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Abstract

Person re-identification (re-ID) is the task of matching

person images across camera views, which plays an im-

portant role in surveillance and security applications. In-

spired by great progress of deep learning, deep re-ID mod-

els began to be popular and gained state-of-the-art per-

formance. However, recent works found that deep neural

networks (DNNs) are vulnerable to adversarial examples,

posing potential threats to DNNs based applications. This

phenomenon throws a serious question about whether deep

re-ID based systems are vulnerable to adversarial attacks.

In this paper, we take the first attempt to implement ro-

bust physical-world attacks against deep re-ID. We propose

a novel attack algorithm, called advPattern, for generating

adversarial patterns on clothes, which learns the variation-

s of image pairs across cameras to pull closer the image

features from the same camera, while pushing features from

different cameras farther. By wearing our crafted “invisible

cloak”, an adversary can evade person search, or imper-

sonate a target person to fool deep re-ID models in physical

world. We evaluate the effectiveness of our transformable

patterns on adversaries’ clothes with Market1501 and our

established PRCS dataset. The experimental results show

that the rank-1 accuracy of re-ID models for matching the

adversary decreases from 87.9% to 27.1% under Evading

Attack. Furthermore, the adversary can impersonate a tar-

get person with 47.1% rank-1 accuracy and 67.9% mAP

under Impersonation Attack. The results demonstrate that

deep re-ID systems are vulnerable to our physical attacks.

1. Introduction

Person re-identification (re-ID) [9] is an image retrieval

problem that aims at matching a person of interest across

∗Qian Wang is the corresponding author.
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Figure 1. The illustration of Impersonation Attack on re-ID mod-

els. The adversary with the adversarial patterns lures re-ID models

into mismatching herself as the target person.

multiple non-overlapping camera views. It has been in-

creasingly popular in research area and has broad applica-

tions in video surveillance and security, such as searching

suspects and missing people [30], cross-camera pedestri-

an tracking [33], and activity analysis [20]. Recently, in-

spired by the success of deep learning in various vision tasks

[12, 14, 26, 27, 34, 35], deep neural networks (DNNs) based

re-ID models [1, 4, 5, 6, 7, 18, 29, 31, 32] started to become

a prevailing trend and have achieved state-of-the-art perfor-

mance. Existing deep re-ID methods usually solve re-ID as

a classification task [1, 18, 32], or a ranking task [4, 6, 7],

or both [5, 29].

Recent studies found that DNNs are vulnerable to adver-

sarial attack [3, 10, 13, 16, 17, 22, 24, 28]. These carefully

modified inputs generated by adding visually imperceptible

perturbations, called adversarial examples, can lure DNNs

into working in abnormal ways, which pose potential threats

to DNNs based applications, e.g., face recognition [25], au-

tonomous driving [8], and malware classification [11]. The

broad deployment of deep re-ID in security related system-

s makes it critical to figure out whether such adversarial

examples also exist on deep re-ID models. Serious conse-

quences will be brought if deep re-ID systems are proved to

be vulnerable to adversarial attacks, for example, a suspect

who utilizes this vulnerability can escape from the person

search of re-ID based surveillance systems.

To the best of our knowledge, we are the first to inves-

tigate robust physical-world attacks on deep re-ID. In this

paper, we propose a novel attack algorithm, called advPat-
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tern, to generate adversarially transformable patterns across

camera views that cause image mismatch in deep re-ID sys-

tems. An adversary cannot be correctly matched by deep re-

ID models by printing the adversarial pattern on his clothes,

like wearing an “invisible cloak”. We present two different

kinds of attacks in this paper: Evading Attack and Imper-

sonation Attack. The former can be viewed as an untarget-

ed attack that the adversary attempts to fool re-ID systems

into matching him as an arbitrary person except himself.

The latter is a targeted attack which goes further than Evad-

ing Attack: the adversary seeks to lure re-ID systems into

mismatching himself as a target person. Figure 1 gives an

illustration of Impersonation Attack on deep re-ID models.

The main challenge with generating adversarial patterns

is that how to cause deep re-ID systems to fail to correct-

ly match the adversary’s images across camera views with

the same pattern on clothes. Furthermore, the adversary

might be captured by re-ID systems in any position, but the

adversarial pattern generated specifically for one shooting

position is difficult to remain effective in other varying po-

sitions. In addition, other challenges with physically realiz-

ing attacks also exist: (1) How to allow cameras to perceive

the adversarial patterns but avoid arousing suspicion of hu-

man supervisors? (2) How to make the generated adversar-

ial patterns survive in various physical conditions, such as

printing process, dynamic environments and shooting dis-

tortion of cameras?

To address these challenges, we propose advPattern that

formulates the problem of generating adversarial patterns

against deep re-ID models as an optimization problem of

minimizing the similarity scores of the adversary’s images

across camera views. The key idea behind advPattern is

to amplify the difference of person images across camer-

a views in the process of extracting features of images by

re-ID models. To achieve the scalability of adversarial pat-

terns, we approximate the distribution of viewing transfor-

mation with a multi-position sampling strategy. We further

improve adversarial patterns’ robustness by modeling phys-

ical dynamics (e.g., weather changes, shooting distortion),

to ensure them survive in physical-world scenario. Figure

2 shows an example of our physical-world attacks on deep

re-ID systems.

To demonstrate the effectiveness of advPattern, we first

establish a new dataset, PRCS, which consists of 10,800

cropped images of 30 identities, and then evaluate the attack

ability of adversarial patterns on two deep re-ID models us-

ing the PRCS dataset and the publicly available Market1501

dataset. We show that our adversarially transformable pat-

terns generated by advPattern achieve high success rates

under both Evading Attack and Impersonation Attack: the

rank-1 accuracy of re-ID models for matching the adver-

sary decreases from 87.9% to 27.1% under Evading Attack,

meanwhile the adversary can impersonate as a target per-

Figure 2. An example of Impersonation Attack in physical world.

Left: the digital adversarial pattern; Middle: the adversary wear-

ing a clothes with the physical adversarial pattern; Right: The tar-

get person randomly chosen from Market1501 dataset.

son with 47.1% rank-1 accuracy and 67.9% mAP under Im-

personation Attack. The results demonstrate that deep re-

ID models are indeed vulnerable to our proposed physical-

world attacks.

In summary, our main contributions are three-fold:

• To the best of our knowledge, we are the first to im-

plement physical-world attacks on deep re-ID systems,

and reveal the vulnerability of deep re-ID modes.

• We design two different attacks, Evading Attack and

Impersonation Attack, and propose a novel attack al-

gorithm advPattern for generating adversarially trans-

formable patterns, to realize adversary mismatch and

target person impersonation, respectively.

• We evaluate our attacks with two state-of-the-art deep

re-ID models and demonstrate the effectiveness of the

generated patterns to attack deep re-ID in both digital

domain and physical world with high success rate.

The remainder of this paper is organized as follows: we

review some related works in Section 2 and introduce the

system model in Section 3. In Section 4, we present the

attack methods for implementing physical-world attacks on

deep re-ID models. We evaluate the proposed attacks and

demonstrate the effectiveness of our generated patterns in

Section 5 and conclude with Section 6.

2. Related Work

Deep Re-ID Models. With the development of deep

learning and increasing volumes of available datasets, deep

re-ID models have been adopted to automatically learn bet-

ter feature representation and similarity metric [1, 4, 5, 6,

7, 18, 29, 31, 32], achieving state-of-the art performance.

Some methods treat re-ID as a classification issue: Li et al.

[18] proposed a filter pairing neural network to automatical-

ly learn feature representation. Yi et al. [32] used a siamese

deep neural network to solve the re-ID problem. Ahmed et

al. [1] added a different matching layer to improve origi-

nal deep architectures. Xiao et al. [31] utilized multi-class

classification loss to train model with data from multiple
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domains. Other approaches solve re-ID as a ranking task:

Ding et al. [7] trained the network with the proposed triplet

loss. Cheng et al. [6] introduced a new term to the original

triplet loss to improve model performance. Besides, two re-

cent works [5, 29] considered two tasks simultaneously and

built networks to jointly learn representation from classifi-

cation loss and ranking loss during training.

Adversarial Examples. Szegedy et al. [28] discovered

that neural networks are vulnerable to adversarial examples.

Given a DNNs based classifier f(·) and an input x with

ground truth label y, an adversarial example x′ is generated

by adding small perturbations to x such that the classifier

makes a wrong prediction, as f(x′) 6= y, or f(x′) = y∗ for

a specific target y∗ 6= y. Existing attack methods generate

adversarial examples either by one-step methods, like the

Fast Gradient Sign Method (FGSM) [10], or by solving op-

timization problems iteratively, such as L-BFGS [28], Basic

Iterative Methods(BIM) [15], DeepFool [22], and Carlin-

i and Wagner Attacks(C&W) [3]. Kurakin et al. [15] ex-

plored adversarial attack in physical world by printing ad-

versarial examples on paper to cause misclassification when

photographed by cellphone camera. Sharif et al. [25] de-

signed eyeglass frame by printing adversarial perturbations

on it to attack face recognition systems. Evtimov et al. [8]

created adversarial road sign to attack road sign classifiers

under different physical conditions. Athalye et al. [2] con-

structed physical 3D-printed adversarial objects to fool a

classifier when photographed over a variety of viewpoints.

In this paper, to the best of our knowledge, we are

the first to investigate physical-world attacks on deep re-

ID models, which differs from prior works targeting on

classifiers as follows: (1) Existing works on classification

task failed to generate transformable patterns across cam-

era views against image retrieval problems. (2) Attacking

re-ID systems in physical world faces more complex physi-

cal conditions, for instance, adversarial patterns should sur-

vive in printing process, dynamic environments and shoot-

ing distortion under any camera views. These differences

make it impossible to directly apply existing physical real-

izable methods on classifiers to attack re-ID models.

3. System Model

In this section, we first present the threat model and then

introduce the our design objectives.

3.1. Threat Model

Our work focuses on physically realizable attacks a-

gainst DNNs based re-ID systems, which capture pedestri-

ans in real-time and automatically search a person of inter-

est across non-overlapping cameras. By comparing the ex-

tracted features of a probe (the queried image) with features

from a set of continuously updated gallery images collected

from other cameras in real time, a re-ID system outputs im-

ages from the gallery which are considered to be the most

similar to the queried image. We choose re-ID system as

our target model because of the wild deployment of deep

re-ID in security-critical settings, which will throw danger-

ous threats if successfully implementing physical-world at-

tacks on re-ID models. For instance, a criminal can easily

escape from the search of re-ID based surveillance systems

by physically deceiving deep re-ID models.

We assume the adversary has white-box access to well-

trained deep re-ID models, so that he has knowledge of

model structure and parameters, and only implements at-

tacks on re-ID models in the inference phase. The adversary

is not allowed to manipulate either the digital queried image

or gallery images gathered from cameras. Moreover, the

adversary is not allowed to change his physical appearance

during attacking re-ID systems in order to avoid arousing

human supervisor’s suspicion. These reasonable assump-

tions make it challenging to realize successfully physical-

world attacks on re-ID systems.

Considering that the stored video recorded by cameras

will be copied and re-ID models will be applied for per-

son search only when something happens, the adversary has

no idea of when he will be treated as the person of inter-

est and which images will be picked for image matching,

which means that the queried image and gallery images are

completely unknown to the adversary. However, with the

white-box access assumption, the adversary is allowed to

construct a generating set X by taking images at each dif-

ferent camera view, which can be realized by stealthily plac-

ing cameras at the same position of surveillance cameras to

capture images before implementing attacks.

3.2. Design Objectives

We propose two attack scenarios, Evading Attack and

Impersonation Attack, to deceive deep-ID models.

Evading Attack. An Evading Attack is an untargeted

attack: Re-ID models are fooled to match the adversary as

an arbitrary person except himself, which looks like that

the adversary wears an “invisible cloak”. Formally, a re-

ID model fθ (·, ·) outputs a similarity score of an image

pair, where θ is the model parameter. Given a probe image

padv of an adversary, and an image gadv belonging to the

adversary in the gallery Gt at time t, we attempt to find

an adversarial pattern δ attached on the adversary’s clothes

to fail deep re-ID models in person search by solving the

following optimization problem:

maxD(δ), s.t. Rank(fθ (padv+δ, gadv+δ)) > K (1)

where D(·) is used to measure the reality of the generat-

ed pattern. Unlike previous works aiming at generating vi-

sually inconspicuous perturbations, we attempt to generate

visible patterns for camera sensing, while making generated

patterns indistinguishable from naturally decorative pattern
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Figure 3. Overview of the attack pipeline.

on clothes. Rank(·) is a sort function which ranks similar-

ity scores of all gallery images with padv in the decreasing

order. An adversarial pattern is successfully crafted only

if the image pair (padv+δ, gadv+δ) ranks behind the top-K

results, which means that the re-ID systems cannot realize

cross-camera image match of the adversary.

Impersonation Attack. An Impersonation Attack is a

targeted attack which can be viewed as an extension of

Evading Attack: The adversary attempts to deceive re-ID

models into mismatching himself as a target person. Given

our target’s image It, we formulate Impersonation Attack

as the following optimization problem:

maxD(δ), s.t.

{

Rank(fθ (padv+δ, gadv+δ)) > K

Rank(fθ (padv+δ, It)) < K
(2)

we can see that, besides the evading constraint, the opti-

mization problem for an Impersonation Attack includes an-

other constraint that the image pair (padv+δ, It) should be

within the top-K results, which implies that the adversary

successfully induces the re-ID systems into matching him

to the target person.

Since the adversary has no knowledge of the queried

image and the gallery, it is impossible for the adversary

to solve the above optimization problems. In the follow-

ing section, we will present the solution that approximately

solve the above optimization problems.

4. Adversarial Pattern Generation

In this section, we present a novel attack algorithm,

called advPattern, to generate adversarial patterns for at-

tacking deep re-ID systems in real-world. Figure 3 shows an

overview of the pipeline to implement an Impersonation At-

tack in physical world. Specifically, we first generate trans-

formable patterns across camera views for attacking the im-

age retrieval problem as described in Section 4.1. To im-

plement position-irrelevant and physical-world attacks, we

further improve the scalability and robustness of adversarial

patterns in Section 4.2 and Section 4.3.

4.1. Transformable Patterns across Camera Views

Existing works [6, 38] found that there exists a common

image style within a certain camera view, while dramatic

variations across different camera views. To ensure that

the same pattern can cause cross-camera image mismatch in

deep re-ID models, we propose an adversarial pattern gener-

ation algorithm to generate transformable patterns that am-

plify the distinction of the adversary’s images across cam-

era views in the process of extracting features of images by

re-ID models.

For the Evading Attack, given the generating set X =
(x1, x2, ..., xm) constructed by the adversary, which con-

sists of the adversary’s images captured from m different

camera views. For each image xi from X , we compute the

adversarial image xi
′ = o(xi, Ti(δ)). o(xi, Ti(δ)) denotes

overlaying the corresponding areas of xi after transforma-

tion Ti(·) with the generated pattern δ. Here Ti(δ) is a per-

spective transformation operation of the generated pattern

δ, which ensures the generated pattern to be in accordance

with transformation on person images across camera views.

We generate the transformable adversarial pattern δ by solv-

ing the following optimization problem:

argmin
δ

m
∑

i=1

m
∑

j=1

fθ(xi
′, xj

′), s.t. i 6= j (3)

We iteratively minimize the similarity scores of images of

an adversary from different cameras to gradually pull far-

ther extracted features of the adversarys images from dif-

ferent cameras by the generated adversarial pattern.

For the Impersonation Attack, given a target person’s

image It, we optimize the following problem:

argmin
δ

m
∑

i=1

m
∑

j=1

fθ(xi
′, xj

′)

− α(fθ(xi
′, It) + fθ(xj

′, It)), s.t. i 6= j

(4)

where α controls the strength of different objective terms.

By adding the second term in Eq. 4, we additionally max-

imize similarity scores of the adversary’s images with the

target person’s image to generate a more powerful adver-

sarial pattern to pull closer the extracted features of the ad-

versary’s images and the target person’s image.

4.2. Scalable Patterns in Varying Positions

The adversarial patterns should be capable of imple-

menting successful attacks at any position, which means our

attacks should be position-irrelevant. To realize this objec-

tive, we further improve the scalability of the adversarial

pattern in terms of varying positions.

Since we cannot capture the exact distribution of viewing

transformation, we augment the volume of the generating
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Figure 4. The illustration of how scalable adversarial patterns

work. By adding the generated adversarial pattern, the adversarial

images from the same camera view are clustered together in the

feature space. Meanwhile, the distance of adversarial images from

different cameras becomes farther.

set with a multi-position sampling strategy to approximate

the distribution of images for generating scalable adversari-

al patterns. The augmented generating set XC for an adver-

sary is built by collecting the adversary’s images with var-

ious distances and angles from each camera view, and syn-

thesized instances generated by image transformation such

as translation and scaling on original collected images.

For the Evading Attack, given a triplet trik =<

xo
k, x

+

k , x
−

k > from XC , where xo
k and x+

k are person im-

ages from the same camera, while x−

k is the person image

from a different camera, for each image xk from trik, we

compute the adversarial image xk
′ as o(xk, Tk(δ)). We ran-

domly chose a triplet at each iteration for solving the fol-

lowing optimization problem:

argmin
δ

E
trik∼XC

fθ((x
o
k)

′, (x−

k )
′)− βfθ((x

o
k)

′, (x+

k )
′)

(5)

where β is a hyperparameter that balances different objec-

tives during optimization. The objective of Eq.(5) is to min-

imize the similarity scores of xo
k with x−

k to discriminate

person images across camera views, while maximizing sim-

ilarity scores of xo
k with x+

k to preserve the similarity of

person images from the same camera view. During opti-

mization the generated pattern learns the scalability from

the augmented generating set XC to pull closer the extract-

ed features of person images from the same camera, while

pushing features from different cameras farther, as shown

in Figure 4.

For the Impersonation Attack, given an image set

It of the target person, and a quadruplet quadk =<

xo
k, x

+

k , x
−

k , tk > consisting of a triplet trik and a person

image tk from It, we randomly choose a quadruplet at each

iteration, and iteratively solve the following optimization

problem:

argmax
δ

E
quadk∼{XC,It}

fθ((x
o
k)

′, tk)

+ λ1fθ((x
o
k)

′, (x+

k )
′)− λ2fθ((x

o
k)

′, (x−

k )
′)

(6)

where λ1 and λ2 are hyperparameters that control the

strength of different objectives. We add an additional ob-

jective that maximizes the similarity score of xo
k with tk to

pull closer the extracted features of the adversary’s images

to the features of the target person’s images.

4.3. Robust Patterns for Physically Realizable At­
tack

Our goal is to implement physically realizable attacks

on deep re-ID systems by generating physically robust pat-

terns on adversaries’ clothes. To ensure adversarial patterns

to be perceived by cameras, we generate large magnitude

of patterns with no constraints over them during optimiza-

tion. However, introducing conspicuous patterns will in

turn make adversaries be attractive and arouse suspicion of

human supervisors.

To tackle this problem, we design unobtrusive adversari-

al patterns which are visible but difficult for humans to dis-

tinguish them from the decorative patterns on clothes. To be

specific, we choose a mask Mx to project the generated pat-

tern to a shape that looks like a decorative pattern on clothes

(e.g., commonplace logos or creative graffiti). In addition,

to generate smooth and consistent patches in our pattern, in

other words, colors change only gradually within patches,

we follow Sharif et al. [25] that adds total variation (TV )

[21] into the objective function:

TV (δ) =
∑

p,q

((δp,q − δp+1,q)
2
+ (δp,q − δp,q+1)

2
)

1

2

(7)

where δp,q is a pixel value of the pattern δ at coordinates

(p, q), and TV (δ) is high when there are large variations in

the values of adjacent pixels, and low otherwise. By mini-

mizing TV (δ), the values of adjacent pixels are encouraged

to be closer to each other to improve the smoothness of the

generated pattern.

Implementing physical-world attacks on deep re-ID sys-

tems requires adversarial patterns to survive in various en-

vironmental conditions. To deal with this problem, we de-

sign a degradation function ϕ(·) that randomly changes the

brightness or blurs the adversary’s images from the aug-

mented generating set XC . During optimization we re-

place xi with the degraded image ϕ(xi) to improve the ro-

bustness of our generated pattern against physical dynamics

and shooting distortion. Recently, the non-printability score

(NPS) was utilized in [8, 25] to account for printing error.

We introduce NPS into our objective function but find it

hard to balance NPS term with other objectives. Alterna-

tively, we constrain the search space of the generated pat-

tern δ in a narrower interval P to avoid unprintable colors

(e.g., high brightness and high saturation). Thus, for each

image xk from trik, we use o(xk, Tk(Mx · δ)) to compute

the adversarial images xk
′, and generate robust adversarial

patterns to implement physical-world attack as solving the
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Figure 5. The scene setting of physical-world tests. We choose

14 testing points under each camera which vary in distances and

angles.

following optimization problem:

argmin
δ

E
trik∼XC

fθ(ϕ(x
o
k)

′, ϕ(x−

k )
′)

− βfθ(ϕ(x
o
k)

′, ϕ(x+

k )
′) + κ · TV (δ), s.t. δ ∈ P

(8)

where λ and κ are hyperparameters that control the strength

of different objectives. Similarly, the formulation of the Im-

personation Attack is analogous to that of the Evading At-

tack, which is as follows:

argmin
δ

E
quadk∼{XC,It}

fθ((x
o
k)

′, tk) + λ1fθ((x
o
k)

′, (x+

k )
′)

− λ2fθ((x
o
k)

′, (x−

k )
′) + κ · TV (δ), s.t. δ ∈ P

(9)

Finally, we print the generated pattern over the the adver-

sary’s clothes to deceive re-ID into mismatching him as an

arbitrary person or a target person.

5. Experiments

In this section, we first introduce the datasets and the tar-

get deep re-ID models used for evaluation in Section 5.1.

We evaluate the proposed advPattern for attacking deep re-

ID tools both under digital environment (Section 5.2) and in

physical world (Section 5.3). We finally discuss the impli-

cations and limitations of advPattern in Section 5.4.

5.1. Datasets and re­ID Models

Market1501 Dataset. Market1501 contains 32,668 an-

notated bounding boxes of 1501 identities, which is divid-

ed into two non-overlapping subsets: the training dataset

contains 12,936 cropped images of 751 identities, while the

testing set contains 19,732 cropped images of 750 identities.

PRCS Dataset. We built a Person Re-identification in

Campus Streets (PRCS) dataset for evaluating the attack

method. PRCS contains 10,800 cropped images of 30 i-

dentities. During dataset collection, three cameras were de-

ployed to capture pedestrians in different campus streets.

Each identity in PRCS was captured by both three cameras

and has at least 100 cropped images per camera. We chose

Table 1. Re-ID performance of model A and model B on Mar-

ket1501 and PRCS datasets. (ss = Similarity Score)

Model Dataset rank-1 rank-5 rank-10 mAP ss

A
Market-1501 77.8% 90.2% 93.5% 62.7% 0.796

PRCS 87.9% 93.4% 100.0% 78.6% 0.876

B
Market-1501 74.5% 89.0% 92.8% 57.3% 0.732

PRCS 84.7% 95.4% 99.0% 77.2% 0.857

Table 2. Digital-environment attack results on model A and model

B under Evading Attack (GS = Generating Set, TS = Testing Set).

Model Dataset rank-1 rank-5 rank-10 mAP ss

A
GS 0.0% 0.0% 0.0% 4.4% 0.394

TS 4.2% 8.3% 16.7% 7.3% 0.479

B
GS 0.0% 0.0% 0.0% 4.5% 0.422

TS 10.4% 13.3% 16.7% 16.3% 0.508

30 images of each identity per camera to construct the test-

ing dataset for evaluating the performance of the trained re-

ID models and our attack method.

Target Re-ID Models. We evaluated the proposed at-

tack method on two different types of deep re-ID model-

s: model A is a siamese network proposed by Zheng et al.

[37], which is trained by combining verification loss and i-

dentification loss; model B utilizes a classification model to

learn the discriminative embeddings of identities as intro-

duced in [36]. The reason why we choose the two models

as target models is that classification networks and siamese

networks are widely used in the re-ID community. The

effectiveness of our attacks on the two models can imply

the effectiveness on other models. Both of the two models

achieve the state-of-the-art performance (i.e., rank-k accu-

racy and mAP) on Market1501 dataset, and also work well

on PRCS dataset. The results are given in Table 1.

We use the ADAM optimizer to generate adversarial pat-

terns with the following parameters setting: learning rate

= 0.01, β1 = 0.9, β2 = 0.999. We set the maximum num-

ber of iterations to 700.

5.2. Digital­Environment Tests

We first evaluate our attack method in digital domain

where the adversary’s images are directly modified by digi-

tal adversarial patterns∗. It is worth noting that attacking in

digital domain is actually not a realistic attack, but a neces-

sary evaluation step before successfully implementing real

physical-world attacks.

Experiment Setup. We first craft the adversarial pattern

over a generating set for each adversary, which consists of

real images from varying positions, viewing angles and syn-

thesized samples. Then we attach generated adversarial pat-

tern to the adversary’s images in digital domain to evaluate

the attacking performance on the target re-ID models.

∗The code is avaliable at https://github.com/whuAdv/

AdvPattern
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Table 3. Digital-environment attack results on target models under Impersonation Attack. The performance of matching the adversary as

the target person (Target) and himself (Adversary) are both given. (GS = Generating Set, TS = Testing Set).

PRCS Market1501
Model Matched person

rank-1 rank-5 rank-10 mAP ss rank-1 rank-5 rank-10 mAP ss

Target(GS) 86.7% 97.2% 100.0% 89.7% 0.848 68.0% 83.8% 89.8% 70.7% 0.814
A

Adversary(GS) 5.50% 5.70% 8.30% 8.10% 0.524 4.10% 4.10% 10.4% 9.20% 0.565

Target(GS) 92.8% 97.7% 100.0% 91.8% 0.858 94.0% 98.1% 100.0% 60.7% 0.775
B

Adversary(GS) 2.50% 5.80% 8.40% 5.50% 0.486 1.80% 6.90% 8.70% 10.9% 0.606

Target(TS) 74.4% 83.3% 91.7% 81.5% 0.824% 55.8% 70.8% 79.2% 45.1% 0.803
A

Adversary(TS) 19.4% 22.2% 38.9% 18.4% 0.633 14.1% 17.1% 27.5% 12.9% 0.638

Target(TS) 78.4% 83.3% 91.7% 88.2% 0.812 68.7% 79.2% 91.6% 51.9% 0.749
B

Adversary(TS) 16.7% 18.9% 41.7% 24.8% 0.652 28.4% 34.7% 50.4% 31.3% 0.659

Table 4. Physical-world attack results on target models at varying distances and angles. Distance&Angle of each points with camera 3 are

given. ∆rank-1, ∆mAP and ∆ss indicate the drop of target models’ performance due to adversarial patterns.

Evading Attack Impersonation Attack
Distance&Angle

rank-1 ∆rank-1 mAP ∆mAP ss ∆ss rank-1 mAP ss

P1 (4.39, 24.2) 0.00% 100% 18.9% 69.2% 0.689 0.146 40.0% 58.4% 0.774

P2 (5.31, 19.8) 20.0% 80.0% 25.6% 66.5% 0.694 0.149 80.0% 83.8% 0.746

P3 (6.26, 16.7) 20.0% 80.0% 24.6% 66.7% 0.687 0.163 0.0% 33.6% 0.728

P4 (7.23, 14.4) 20.0% 80.0% 21.1% 68.9% 0.680 0.180 80.0% 84.9% 0.737

P5 (8.20, 12.7) 20.0% 80.0% 23.4% 64.2% 0.660 0.124 20.0% 58.4% 0.748

P6 (5.38, 42.0) 0.00% 100% 18.6% 71.2% 0.685 0.192 40.0% 68.0% 0.784

P7 (6.16, 35.8) 40.0% 60.0% 27.6% 62.7% 0.709 0.164 40.0% 65.2% 0.761

P8 (7.00, 31.0) 0.00% 100% 15.9% 40.8% 0.663 0.083 80.0% 85.8% 0.762

P9 (7.87, 27.2) 0.0% 100% 18.0% 71.6% 0.669 0.158 40.0% 67.1% 0.767

P10 (8.77, 24.2) 40.0% 60.0% 40.0% 57.5% 0.714 0.167 40.0% 59.5% 0.761

P11 (7.36, 47.2) 20.0% 80.0% 22.6% 65.6% 0.695 0.147 60.0% 72.1% 0.768

P12 (8.07, 42.0) 60.0% 40.0% 27.6% 47.6% 0.688 0.124 80.0% 82.3% 0.771

P13 (8.84, 37.6) 80.0% 20.0% 47.5% 36.8% 0.749 0.071 40.0% 78.3% 0.789

P14 (9.65, 34.0) 40.0% 60.0% 20.9% 66.7% 0.699 0.148 20.0% 52.6% 0.768

Average 27.1% 74.3% 25.2% 61.1% 0.692 0.144 47.1% 67.9% 0.762

We choose every identity from PRCS as an adversary

to attack deep re-ID. In each query, we choose an image

from adversarial images as the probe image, and construc-

t a gallery by combining 12 adversarial images from other

cameras with images from 29 identities in PRCS, and 750 i-

dentities in Market1501. For Impersonation Attack, we take

two identities as target for each adversary: one is randomly

chosen from Market1501, and another one is chosen from

PRCS. We ran 100 queries for each attack.

Experiment Results. Table 2 shows the attack results on

two re-ID models under Evading Attack in digital environ-

ment. We can see that the matching probability and mAP

drops significantly for both re-ID models, which demon-

strate the high success rate of implementing the Evading

Attack. The similarity score of the adversary’s images de-

creases to less than 0.5, making it hard for deep re-ID mod-

els to correctly match images of the adversary in the large

gallery. Note that the attack performance on testing set is

close to generating set, e.g., rank-1 accuracy from 4.2% to

0% and mAP from 7.3% to 4.4%, which demonstrates the

scalability of the digital adversarial patterns when imple-

menting attacks with unseen images.

Table 3 shows the attack results to two re-ID model-

s under Impersonation Attack in the digital environment.

In PRCS, the average rank-1 accuracy is above 85% when

matching adversarial images from the generating set as a

target person, which demonstrates the effectiveness of im-

plementing the targeted attack. The patterns are less effec-

tive when targeting an identity from Market1501: the rank-1

accuracy of model A decreases to 68.0% for the generating

set, and 41.7% for the testing set. We attribute it to the large

variations in physical appearance and image styles between

two datasets. Though, the high rank-5 accuracy and mAP

demonstrate the strong capability of digital patterns to de-

ceive target models. Note that the rank-k accuracy and mAP

decrease significantly for matching the adversary’s images

across cameras, which means that the generated patterns

can also cause mismatch across camera views in targeted

attacks. Again, that the attack performance on testing set

is close to generating set demonstrates the scalability of the

adversarial patterns with unseen images.

5.3. Physical­World Evaluation

On the basis of digital-environment tests, we further e-

valuate our attack method in physical world. We print the

adversarial pattern and attach it to the adversary’s clothes

for implementing physical-world attacks.

Experiment Setup. The scene setting of physical-world

tests is shown in Figure 5, where we take images of the

adversary with/without the adversarial pattern in 14 testing
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Figure 6. Examples of physically realizable attacks. Top row: an

Evading Attack (the adversary: ID1 from PRCS). Middle row: an

Impersonation Attack targeting identity from PRCS (the adver-

sary: ID2 in PRCS, the target: ID12 from PRCS). Bottom row:

an Impersonation Attack targeting identity from Market1501 (the

adversary: ID3 in PRCS, the target: ID728 from Market1501)

points with variations in distances and angles from cameras.

These 14 points are sampled with a fix interval in the filed of

cameras views. We omit the left-top point in our experiment

due to the constraint of shooting conditions. The distance

between cameras and the adversary is about from 5m to

10m for better perceiving the adversarial pattern.

We choose 5 identities as adversaries from PRCS to

implement physically realizable attacks. In each query,

we randomly choose the adversary’s image under a testing

point as the probe image, while adding 12 adversarial im-

ages from other cameras into the gallery. Two identities are

randomly chosen from Market1501 and PRCS respectively

to serve as target person. 100 queries for each testing point

are performed. We evaluate physical-world attacks for E-

vading Attack with model A, while Impersonation Attack

with model B.

Experiment Results. Table 4 shows the physical-world

attack results of 14 different testing positions with varying

distances and angles from cameras. Note that ∆rank-1 de-

notes the drop of match probability due to adversarial pat-

terns. Similar meanings happen to ∆mAP and ∆ss. For

the Evading Attack, we can see that it significantly decreas-

es the match probability to the adversary with the crafted

adversarial pattern. The average ∆rank-1 and ∆mAP are

62.2% and 61.1%. The average of the rank-1 accuracy and

mAP are 47.1% and 67.9% under Impersonation Attack,

respectively. The results demonstrates the effectiveness of

adversarial patterns to implement physical-world attacks in

varying positions with considerable success rate.

For Evading Attack, the average rank-1 accuracy drops

to 11.1% in 9 of 14 positions, which demonstrates that the

generated adversarial patterns can physically attack deep re-

ID systems with high success rate. Note that adversarial

patterns are less effective in some testing points, e.g., P12

and P13. We attribute it to the larger angles and farther

distance between these points and cameras, which makes it

more difficult for cameras to perceive the patterns. For Im-

personation Attack, The rank-1 accuracy for matching the

adversary as the target person is 56.4% in 11 of 14 position-

s , which is close to the result of digital patterns targeting

on Market1501. The high mAP and similarity scores when

matching the adversary as the targeted person demonstrate

the effectiveness of adversarial patterns to implement tar-

geted attack in physical world. Still, there exists few points

(P3, P5, P14) where the adversary has trouble to implement

successful attack with adversarial patterns. Figure 6 shows

examples of physical-world attacks on deep re-ID systems.

5.4. Discussion

Black Box Attacks. In this paper, we start with the

white-box assumption to investigate the vulnerability of

deep re-IDs models. Nevertheless, it would be more mean-

ingful if we can realize adversarial patterns with black-box

setting. Prior works [19, 23] demonstrated successful at-

tacks without any knowledge of model’s internals by uti-

lizing the transferability of adversarial examples. We will

leave black-box attacks as our future work.

AdvPattern vs. Other Approaches. AdvPattern allows

the adversary to deceive deep re-ID systems without any

digital modifications of person images or any physical ap-

pearance change. Although there are simpler ways to attack

re-ID systems, e.g., directly object removal in digital do-

main, or changing physical appearance in different camera

view, we argue that our adversarial pattern is the most rea-

sonable method because: (1) for object removal methods, it

is unrealistic to control the queried image and gallery im-

ages; (2) changing physical appearance makes adversaries

attractive to human supervisors.

6. Conclusion

This paper designed Evading Attack and Impersonation

Attack for deep re-ID systems, and proposed advPattern

for generating adversarially transformable patterns to real-

ize adversary mismatch and target person impersonation in

physical world. The extensive evaluations demonstrate the

vulnerability of deep re-ID systems to our attacks.
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