
Zero-Shot Video Object Segmentation via Attentive Graph Neural Networks

Wenguan Wang1∗, Xiankai Lu1∗, Jianbing Shen1†, David Crandall2, Ling Shao1

1 Inception Institute of Artificial Intelligence, UAE 2 Indiana University, USA

{wenguanwang.ai, carrierlxk, shenjianbingcg}@gmail.com

https://github.com/carrierlxk/AGNN

Abstract

This work proposes a novel attentive graph neural

network (AGNN) for zero-shot video object segmentation

(ZVOS). The suggested AGNN recasts this task as a process

of iterative information fusion over video graphs. Specif-

ically, AGNN builds a fully connected graph to efficient-

ly represent frames as nodes, and relations between arbi-

trary frame pairs as edges. The underlying pair-wise rela-

tions are described by a differentiable attention mechanis-

m. Through parametric message passing, AGNN is able to

efficiently capture and mine much richer and higher-order

relations between video frames, thus enabling a more com-

plete understanding of video content and more accurate

foreground estimation. Experimental results on three video

segmentation datasets show that AGNN sets a new state-of-

the-art in each case. To further demonstrate the generaliz-

ability of our framework, we extend AGNN to an addition-

al task: image object co-segmentation (IOCS). We perform

experiments on two famous IOCS datasets and observe a-

gain the superiority of our AGNN model. The extensive ex-

periments verify that AGNN is able to learn the underlying

semantic/appearance relationships among video frames or

related images, and discover the common objects.

1. Introduction

Automatically identifying the primary objects in videos

is an important problem that could benefit a wide variety of

applications, by reducing or eliminating manual effort need-

ed to process and understand video. However, discovering

the most prominent and distinct objects across video frames

without having prior knowledge of what those foreground

objects are is a challenging task. Traditional methods tend

to tackle this issue by using handcrafted or learnable fea-

tures in a local or sequential manner. For instance, hand-

crafted feature based methods use objectness [74], motion

boundary [43], and saliency [67] cues over a few successive

∗The first two authors contribute equally to this work.
†Corresponding author: Jianbing Shen.

Figure 1: Illustration of the proposed AGNN based ZVOS

model. (a) Input video sequence, typically with object occlusion

and scale variation. (b) The suggested AGNN represents video

frames as nodes (blue circles), and the relations between arbi-

trary frame pairs as edges (black arrows), captured by an attention

mechanism. After several message passing iterations, higher-order

relations can be mined and more optimal foreground estimations

are obtained from a global view. (c) Final video object segmenta-

tion results. Best viewed in color. Zoom in for details.

video frames, or explore trajectories [41], i.e., link optical

flow over multiple frames to capture long-term motion in-

formation. These are typically non-learning methods work-

ing in a purely unsupervised manner. Recent deep learning

based methods learn more powerful video object features

from large-scale training data, yielding a zero-shot solu-

tion [63] (still no annotation used for any testing frame).

Many of these [7, 57, 21, 58, 31, 55] employ two-stream

networks to combine local motion and appearance infor-

mation, and apply recurrent neural networks to model the

dynamics in a frame-by-frame manner.

Though these methods greatly promoted the develop-

ment of this field and gained promising results, they gener-

ally suffer from two limitations. First, they focus primarily

on the local pair-wise or sequential relations between suc-

cessive frames, while ignoring the ubiquitous, high-order

relationships among the frames (since frames from the same

video are usually correlated). Second, since they do not ful-

ly leverage the rich relationships, they fail to completely

capture the video content and hence may easily get inferior
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foreground estimates. From another perspective, as video

objects usually suffer from underlying object occlusions,

huge scale variations and appearance changes (Fig. 1 (a)), it

is difficult to correctly infer the foreground when only con-

sidering successive or local pair-wise relations in videos.

To alleviate these issues, we need to explore an effec-

tive framework that can comprehensively model the high-

order relationships among video frames into modern neural

networks. In this work, an attentive graph neural network

(AGNN) is proposed to addresses zero-shot video objec-

t segmentation (ZVOS), which recasts ZVOS as an end-

to-end, message passing based graph information fusion

procedure (Fig. 1 (b)). Specifically, we construct a fully

connected graph where video frames are represented as n-

odes and the pair-wise relations between two frames are

described as the edge between their corresponding nodes.

The correlation between two frames is efficiently captured

by an attention mechanism, which avoids time-consuming

optical flow estimation [7, 57, 21, 58, 31]. By using re-

cursive message passing to iteratively propagate informa-

tion over the graph, i.e., each node receives the information

from other nodes, AGNN can capture higher-order relation-

ships among video frames and obtain more optimal results

from a global view. In addition, as video object segmenta-

tion is a per-pixel prediction task, AGNN has a desirable,

spatial information preserving property, which significantly

distinguishes it from previous fully connected graph neural

networks (GNNs).

AGNN operates on multiple frames, bringing the added

advantage of natural training data augmentation, as the

combination candidates are numerous. In addition, since

AGNN offers a powerful tool for representing and mining

much richer and higher-order relationships among video

frames, it brings a more complete understanding of video

content. More significantly, due to its recursive property,

AGNN is flexible enough to process variable numbers of

nodes during inference, enabling it to consider more input

information and gain better performance (Fig. 1 (c)).

We extensively evaluate AGNN on three widely-used

video object segmentation datasets, namely DAVIS16 [45],

Youtube-Objects [47] and DAVIS17 [46], showing its supe-

rior performance over current state-of-the-art methods.

AGNN is a fully differential, end-to-end trainable frame-

work that allows rich and high-order relations among

frames (images) to be captured and is highly applicable to

spatial prediction problems. To further demonstrate its ad-

vantages and generalizability, we apply AGNN to an addi-

tional task: image object co-segmentation (IOCS), which

aims to extract the common objects from a group of seman-

tically related images. It also gains promising results on two

popular IOCS benchmarks, PASCAL VOC [11] and Inter-

net [51], compared to existing IOCS methods.

Experiments on the ZVOS and additional IOCS tasks

clearly demonstrate that AGNN is able to not only capture

the relationships among correlated video frame images, but

also mine the semantics among semantically related static

images. Notably, this work can be viewed as a very early at-

tempt to apply and extend GNNs for pixel-wise prediction

tasks, which provides an effective video object segmenta-

tion solution and new insight into this task.

2. Related Work

2.1. Graph Neural Networks

GNN was first proposed in [15] and further developed

in [53] to handle the underlying relationships among struc-

tured data. In [53], recurrent neural networks were used to

model the state of each node, and the underlying correla-

tion between nodes are learned via parameterized message

passing over neighbors. Li et al. [33] further adapted GNN

to sequential outputs. Gilmer et al. [14] Later formulated

the message passing module in GNNs as a learnable neural

network. Recently, GNNs have been successfully applied

in many fields, including molecular biology [14], computer

vision [48, 71, 76], machine learning [62] and natural lan-

guage processing [2]. Another popular trend in GNNs is

to generalize the convolutional architecture over arbitrary

graph-structured data [10, 40, 26], which is called graph

convolution neural network (GCNN).

The proposed AGNN falls into the former category; it is

a message passing based GNN, where all the nodes, edges,

and message passing functions are parameterized by neu-

ral networks. It shares the general idea of mining rela-

tionships over graphs but has significant differences. First,

our AGNN is unique in its spatial information preserving

nature, which is opposed to conventional fully connected

GNNs and crucial for per-pixel prediction task. Second,

to efficiently capture the relationship between two image

frames, we introduce a differentiable attention mechanis-

m which addresses the correlated information and produces

further discriminative edge features. Third, as far as we

know, there is no prior attempt to explore GNNs in ZVOS.

2.2. Automatic Video Object Segmentation

To automatically separate primary objects from the back-

ground, conventional methods typically use handcrafted

features (e.g., color, optical flow) [43, 12, 59, 20] and cer-

tain heuristic assumptions related to the foreground (i.e., lo-

cal motion differences [43], background priors [67]). Some

others explore more efficient object representations, such

as dense point trajectories [41, 42, 68] or object proposal-

s [74, 27, 23, 36]. Most of these methods work in a purely

unsupervised manner without using any training data.

Recently, with the renaissance of deep learning, more

research efforts have been devoted to tackling this in deep

learning frameworks, leading to a zero-shot solution [13,

21, 58, 7, 30, 31, 29, 37]. For instance, a multi-layer percep-

tion based detector was designed in [13] to detect moving
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objectness. Li et al. [30] integrated deep learning based in-

stance embedding and motion saliency [30] to boost perfor-

mance. Some others turned to fully convolutional networks

(FCNs) [3, 34, 77]. They introduced two-stream networks

to fuse appearance and motion information [29, 21, 7], or

explored more efficient feature extraction models and LST-

M variants [55], to better locate the foreground objects.

The differences from previous methods are multifold:

our AGNN 1) provides a unified, end-to-end trainable,

graph model based ZVOS solution; 2) efficiently mines di-

verse and high-order relations within videos, through itera-

tively propagating and fusing messages over the graph; and

3) utilizes a differentiable attention mechanism to capture

the correlated information between frame pairs.

2.3. Image Object CoSegmentation

IOCS [50, 39, 18] aims to jointly segment common

objects belonging to the same semantic class in a given

set of related images. Early methods usually formulate

IOCS as an energy function defined over the whole or a

part of the image set and consider intra- and inter-image

cues [64, 25, 52, 65]. To capture the relationships be-

tween images, some methods applied scene matching tech-

niques [51], global appearance models [66], discrimina-

tive clustering methodologies [22], manifold ranking [49]

or saliency heuristics [16, 56]. There are only a very few

deep IOCS models [4, 32], mainly due to the lack of a prop-

er, end-to-end modeling strategy for this problem. [4, 32]

tackled IOCS through a pair-wise comparison protocol and

employed a Siamese network to capture the similarity be-

tween two related images. Our AGNN based ICOS solution

is significantly different from [4, 32]. First, [4, 32] con-

sider IOCS as a pair-wise image matching problem, while

we formulate IOCS as an information propagation and fu-

sion process among multiple images. That means our mod-

el can capture richer relations from a global view. Second,

the Siamese network based systems only handle pair-wise

relations, while our message passing based iterative infer-

ence can learn higher-order relations among multiple im-

ages. Third, our method is based on the graph model, yield-

ing a more general and elegant framework for modeling

IOCS.

3. Our Algorithm

Before elaborating on our proposed AGNN (§3.2), we

first give a brief introduction to generic formulations of GN-

N models (§3.1). Finally, in §3.3, we provide detailed infor-

mation on our network architecture.

3.1. General Formulations of GNNs

Based on deep neural networks and graph theory, GNNs

are powerful for collectively aggregating information from

data represented in graph domains [53, 14]. Specifically,

a GNN model is defined according to a graph G = (V, E).

Each node vi ∈ V takes a unique value from {1, . . . , |V|},

is associated with an initial node representation (or node s-

tate or node embedding) vi. Each edge ei,j ∈ E is a pair

ei,j = (vi, vj)∈ |V|×|V|, with an edge representation ei,j .

For each node vi, we learn an updated node representa-

tion hi through aggregating representations of its neighbors.

Here hi is used to produce an output oi, i.e., a node label.

More specifically, GNNs map graph G to the node outputs

{oi}
|V|
i=1 through two phases. First, a parametric message

passing phase runs for K steps, which recursively propa-

gates messages and updates node representations. At the k-

th iteration, for each node vi, we update its state according

to its received message mk
i (i.e., summarized information

from its neighbors Ni) and its previous state hk−1
i :

message aggregation: mk
i =

∑

vj∈Ni

mk
j,i,

=
∑

vj∈Ni

M(hk−1
j , ek−1

i,j ),

node representation update: hk
i =U(hk−1

i ,mk
i ),

(1)
where h0

i = vi, M(·) and U(·) are the message function

and state update function, respectively. After k iterations

of aggregation, hk
i captures the relations within the k-hop

neighborhood of node vi.

Second, a readout phase maps the node representation

hK
i of the final K-iteration to a node output, through a read-

out function R(·):

readout: oi = R(hK
i ). (2)

The message function M , update function U , and readout

function R are all learned differentiable functions.

Next, we present our AGNN based ZVOS solution,

which essentially extends traditional fully connected GNNs

to (1) preserve spatial features; and (2) capture pair-wise

relations (edges) via a differentiable attention mechanism.

3.2. Attentive Graph Neural Network

Problem Definition and Notations. Given a set of training

samples and an unseen testing video I={Ii∈R
w×h×3}Ni=1

with N frames in total, the goal of ZVOS is to generate

a corresponding sequence of binary segment masks: S =
{Si ∈{0, 1}w×h}Ni=1. To achieve this, AGNN represents I
as a directed graph G=(V, E), where node vi∈V represents

the i-th frame Ii, and edge ei,j = (vi, vj) ∈ E indicates

the relation from Ii to Ij . To comprehensively capture the

underlying relationships between video frames, we assume

G is fully connected and includes self-connections at each

node (see Fig. 2 (a)). For clarity, we refer to ei,i, which

connects a node vi to itself, as a loop-edge; and ei,j , which

connects two different nodes vi and vj , as a line-edge.

The core idea of our AGNN is to perform K message

propagation iterations over G to efficiently mine rich and

high-order relations within I. This helps to better capture
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Figure 2: Our AGNN based ZVOS model during the training phase (see §3.2 and §3.3). Zoom in for details.

the video content from a global view and obtain more ac-

curate foreground estimates. We then readout the segmen-

tation predictions Ŝ from the final node states {hK
i }Ni=1.

Next, we describe each component of our model in detail.

FCN-Based Node Embedding. We leverage DeepLabV3

[5], a classical FCN based semantic segmentation architec-

ture, to extract effective frame features, as node representa-

tions (see Fig. 2 (b) and Fig. 3 (a)). For node vi, its initial

embedding h0
i can be computed as:

h0
i = vi = FDeepLab(Ii) ∈R

W×H×C , (3)

where h0
i is a 3D tensor feature with W×H spatial resolu-

tion and C channels, which preserves spatial information as

well as high-level semantic information.

Intra-Attention Based Loop-Edge Embedding. A loop-

edge ei,i ∈ E is a special edge that connects a node to it-

self. The loop-edge embedding eki,i is used to capture the

intra relations within node representation hk
i (i.e., inter-

nal frame representation). We formulate eki,i as an intra-

attention mechanism [61, 70], which has been proven com-

plementary to convolutions and helpful for modeling long-

range, multi-level dependencies across image regions [75].

In particular, the intra-attention calculates the response at

a position by attending to all the positions within the same

node embedding (see Fig. 2 (c) and Fig. 3 (b)):

e
k
i,i=Fintra-att(h

k
i ) ∈ R

W×H×C

=α softmax
(

(Wf ∗h
k
i )(Wh∗h

k
i )

⊤
)

(Wl∗h
k
i )+h

k
i ,

(4)

where‘∗’represents the convolution operation, Ws indicate

learnable convolution kernels, and α is a learnable scale pa-

rameter. Eq. 4 makes the output element of each position

in hk
i encode contextual information as well as its original

information, thus enhancing the representability.

Inter-Attention Based Line-Edge Embedding. A line-

edge eij ∈ E connects two different nodes vi and vj . The

line-edge embedding eki,j is used to mine the relation from

node vi to vj , in the node embedding space (see Fig. 2 (b)).

Here we compute an inter-attention mechanism [35] to cap-

ture the bi-directional relations between two nodes vi and vj
(see Fig. 2 (c) and Fig. 3 (c)):

eki,j=Finter-att(h
k
i ,h

k
j )=hk

iWch
k⊤
j ∈ R

(WH)×(WH),

ekj,i=Finter-att(h
k
j ,h

k
i )=hk

jW
⊤
c h

k⊤
i ∈ R

(WH)×(WH),
(5)

where eki,j = ek⊤j,i . eki,j indicates the outgoing edge fea-

ture and ekj,i the incoming one, for node vi. Wc ∈ R
C×C

indicates a learnable weight matrix. hk
j ∈ R

(WH)×C and

hk
i ∈ R

(WH)×C are flattened into matrix representations.

Each element in eki,j reflects the similarity between each

row of hk
i and each column of hk⊤

j . As a result, eki,j can

be viewed as the importance of node vi’s embedding to vj ,

and vice versa. By attending to each node pair, eki,j explores

their joint representations in the node embedding space.

Gated Message Aggregation. In our AGNN, for the mes-

sage passed in the self-loop, we view the loop-edge embed-

ding ek−1
i,j itself as a message (see Fig. 3 (b)), since it al-

ready contains the contextual and original node information

(see Eq. 4):

mk
i,i= ek−1

i,i ∈R
W×H×C . (6)

For the message mj,i passed from node vj to vi (see Fig. 3

(c)), we have:

m
k
j,i=M(hk−1

j , e
k−1
i,j )=softmax(ek−1

i,j )hk−1
j ∈R

(WH)×C
, (7)

where softmax(·) normalizes each row of the input. Thus,

each row (position) of mk
j,i is a weighted combination of

each row (position) of hk−1
j , where the weights come from

the corresponding column of ek−1
i,j . In this way, the message

function M(·) assigns its edge-weighted feature (i.e., mes-

sage) to the neighbor nodes [62]. Then, mk
j,i is reshaped

back to a 3D tensor with a size of W×H×C.

In addition, because some nodes are noisy due to camera

shift or out-of-view, their messages may be useless or even

harmful. We apply a learnable gate G(·) to measure the

confidence of a message mj,i:

gk
j,i=G(mk

j,i)=σ
(

FGAP(Wg∗m
k
j,i+bg)

)

∈ [0, 1]C , (8)

where FGAP(·) indicates the use of global average pooling to

generate channel-wise responses, σ is the logistic sigmoid

function σ(x) = 1/(1+exp(−x)), and Wg and bg are the

trainable convolution kernel and bias.

Following Eq. 1, we collect the messages from the neigh-

bors and self-loop via gated summarization (see Fig. 2 (d)):

mk
i =

∑

vj∈V
gk
j,i ⋆m

k
j,i ∈ R

W×H×C , (9)

where ‘⋆’ denotes the channel-wise Hadamard product.

Here, the gate mechanism is used to filter out irrelevant in-

formation from noisy frames. See §4.3 for a quantitative

study of this design.
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Figure 3: Detailed illustration of our (a) node embedding, (b) intra-attention based loop-edge embedding and corresponding loop-message

generation, (c) inter-attention based straight-edge embedding and corresponding neighbor message generation.

ConvGRU based Node-State Update. In step k, after ag-

gregating all the information from the neighbor nodes and

itself (Eq. 9), vi gets a new state hk
i by taking into account

its prior state hk−1
i and its received message mk

i . To pre-

serve the spatial information conveyed in hk−1
i and mk

i , we

leverage ConvGRU [1] to update the node state (Fig. 2 (e)):

hk
i = UConvGRU(h

k−1
i ,mk

i )∈R
W×H×C . (10)

ConvGRU is proposed as a convolutional counterpart to pre-

vious fully connected GRU [9], and introduces convolution

operation into input-to-state and state-to-state transitions.

Readout Function. After K message passing iterations,

we obtain the final state hK
i for each node vi. Finally, in the

readout phase, we get a segmentation prediction map Ŝ ∈
[0, 1]W×H from hK

i through a readout function R(·) (see

Fig. 2 (f)). Slightly different from Eq. 2, we concatenate the

final node state hK
i and the original node feature vi (i.e.,

h0
i ) together and feed the combined feature into R(·):

Ŝi = RFCN([h
K
i ,vi])∈ [0, 1]W×H . (11)

Again, to preserve spatial information, the readout function

is implemented as a small FCN network, which has three

convolution layers with a sigmoid function to normalize the

prediction to [0, 1].
The convolution operations in the intra-attention (Eq. 4)

and update function (Eq. 10) are realized with 1×1 convolu-

tional layers. The readout function (Eq. 11) consists of two

3×3 convolutional layers cascaded by a 1×1 convolutional

layer. As a message passing based GNN model, these func-

tions share weights among all the nodes. Moreover, all the

above functions are carefully designed to avoid disturbing

spatial information, which is essential for ZVOS since it is

a pixel-wise prediction task.

3.3. Detailed Network Architecture

Our whole model is end-to-end trainable, as all the func-

tions in AGNN are parameterized by neural networks. We

use the first five convolution blocks of DeepLabV3 [5] as

our backbone for feature extraction. For an input video I,

each frame Ii (with a resolution of 473×473) is represent-

ed as a node vi in the video graph G and associated with

an initial node state vi = h0
i ∈ R

60×60×256. Then, after a

total of K message passing iterations, for each node vi, we

use the readout function in Eq. 11 to obtain a corresponding

segmentation prediction map Ŝ ∈ [0, 1]60×60. More details

on the training and testing phases are provided as follows.

Training Phase. As we operate on batches of a certain size

(which is allowed to vary, depending on the GPU memo-

ry size), we leverage a random sampling strategy to train

AGNN. Specifically, we split each training video I with a

total of N frames into N ′ segments (N ′≤N ) and randomly

select one frame from each segment. Then we feed the N ′

sampled frames into a batch and train AGNN. Thus the re-

lationships among all the N ′ sampling frames in each batch

are represented using an N ′-node graph. Such a sampling

strategy provides robustness to variations and enables the

network to fully exploit all frames. The diversity among

the samples enables our model to better capture the under-

lying relationships and improve its generalizability. Let us

denote the ground-truth segmentation mask and predicted

foreground map for a training frame Ii as S ∈ {0, 1}60×60

and Ŝ ∈ [0, 1]60×60. Our model is trained through the

weighted binary cross entropy loss (see Fig. 2):

L(S, Ŝ)=−
∑W×H

x
(1−η)Sxlog(Ŝx)+η(1−Sx) log(1−Ŝx), (12)

where η indicates the foreground-background pixel number

ratio in S. It is worth mentioning that, as AGNN handles

multiple video frames at the same time, it leads to a re-

markably efficient training data augmentation strategy, as

the combination candidates are numerous. In our experi-

ments, during training, we randomly select 2 videos from

the training video set and sample 3 frames (N ′ = 3) per

video, due to the computation limitation. In addition, we

set the total number of iterations as K = 3. Quantitative

experimental settings can be found in §4.3.

Testing Phase. After training, we can apply the learned

AGNN model to perform per-pixel object prediction over

unseen videos. For an input test video I with N frames

(with 473 × 473 resolution), we split I into T subset-

s: {I1, I2, . . . , IT }, where T = N/N ′. Each subset

contains N ′ frames with an interval of T frames: It =
{It, It+T , . . . , IN−T+t}. Then we feed each subset into

AGNN to obtain the segmentation maps of all the frames

in the subset. In practice, we set N ′ = 5 during testing.

We quantitatively study this setting in §4.3. As our AGNN

does not require time-consuming optical flow computation

and processes N ′ frames in one feed-forward propagation,

it achieves a fast speed of 0.28s per frame. Following the

widely used protocol [58, 57, 55], we apply CRF as a post-

processing step, which takes about 0.50s per frame. More

implementation details can be found in §4.1.1.
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Method KEY [28] MSG [41] NLC [12] CUT [24] FST [43] SFL [7] MP [57] FSEG [21] LVO [58] ARP [27] PDB [55] MOA [54] AGS [69] AGNN

J
Mean ↑ 49.8 53.3 55.1 55.2 55.8 67.4 70.0 70.7 75.9 76.2 77.2 77.2 79.7 80.7

Recall ↑ 59.1 61.6 55.8 57.5 64.9 81.4 85.0 83.0 89.1 91.1 90.1 87.8 91.1 94.0

Decay ↓ 14.1 2.4 12.6 2.2 0.0 6.2 1.3 1.5 0.0 7.0 0.9 5.0 1.9 0.03

F
Mean ↑ 42.7 50.8 52.3 55.2 51.1 66.7 65.9 65.3 72.1 70.6 74.5 77.4 77.4 79.1

Recall ↑ 37.5 60.0 61.0 51.9 51.6 77.1 79.2 73.8 83.4 83.5 84.4 84.4 85.8 90.5

Decay ↓ 10.6 5.1 11.4 3.4 2.9 5.1 2.5 1.8 1.3 7.9 -0.2 3.3 1.6 0.03

T Mean ↓ 26.9 30.2 42.5 27.7 36.6 28.2 57.2 32.8 26.5 39.3 29.1 27.9 26.7 33.7

Table 1: Quantitative results on the validation set of DAVIS16 [45] (§4.1.2). The scores are borrowed from the public leaderboard1. (The

best scores are marked in bold. The best two entries in each row are marked in gray. These notes are the same to other tables. )

Airplane (6) Bird (6) Boat (15) Car (7) Cat (16) Cow (20) Dog (27) Horse (14) Motorbike (10) Train (5) Avg.

FST [43] 70.9 70.6 42.5 65.2 52.1 44.5 65.3 53.5 44.2 29.6 53.8

COSEG [60] 69.3 76.0 53.5 70.4 66.8 49.0 47.5 55.7 39.5 53.4 58.1

ARP [27] 73.6 56.1 57.8 33.9 30.5 41.8 36.8 44.3 48.9 39.2 46.2

LVO [58] 86.2 81.0 68.5 69.3 58.8 68.5 61.7 53.9 60.8 66.3 67.5

PDB [55] 78.0 80.0 58.9 76.5 63.0 64.1 70.1 67.6 58.3 35.2 65.4

FSEG [21] 81.7 63.8 72.3 74.9 68.4 68.0 69.4 60.4 62.7 62.2 68.4

SFL [7] 65.6 65.4 59.9 64.0 58.9 51.1 54.1 64.8 52.6 34.0 57.0

AGS [69] 87.7 76.7 72.2 78.6 69.2 64.6 73.3 64.4 62.1 48.2 69.7

AGNN 81.1 75.9 70.7 78.1 67.9 69.7 77.4 67.3 68.3 47.8 70.8

Table 2: Quantitative performance of each category on Youtube-Objects [47] (§4.1.2) with mean J . We show the average performance

for each of the 10 categories, and the final row shows an average over all the videos.

4. Experiments

We first report performance on the main task: unsuper-

vised video object segmentation (§4.1). Then, in §4.2, to

further demonstrate the advantages of our AGNN model, we

test it on an additional task: image object co-segmentation.

Finally, we conduct an ablation study in §4.3.

4.1. Main Task: ZVOS

4.1.1 Experimental Setup

Datasets and Metrics: We use two well-known datasets:

• DAVIS16 [45] is a challenging video object segmenta-

tion dataset which consists of 50 videos in total (30 for

training and 20 for val) with pixel-wise annotations for

every frame. Three evaluation criteria are used in this

dataset, i.e., region similarity (Intersection-over-Union)

J , boundary accuracy F , and time stability T .

• Youtube-Objects [47] comprises 126 video sequences

which belong to 10 object categories and contain more

than 20,000 frames in total. Following its protocol, we

use J to measure the segmentation performance.

• DAVIS17 [46] consists of 60 videos in the training set, 30

videos in the validation set and 30 videos in the test-dev

set. Different from DAVIS2016 and Youtube-Objects,

which only focus on object-level video object segmen-

tation, DAVIS17 provides instance-level annotations.

Implementation Details: Following [44, 55], both static

data from image salient object segmentation datasets, M-

SRA10K [8], DUT [72], and video data from the train-

ing set of DAVIS16 are iteratively used to train our mod-

el. In a ‘static-image’ iteration, we randomly sample 6

images from the static training data to train our backbone

network (DeepLabV3) to extract more discriminative fore-

ground features. To train the backbone network, a 1× 1
convolution layer with sigmoid function is appended as an

intermediate output layer, which can access the static im-

age supervision signal. This is followed by a ‘dynamic-

video’ iteration, in which we use the sampling strategy de-

scribed in §3.3 to sample 6 video frames to train our whole

AGNN model. The ‘static-image’ and ‘dynamic-video’ iter-

ations are executed alternately. To apply the trained AGNN

model on DAVIS17, we first use category agnostic mask-

RCNN [17] to generate instance-level object proposals for

each frame. Then, we run AGNN on the whole video and

generate a coarse mask for the primary objects in each

frame. Then the object-level masks are used to filter out

the proposals from the background and highlight the fore-

ground proposals. Through combining an instance bound-

ing proposals and coarse masks, we obtain the instance-

level mask for each primary object. Finally, to connect mul-

tiple instances across different frames, we use overlap ratio

and optical flow as an association metric [38] to match dif-

ferent instance-level masks.

4.1.2 Quantitative Performance

Val-set of DAVIS16. We compare the proposed AGN-

N with the top ZVOS methods from the DAVIS16 bench-

mark1 [45]. Table 1 shows the detailed results. We can

see that our AGNN outperforms the best reported result-

s (i.e., AGS [69]) on DAVIS16 benchmark by a significant

margin in terms of mean J (80.7 vs 79.7) and F (79.1 vs

77.4). Compared to PDB [55], which uses the same training

protocol and training datasets, our AGNN yields significant

performance gains of 3.5% and 4.6% in terms of mean J
and mean F , respectively.

Youtube-Objects. Table 2 gives the detailed per-category

performance and average results on Youtube-Objects. As

1https://davischallenge.org/davis2016/soa_compare.

html, deadline: Mar. 2019
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Figure 4: Qualitative results on two example videos (top: soapbox, bottom: judo) from the DAVIS16 val set and DAVIS17 test-dev set,

respectively (see §4.1.3).

Method
J F

J&F Mean ↑
Mean ↑ Recall ↑ Decay ↓ Mean ↑ Recall ↑ Decay ↓

RVOS [63] 39.0 42.8 0.50 48.3 49.6 -0.01 43.7

AGNN 58.9 65.7 11.7 63.2 67.1 14.3 61.1

Table 3: Quantitative results on the DAVIS17 test-dev set [46].

can be seen, our AGNN performs favorably according to

mean J criterion. Furthermore, unlike other method-

s whose performance fluctuates across categories, AGNN

mains a stable performance.This further proves its robust-

ness and generalizability.

Test-dev set of DAVIS17. In Table 3 we report the per-

formance comparison with the recent instance-level ZVOS

method, RVOS [63], on the DAVIS17 test-dev set. We can

find that AGNN significantly outperforms RVOS over most

evaluation criteria.

4.1.3 Qualitative Performance

Fig. 4 depicts visual results for the proposed AGNN on two

challenging video sequences soapbox and judo of DAVIS16

and DAVIS17, respectively. For soapbox, the primary ob-

jects undergo huge scale variation, deformation and view

changes, but our AGNN still generates accurate foreground

segments. Our AGNN also handles judo well, although the

different foreground instances suffer from similar appear-

ance and rapid motions.

4.2. Additional Task: IOCS

Our AGNN model can be viewed as a framework for

capturing high-order relations among images (or frames).

To demonstrate its generalizability, we extend AGNN for

IOCS task. Rather than extracting the foreground object-

s across multiple relatively similar video frames in videos,

IOCS needs to infer the common objects from a group of

semantically related images.

4.2.1 Experimental Setup

Datasets and Metrics: We perform experiments on two

well-known IOCS datasets:

• PASCAL VOC [11] has 1,464 training images and 1,449

validation images. Following [32], we split the validation

set into 724 validation and 725 test images, and use mean

J as the performance measure.

• Internet [51] contains 1,306 car, 879 horse, and 561 air-

plane images. Following [4, 49], we measure the perfor-

Method GO-FMR [49] FCNs [34] CA [4] AGNN

Mean J ↑ 52.0 55.21 59.24 60.78

Method FCA [4] CSA [4] DOCS [32] AGNN

Mean J ↑ 59.41 59.76 57.82 60.78

Table 4: Quantitative performance on PASCAL VOC [11] with

mean J . We show the average performance for 20 categories av-

eraged over all the images. See §4.2.2 for detailed analyses.

mance on a subset of Internet (100 images per class are

sampled) with mean J .

Implementation Details: Following [4, 32], we employ

PASCAL VOC to train our model. In each iteration, we

randomly sample a group of N ′ = 3 images that belong to

the same semantic class, and feed two groups with random-

ly selected classes (6 images in total) to the network. All

other experimental settings are the same as ZVOS.

After training, we evaluate the performance of our

method on the test sets of PASCAL VOC and Internet

dataset. When processing an image, IOCS must leverage

information from the whole image group (as the images

are typically different and some are irrelevant) [49, 65].

To this end, for each image Ii to be segmented, we uni-

formly split the other N−1 images into T groups, where

T =(N − 1)/(N ′ − 1). Then we feed the first image group

and Ii to a batch of size N ′, and store the node state for Ii.
After that, we feed the next group and the store node state

of Ii to get a new state of Ii. After T steps, the final state of

Ii contains its relationships to all other images and is used

to produce its final co-segmentation result.

4.2.2 Quantitative Performance

PASCAL VOC. It is very challenging to segment the com-

mon objects in this dataset, since the objects undergo dras-

tic variation in scale, position and appearance. In addi-

tion, some images have multiple objects belonging to d-

ifferent categories. On this dataset, we compare AGNN

with six representative methods, including Siamese-based

co-segmentation methods [4, 32], as well as deep semantic

segmentation models (e.g., FCNs [34]).

Table 4 shows detailed results in terms of mean J . FCN-

s [34] segment each image individually (without consider-

ing other related images), and thus give poor performance.

Both [4] and [32] consider pairs of images and gain better

results. Our AGNN achieves the best performance because

it considers high-order information from multiple images
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Method DC [22] Internet [51] TDK [6] GO-FMR [49] DDCRF [73] CA [4] FCA [4] CSA [4] DOCS [32] CoA [19] AGNN

Car 37.1 64.4 64.9 66.8 72.0 80.0 76.9 79.9 82.7 82.0 84.0

Horse 30.1 51.6 33.4 58.1 65.0 67.3 69.1 71.4 64.6 61.0 72.6

Airplane 15.3 57.3 46.2 60.4 67.7 72.8 70.6 73.1 70.3 67.0 76.1

Avg. 27.5 57.3 46.2 60.4 67.7 70.3 72.8 70.6 73.1 67.7 77.6

Table 5: Quantitative results on Internet [51] with mean J (§4.2.2). We show the per-class performance and an overall average.

Figure 5: Qualitative image object co-segmentation results on PASCAL VOC [11] (top) and Internet [51] (bottom). See §4.2.3.

Components Module
DAVIS16

mean J ∆J

Reference Full model (3 Iterations, N’= 5) 80.7 -

Graph

Structure

w/o. AGNN 72.2 -8.5

w/o. Gated Message (Eq. 9) 80.1 0.6

Message

Passing

1 iteration 78.7 -2.0

2 iterations 79.1 -1.6

4 iterations 80.7 0.0

Input

Frames

N’= 3 79.6 -1.1

N’= 6 80.7 0.0

N’= 7 80.7 0.0

Post-Process w/o. CRF 78.9 -1.8

Table 6: Ablation study (§4.3) on the val set of DAVIS16 [45].

during inference, enabling it to capture richer semantic re-

lations within the image groups.

Internet. We evaluate our model (pre-trained on PASCAL

VOC) on Internet [4, 49]. Quantitative results in Table 5

again demonstrate the superiority of AGNN (4.5% perfor-

mance gain compared with the second best method). The

result of AGNN is higher than compared methods for three

classes: Car (84.0%), Horse (72.6%), Airplane (76.1%).

4.2.3 Qualitative Results

Fig. 5 shows some sample results. Specifically, the first four

images in the top row belong to the Cat category (red cir-

cle), while the last four images contain the Person catego-

ry (yellow circle) with significant intra-class variation. For

both cases, our AGNN successfully detects the common ob-

ject instances amongst background clutter. For the second

row, AGNN also performs well in the cases with remarkable

intra-class appearance change.

4.3. Ablation Study

We perform an ablation study on DAVIS16 [45] to inves-

tigate the effect of each essential component of AGNN.

Effectiveness of Our AGNN. To quantify the contribution

of our AGNN, we derive a baseline w/o. AGNN, which in-

dicates the results from our backbone model, DeepLabV3.

As shown in Table 6, AGNN indeed brings significant per-

formance improvements (72.2→80.6 in term of mean J ).

Gated Message Aggregation Strategy. In Eq. 9, we equip

the message passing with a channel-wise gated mechanism

to decrease the negative influence of irrelevant frames. To

evaluate this design, we offer a baseline w/o. Gated Mes-

sage, which aggregates messages directly. A performance

degradation is observed after excluding the gates.

Message Passing Iterations K. To investigate the message

passing iterations K, we report the performance as a func-

tion of Ks. We find that, with more iterations (1→3), better

results can be obtained. The performance of the message

passing converges at K=3.

Node Numbers N ′ During Inference. To evaluate the im-

pact of the number of nodes N ′ during inference, we report

performance with different values of N ′. We observe that,

with more input frames (3→5), the performance raises ac-

cordingly. When even more frames are considered (5→7),

the final performance does not change obviously. This may

be due to the redundant content in video sequences.

5. Conclusion

This paper proposes a novel AGNN based ZVOS frame-

work for capturing the relations among videos frames and

inferring the common foreground objects. It leverages an

attention mechanism to capture the similarity between n-

odes and performs recursive message passing to mine the

underlying high-order correlations. Meanwhile, we demon-

strate the generalizability of AGNN by extending it to IOCS

task. Extensive experiments on three ZVOS and two IOCS

datasets indicate that our AGNN performs favorably against

current state-of-the-art methods. This further illustrates the

importance of AGNN which can capture diverse relations

among similar video frames or semantically related images.
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