calcu-
lation. The results show that the performance of the model using
weighted feature is better than the one using average feature.

Weighting Parameter v | mAP (%) | CMC-1 (%)
1.1 78.34 80.07
1.3 78.63 80.30
1.5 78.48 80.19
1.7 78.36 80.06
1.9 78.41 80.09

Table 5. The empirical study on the weighting parameter  of our
Multi-task + DP model, which shows that 1.3 yields better per-
formance. Note that the Multi-task + DP model performs better
than the Multi-task model, with all of the selections of -, in terms
of mAP and CMC-1.

Annotator 1 Annotator 2 Annotator 3 Ours
98% 98% 96% 80%

Accuracy

Table 6. The performance comparison between human and our al-
gorithm, on 100 randomly selected queries. We can see that the
average human accuracy is 97%, which is 17% higher than our
algorithm. It shows that there is still much room for improving the
algorithm performance.

As shown in Table 3 our algorithm achieves a better perfor-
mance than the other three state-of-art methods.

5.6. Human Performance Evaluation

In order to investigate the difficulty of our dataset and
the performance gap between human and our algorithm, we
conducted human performance evaluation on our dataset.
In this experiment, we randomly select 100 query images,
coming with two candidates to be matched. One candi-

date has the same ID to the query, and the other is se-
lected from other IDs but with the same annotated attributes.
Three well-trained annotators are involved in this experi-
ment, spending 30 seconds for one query in average. The
performances of these annotators are shown in Table 6.

Figure 8 shows some examples of the human perfor-
mance evaluation experiment. Query images, annotators’
results and our algorithm’s results are listed on the left, mid-
dle, and right column, respectively. It can be seen that ve-
hicle poses and camera view-angles are important factors
affecting the algorithm performance. By comparison, hu-
man performance is more insensitive to these factors.

6. Conclusion

In this paper, we collect the VRAI dataset which is the
largest aerial vehicle RelD dataset so far to our knowledge.
Besides the identity, we also provide additional annotation
informations such as the color, vehicle type, attributes e.g.
whether it contains skylight, spare tire efc. and discrimina-
tive parts of the images in the dataset. So our dataset can be
used in many other vision tasks such as fine-grained clas-
sification and attribute prediction. In addition, it is worth
noting that the view-angle of the vehicles is diverse in sin-
gle UAV platform, not to mention we have two UAV's which
are controlled by different pilots to fly in different loca-
tions. Furthermore, we also conducted comprehensive ex-
periments to take the full advantage of the rich annotations.
Based on the rich annotation information of our dataset,
we propose a novel approach for vehicle RelD from aerial
images, which is capable of explicitly detecting discrimi-
native parts for each specific vehicle and significantly out-
perform three promising baseline methods and three other
ReID methods evaluated on our dataset. The answer of the
question in Figure 1 is the image-pairs of the same vehicles
are (1,2), (1,3) and (1,3) for Row 1, 2 and 3, respectively.
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