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Abstract

Monocular depth estimators can be trained with vari-

ous forms of self-supervision from binocular-stereo data to

circumvent the need for high-quality laser-scans or other

ground-truth data. The disadvantage, however, is that the

photometric reprojection losses used with self-supervised

learning typically have multiple local minima. These

plausible-looking alternatives to ground-truth can restrict

what a regression network learns, causing it to predict depth

maps of limited quality. As one prominent example, depth

discontinuities around thin structures are often incorrectly

estimated by current state-of-the-art methods.

Here, we study the problem of ambiguous reprojections

in depth-prediction from stereo-based self-supervision, and

introduce Depth Hints to alleviate their effects. Depth Hints

are complementary depth-suggestions obtained from simple

off-the-shelf stereo algorithms. These hints enhance an ex-

isting photometric loss function, and are used to guide a

network to learn better weights. They require no additional

data, and are assumed to be right only sometimes. We show

that using our Depth Hints gives a substantial boost when

training several leading self-supervised-from-stereo mod-

els, not just our own. Further, combined with other good

practices, we produce state-of-the-art depth predictions on

the KITTI benchmark.

1. Introduction

As the accuracy of depth-from-color algorithms im-

proves, new opportunities are unlocked in augmented re-

ality, robotics, and autonomous driving. Per-pixel, ground

truth depth supervision is difficult to acquire, requiring

cumbersome and expensive depth-sensing devices [8]. As

an alternative, there is an active search for self-supervised

depth-estimation models, where a training signal is derived

from data captured using commodity color cameras. In such

self-supervised settings, training involves adjusting a net-

work’s depth predictions to minimize a photometric loss.

This loss is usually the distance between a reference im-

age and the depth-guided reprojection of other views into

that reference viewpoint. Depth regression is optimized

and relative poses come from stereo camera calibration in

a training-from-stereo setting [9, 7, 25, 27, 26], while depth

values and camera poses can be optimized jointly when

training on videos [42, 20, 37, 22, 38, 32, 44, 36, 28].

The photometric distance between the reference and

depth-reprojected images could be measured with L1 or

L2 distance, more complicated structural dissimilarity dis-

tances (DSSIM [34]), or a combination of DSSIM+L1 dis-

tances [41, 9] used in state-of-the-art methods. A draw-

back of self-supervision is that finding the optimal depth

value is normally difficult, especially where the photomet-

ric loss can be low for multiple depth values (e.g. due to

repeating structures and uniformly textures areas). Conse-

quently, training is harder, which leads to lower accuracy

predictions.

When training depth-from-color models, our Depth

Hints offer a specific alternative to the model’s current depth

predictions. Where the alternative’s reprojection is better,

the training proceeds in following the “hint.” Surprisingly,

simply using our Depth Hints as labels for direct supervi-

sion already gives a nearly state of the art baseline. Overall,

our contributions are:

1. We show that existing self-supervised regression meth-

ods can struggle during training to find the global opti-

mum when minimizing photometric reprojection loss.

2. We demonstrate that our selective training using Depth

Hints is a general enhancement that can improve multi-

ple leading self-supervised training algorithms, allow-

ing our implementations to reach better minima. The

Depth Hints can come from the same stereo image

data, via, e.g. OpenCV’s stereo estimates [13, 14].

3. We show that our selective training with Depth Hints,

coupled with sensible network design choices, leads

us to outperform most other algorithms. We achieve

state-of-the-art results on the KITTI dataset [8], out-

performing both our baseline model and previously

published results.
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2. Related Work

A neural network that predicts depth from a single im-

age could be trained with supervised depth data, or using

self-supervision by exploiting photometric consistency. The

many flavors of self-supervision differ by design, opting for

pre-training, cropping vs. scaling, use of synthetic data, on-

line vs batch pose-estimation, etc. Here we discuss the cur-

rent leading methods, and where we expect Depth Hints are

and aren’t applicable.

2.1. Selfsupervised depth prediction

Self-supervised approaches can exploit photometric con-

sistency in binocular stereo pairs, in consecutive video

frames, or in consecutive frames of a stereo video.

Stereo training: Garg et al. [7] formulated the self-

supervised training of monocular depth estimation with

photometric consistency loss between stereo pairs. They

chose an L2 loss, which tends to generate blurry results.

Godard et al. [9] (Monodepth) used a weighted sum of

DSSIM [34] and L1 measures between correspondences.

They regularized network predictions with left-right consis-

tency between left and right disparity maps and introduced

a post-processing technique that boosts depth quality, where

the final depth map is a weighted average of network predic-

tions generated from the original and horizontally flipped

images. The left-right consistency was extended to a trinoc-

ular assumption by [27] for improved results.

Computing reprojection loss at a higher resolutions has

been shown to improve depth map quality [10, 26, 20]. Pil-

lai et al. [26] also introduced differentiable flip augmen-

tation and subpixel convolutions for increased fidelity of

depth maps. Depth Hints are computed from binocular

stereo data, so should be able to enhance training for any

of these stereo-derived models that use the very effective

DSSIM+L1 photometric loss.

Monocular training: SfMLearner by Zhou et al. [42]

was the first method to train a depth prediction network

from monocular video only. Their network jointly predicts

depth and relative camera pose changes from a frame at time

t to frame t− 1, and from frame t to t+1. Using these pre-

dictions, both the future and past frames are reprojected into

the current frame, and an L1 loss is applied. Additionally,

this per-pixel loss is multiplied by a predicted mask to en-

able occluded pixels to be ignored.

Godard et al. [10] build upon this, proposing that instead

of averaging the loss from the reprojected future and past

frames, the minimum of reprojection losses should be min-

imized. They also propose during training to detect and

ignore pixels that appear to be stationary with respect to

ego-motion. Multiple works propose additional regular-

ization of predicted depths, such as surface normal consis-

tency [37], edge consistency [36] and 3D pointcloud consis-

tency [22]. Recently, multiple works [20, 28, 38, 44] have

proposed to model the relationship of pixels in the consecu-

tive frames of a video with joint estimation of optical flow,

depth and camera poses with loss terms that supervise the

different estimates to be consistent. Depth Hints are not

naturally compatible with monocular-video only data, ex-

tensions are left as future work.

It is also possible to train from both motion (forward and

backward in time) and stereo pairs for improved pose and

depth estimation [10, 40].

2.2. Additional supervision

Following the work of Eigen et al. [5], many others have

trained using forms of per-pixel ground-truth depth labels.

Training with ground truth is almost always a good idea

when it is available, and we strive to push self-supervised

performance closer to this ceiling.

With LiDAR Depth: Kuznietsov et al. [18] optimize a

fused loss, which sums a supervised loss based on sparse Li-

DAR pointclouds and a self-supervised loss from stereo im-

ages. They follow Godard et al. [9] by using DSSIM+L1 as

the photometric reprojection loss, and they follow Laina et

al. [19] by using berHu loss (inverse Huber) [19] on the Li-

DAR pointcloud.

Fu et al. [6] showed that framing the regression of depths

as ordinal classification can bring significant improvements

to supervised prediction, though this concept is difficult to

adopt for self-supervised training.

With Synthetic Depth: Synthetic data is an interesting

source of ground-truth depths and/or stereo pairs. Instead

of the usual photometric loss, domain adaptation is possible

using generative adversarial networks [25], or by leverag-

ing the ability of stereo matching networks to better gener-

alize to real world data [11]. Luo et al. [21] demonstrate

how synthetic data can be incorporated into single-image

depth estimation with a two stage process. First, a net-

work synthesizes a right view from the left view. Then, a

second network performs stereo matching to recover depth

from the half-synthetic stereo pair. Both networks can be

trained on stereo+synthetic data, and optionally fine-tuned

with ground truth.

With SLAM Depth: Yang et al. [35] train a monoc-

ular depth estimation network with both self-supervision

from stereo pairs, and supervision from sparse depths es-

timated in batch by the Stereo DSO [33] algorithm. They

demonstrate that a depth estimator network can improve vi-

sual odometry for monocular videos, resolving some scale

ambiguity.

Klodt and Vedaldi [17] use sparse depths and poses

from a traditional SLAM system as a supervisory signal to

train depth and pose prediction networks. They train from

monocular videos (in contrast to [35]), which requires spe-

cial consideration of scale, and modeling of uncertainty in

the depth and poses.
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With Semantic Labels: Ramirez et al. [39] show that a

depth estimation network can be improved by jointly pre-

dicting depth and semantic labels. They propose a novel

cross domain discontinuity loss to help align depth discon-

tinuities with semantic boundaries.

With Estimated Depth: The concurrent work

monoResMatch by Tosi et al. [30] also exploits proxy

ground truth labels generated with a traditional stereo

matching method [13]. The inclusion of the proxy super-

vision is shown to greatly improve accuracy over using a

standard self-supervised loss. Our proposed loss is differ-

ent from theirs.

3. Background

In monocular depth estimation, the task is to train a neu-

ral network to predict a depth map d from a single input

image I . In the self-supervised setting, the training data

consists of pairs of images I and I† with known camera in-

trinsics K and K†, and relative camera pose (R, t). The

network is trained to reconstruct the reference image I by

reprojecting the other image into the reference view, so

Ĩ = π(I†,K†, R, t,K, d). (1)

Hence, pixel i at predicted depth di gets a color value Ĩi.

Under idealized training conditions, the predicted color Ĩi
would perfectly match Ii for all i.

When training from stereo, the only unknown parameter

in π() is the estimated depth d. For monocular or stereo

video, in addition to d, the network also needs to predict the

camera pose (R, t). Presently, we do not pursue hints for

pose, though this is a natural extension of our method.

Many leading algorithms now use a differentiable pho-

tometric consistency loss to measure how well the warped

image approximates the reference image. We focus on the

DSSIM+L1 loss, a photometric consistency loss used in

many self-supervised monocular depth estimation methods

[9, 26, 35, 20]. This loss is computed per pixel as

lr(di) = α
1− SSIM(Ii, Ĩi)

2
+ (1− α)|Ii − Ĩi|, (2)

where SSIM() is computed over a 3x3 pixel window, with

α set to 0.85.

If we were training with supervision, we would mini-

mize the distance between continuous depth di predicted

by the network at pixel i, and depth d′i procured by a Li-

DAR system, Kinect sensor, a stereo algorithm, or a SLAM

system, depending on the training context. Note that the

last two contexts could count as a form of self-supervision,

in that the labels d′i are inferred, and not ground-truth mea-

surements. There are several supervised losses ls used and

compared in the literature e.g. [19, 5, 15], such as L1, L2

and (names in superscripts):

llogL1

s (di, d
′
i) = log(1 + |di − d′i|); (3)

lberHu
s (di, d

′
i) =

{

|di − d′i|, if |di − d′i| ≤ δ,
(di−d′

i
)2+δ2

2δ , otherwise.
(4)

Typically δ = 0.2maxi=0..N (|di−d′i|). Similarly, the same

losses are often applied on inverse depth (i.e. disparity). We

found that llogL1

s works well with estimated depths (and

[15] favors it for Kinect data), while lberHu
s is an established

choice for accurate LiDAR and SLAM depths [18, 19] and

disparities [35].

4. The Need for Depth Hints

Figure 1 (top) shows an input image from the training set,

and the corresponding depth map produced by Godard et

al. [10]’s network, trained on stereo data with DSSIM+L1

loss. We can see that the network failed to converge to the

correct solution, with many thin structures missing in the

predicted depth map.

How do these mistakes come about? It is not failure to

generalize or the result of overfitting, as this is an image

from the training set. Another explanation could be that

the depth map’s artifacts are due to a poor choice of pho-

tometric reprojection loss, where failures on thin structures

aren’t penalized enough. However, Figure 1 (bottom) shows

DSSIM+L1 loss for a pixel on a thin object, and we can see

that the loss is lower still for more appropriate depth values.

We hypothesize that, in the absence of a ground-truth

depth label, the network becomes stuck, learning to regress

depth for a local minimum of the reprojection loss and fail-

ing to seek the global minimum. To escape such bad min-

ima, we propose to consult an alternative depth value in case

it can offer a more plausible reprojection, and if so, incor-

porate it into the objective function. We refer to these al-

ternative depth values as Depth Hints. Depth Hints, born

from noisy estimates, can be more or less accurate than our

current network prediction, and therefore we expect the it-

erative training of a CNN to gradually change its uptake of

these hints as it converges. In contrast to supervised depth

prediction, though, our main focus is to converge to the

best minimum using a standard self-supervised reprojection

loss. Depth Hints are only used, when needed, to guide the

network out of local minima.

5. Method

We assume that stereo data is being used to train a CNN

to regress a depth map from a color image. We start from an

existing loss function, designed for self-supervised training

from such stereo images, that uses a photometric reprojec-

tion measure like DSSIM+L1. We propose to adaptively

modify the existing training process only where the cur-

rently estimated depth map is worse than the Depth Hint. A
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Figure 1. Top row: Image from the training set and corresponding depth maps produced by neural networks trained without and with

Depth Hints (Godard et al. [10] (Monodepth2) architecture and loss). Middle row, left to right: Crop of the image centered around a thin

structure with the center pixel circled, the scanline in the other image for the circled pixel, LiDAR pointcloud, fused depth map from SGM,

crop of the depth map produced by a network trained without Depth Hints, our result, and the color coding illustrating pixel disparities.

Bottom row: On the left is the plot of DSSIM+L1 cost of the pixel on the thin structure for every pixel disparity. Plots on the right show

the predictions made by the network after q epochs when trained with and without Depth Hints. The network trained without Depth Hints

gets stuck in a local minimum and does not escape even after 20 epochs. On the other hand, the network trained with Depth Hints is in

the vicinity of the correct solution (disparity of 64.63 according to LiDAR) after the first epoch. We visualize depths as disparities in pixel

space for clarity. (Best viewed in color.)

Depth Hint is essentially a depth map estimated by a third-

party binocular stereo algorithm.

5.1. Training from stereo pairs

During training, we provide our network with a per-pixel

Depth Hint, i.e. a potential alternative hypothesis to the net-

work’s own depth estimate. Our key idea is that we only

want to provide a supervisory signal from the Depth Hints

in places where they make for a superior reprojected image

Ĩ , compared to using the network prediction. Else the hint

is ignored. To be clear, the proposed objective is not learn-

ing to regress a map of hinted depth values. That would be a

supervised loss, and is indeed one of our baselines. Interest-

ingly, [7] explored that baseline and found it disappointing,

because L2 was in favor at the time. Rather, our objective

remains to optimize a given algorithm’s existing loss, and

to consult a pixel’s Depth Hint only when the reprojection

loss can be improved upon.

In light of this, we reformulate our loss for pixel i as:

lours(di) =

{

lr(di) + llogL1

s (di, hi) if lr(hi) < lr(di)

lr(di) otherwise,

(5)

for an inferred network depth di and a depth hint hi, with an

associated self-supervised loss function lr from (2) judging

the photometric quality of the depth estimate.

Computing Depth Hints: We propose to generate Depth

Hints using stereo pairs. Depth Hints with perfect accuracy

are unattainable, and it would be extremely expensive to

sweep discrete per-pixel depth values to find those that gen-

erate the optimal DSSIM+L1 reprojection. Instead, we use

a standard heuristically designed stereo method to compute

depth. It is tempting to use a state-of-the-art stereo algo-

rithm instead, e.g. [3, 2, 29], however most modern stereo

algorithms are supervised using the LiDAR ground truth

from the KITTI dataset. Using one of these would cause

us to be implicitly learning from laser-scanned ground-truth

data. Further, generating multiple depth maps is not trivial

with most stereo methods.

Semi-Global Matching (SGM) [13, 14] is an off-the-

shelf stereo matching algorithm available in OpenCV. SGM

allows generation of different depth maps, depending on the

hyperparameters used. For example, one can specify the

size of the block to match between images, and the number

of discrete disparities to evaluate. Hence, at training time,

we can randomly choose hyperparameters for SGM to gen-
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erate Depth Hints on the fly. We refer to such Depth Hints

as “Random SGM.” Alternatively, for each training image

pair, we can generate a collection of depth maps by running

SGM with every possible hyperparameter choice. We dis-

cretize this space into 12 parameter choices, formed of com-

binations of three block sizes with four resolutions of dis-

parities. We call this version of Depth Hints “Fused SGM,”

because it checks that collection of depth maps and chooses

the depth value at each pixel based on the DSSIM+L1 score.

Fused SGM Depth Hints are pre-computed just once for

the training corpus. Unless specified, we use Fused SGM

depths as hints in our models.

Finally, SGM’s depth maps can contain holes where the

matching cost is ambiguous. All losses associated with

SGM’s depth maps are set to infinity for such pixels.

5.2. Training from stereo video

We can also apply this same method in the stereo video

self-supervised task, where training data is a video of binoc-

ular pairs. In addition to the depth prediction for the current

frame at time t, the network also produces two camera poses

for the forward t + 1 and backward t − 1 frames. The in-

put to the depth prediction network is just the current frame

t, while the pose prediction network is given 3 frames at

times t, t − 1 and t + 1. Similarly to Godard et al. [10],

we warp all three other views (other image of the stereo

pair, forward frame and backward frame) into the reference

viewpoint, and select the photometric reprojection loss as

the minimum of the 3 associated losses at each pixel.

5.3. Implementation Details

Our network architecture and training regime closely fol-

low Godard et al. [10], and can be viewed in the supplemen-

tary materials. Unless otherwise specified, we use Resnet-

18 [12] as the encoder, pretrained on ImageNet [4], also fol-

lowing [10]. We specify the resolution of the input images

explicitly, as it was shown to impact accuracy [10, 26].

Depth map post-processing [9] improves the quality of

the final depth maps, so, for the quantitative results in Ta-

bles 1, 2 and 3, we add a “PP” column to indicate if post-

processing was applied.

Due to GPU memory restrictions, some methods train

the network with a random crop of the full resolution image

e.g. as in DORN [6]. At test time, the full resolution im-

age is tiled into suitable crops, then each crop is processed

by the network and the depth maps are averaged to produce

the full resolution output. Training on crops has the poten-

tial to improve most models, because the network processes

more data and is able to ‘see’ finer details. We specify if a

network was trained with crops instead of downsampling.

6. Experiments

Our validation consists of four sets of experiments, all

exploring the task of training a CNN to predict depth from

a single color image, using binocular stereo data instead

of ground-truth labels. Depending on the experiment, we

compare against known leading baselines that supplement,

and pre- and post-process the input stereo pairs and output

depths to various degrees. The four experiments are:

1. Section 6.1 illustrates that local minima exist when

photometric reconstruction loss is used for self-

supervision, and that Depth Hints can help.

2. Section 6.2 reports ablation-type experiments on

Depth Hints, showing the negative impact of using the

same SGM-computed stereo depths in more traditional

loss functions.

3. Section 6.3 shows how Depth Hints usually help other

modern self-supervised models.

4. Section 7 pits Depth Hints against other state of the art

algorithms, grouped by preconditions.

We run experiments on the KITTI dataset [8] which con-

sists of calibrated stereo video registered to LiDAR mea-

surements of a city, captured from a moving car. The depth

evaluation is done on the LiDAR pointcloud, and we report

all seven of the standard metrics. See [5] for evaluation de-

tails, but broadly, lower numbers are better in red columns,

while higher numbers are better in blue columns. To enable

direct comparison with recent works, we use the Eigen split

of KITTI [5] and evaluate with Garg’s crop [7], using the

standard cap of 80m [9]. We note that there are potential

evaluation issues with the KITTI ground-truth data due to a

translational offset between the color camera used to record

images and the LiDAR scanner. In the supplementary mate-

rial we also present some evaluations on the updated KITTI

ground truth data provided by [31].

6.1. Solution with Depth Hints

The experiment described in Figure 1 is typical, showing

that recent self-supervision approaches can get by without

ground truth depths for most pixels, because a DSSIM+L1

loss trains the CNN to regress reasonable depths. However,

even seemingly distinct structures like a tree induce local

minima that are plausible, and hard for the training pro-

cess to escape. Supervised training with LiDAR data would

yield an excellent photometric match, but in its absence, a

Depth Hint can provide an alternative that our loss function

(5) incorporates in a gradual way: the hint isn’t trusted ex-

plicitly, and as training progresses, the hint may be ignored.

In experiments, the network initially makes use of Depth

Hints for 85% of available pixels, dropping to 50% at the

end of training.
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Method PP H × W Abs Rel Sq Rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

lps Random SGM ✓ 192× 640 0.110 0.901 4.816 0.193 0.871 0.958 0.981

lps Random SGM LR ✓ 192× 640 0.109 0.877 4.800 0.193 0.870 0.958 0.981

lps Fused SGM ✓ 192× 640 0.109 0.850 4.741 0.193 0.873 0.956 0.980

lsum Fused SGM ✓ 192× 640 0.108 0.841 4.754 0.194 0.871 0.957 0.980

lps Fused SGM → lr ✓ 192× 640 0.109 0.916 4.910 0.203 0.866 0.952 0.977

Klodt [17] uncertainty ✓ 192× 640 0.108 0.905 4.815 0.196 0.871 0.955 0.979

Ours ✓ 192× 640 0.106 0.780 4.695 0.193 0.875 0.958 0.980

Table 1. Ours vs Baselines. Comparison of baselines evaluated on KITTI 2015 [8] using the Eigen split. All methods here were trained

on stereo pairs only.

6.2. Baseline Loss Functions

Besides our proposed loss in (5), there are various alter-

native strategies for incorporating Depth Hints in the objec-

tive function. Here we discuss such alternatives and com-

pare them experimentally in Table 1.

First, we start with a simple baseline, where a neural net-

work is trained to predict depth labels produced by an off-

the-shelf stereo algorithm. This baseline is trained with loss

lps(di) = llogL1

s (di, hi), (6)

where “ps” indicates proxy-supervised losses. Here hi is

estimated by the SGM algorithm. We train three baselines

with this loss. The first uses depth maps generated on the

fly with a random selection of hyperparameters (Random

SGM) to avoid the influence of DSSIM+L1 loss. The sec-

ond baseline uses the same method, but with a left-right

consistency check to reduce noise by invalidating pixels

which have disagreeing depth values in the two views (Ran-

dom SGM LR). The last baseline uses the single Fused

SGM depth maps from Sec. 5.1 that give an indirect signal

from the DSSIM+L1 loss.

Another approach is to optimize the sum of self-

supervised and supervised losses, so

lsum(di) = lr(di) + llogL1

s (di, hi). (7)

This baseline is similar to the additional supervision from

SLAM found in [17, 35]. Similarly, Zhu et al. [43] use

added supervised loss [1] to solve for optical flow and

Kuznietsov et al. [18] add a supervised loss for depth

estimation from LiDAR pointclouds. Concurrently pro-

posed monoResMatch [30] uses this method to incorporate

a proxy-supervised signal, albeit using a reverse Huber loss

[19] as opposed to logL1. The addition of supervised losses

change the objective function that is being minimized; one

could view the additional term as a form of regularization,

constraining the network prediction to adhere to the pro-

posed depth values. However, this strategy can struggle to

contend with noise in the depths estimated by stereo algo-

rithms.

A different way of incorporating Depth Hints is to pre-

train a network using lps on the fused Depth Hints and fine-

tune using lr. In Table 1, this method is denoted as “lps

Fused SGM → lr”. We train lps for 10 epochs followed by

lr for another 10 epochs with the original learning rate.

Since the fused SGM depths may be a noisy estimate

of depth, we could enable our model to train from them

more robustly by explicitly modeling uncertainty [16, 17].

In these prior works, imperfections in the supervisory signal

are modelled as part of the training loss; in addition to dis-

parity, the network predicts a per-pixel data-dependent esti-

mate of the residual error of the supervised loss. For pixels

where the network expects that it will not be able to accu-

rately satisfy the main training loss, it can pay a ‘penalty’

by predicting a higher residual error. This method was ex-

ploited by Klodt and Vedaldi [17] to make learning from

potentially noisy SLAM depths and poses more robust.

Referring to Table 1, we note the clear benefit of treating

the Depth Hints as noisy and only incorporating their es-

timates when they are superior to the network prediction.

Surprisingly, our various baselines are competitive when

compared to state of the art methods in Table 3. For ex-

ample, even “lps Fused SGM” scores better than 3Net [27]

and SuperDepth [26], and is highly competitive with Mon-

odepth2 (S and MS) [10] on all metrics, albeit with pre-

training.

6.3. Depth Hints for Existing Methods

Here we demonstrate the benefits of using Depth Hints

to improve existing methods. As most existing methods

do not provide training code, we have implemented a se-

lection of them that are trained with self-supervised loss.

Hence, we modify our loss functions to closely match the

selected methods, while keeping our network architecture,

image resolution, optimization parameters, and number of

epochs consistent across experiments.

Table 2 shows quantitative results of existing methods

that were augmented with Depth Hints. We see noticeable

improvements in all methods which are trained using stereo

(S) and stereo video (MS), demonstrating the effectiveness

of incorporating Depth Hints. Additionally, we do not ob-

serve an improvement for the semi-supervised case [18],

nor do the comparatively noisy Depth Hints hurt its results.

Please see supplementary material for additional informa-

tion regarding these implementations.

Finally, Depth Hints show substantial improvements

when trained and evaluated on synthetic FlyingThings3D
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Cit. Method PP Data Dataset H × W Abs Rel Sq Rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

[18] Kuznietsov ✗ DS K 192 × 640 0.109 0.693 4.305 0.176 0.878 0.965 0.987

[18] Kuznietsov ✗ DS K 192 × 640 0.108 0.693 4.312 0.176 0.879 0.965 0.986

[10] Monodepth2 no pt ✗ S K 192 × 640 0.129 1.102 5.440 0.232 0.829 0.933 0.969

[10] Monodepth2 no pt ✗ S K 192 × 640 0.127 1.039 5.239 0.219 0.835 0.942 0.974

[10] Monodepth2 ✗ S K 192 × 640 0.110 0.896 4.986 0.208 0.866 0.948 0.975

[10] Monodepth2 ✗ S K 192 × 640 0.109 0.845 4.800 0.196 0.870 0.956 0.980

[27] 3Net (Resnet18) ✗ S K 192 × 640 0.112 0.953 5.007 0.207 0.862 0.949 0.976

[27] 3Net (Resnet18) ✗ S K 192 × 640 0.112 0.929 4.960 0.204 0.867 0.951 0.976

[10] Monodepth2 ✗ MS K 320 × 1024 0.106 0.806 4.630 0.193 0.876 0.958 0.980

[10] Monodepth2 ✗ MS K 320 × 1024 0.100 0.728 4.469 0.185 0.885 0.962 0.982

[10] Monodepth2 ✗ S SF 352 × 640 0.340 6.176 5.938 0.449 0.639 0.852 0.923

[10] Monodepth2 ✗ S SF 352 × 640 0.219 1.157 3.889 0.344 0.706 0.900 0.953

Table 2. Depth Hints with Existing Methods. Comparison of our implementations of existing methods with and without Depth Hints.

The data used to train/test is defined in the Dataset column, whereby ‘K’ is for KITTI 2015 [8] using the Eigen split, and ‘SF’ is for

the FlyingThings3D Sceneflow dataset [23]. Highlighted methods are augmented with Depth Hints , and score better than their regular

counterparts almost universally. [18] is an exception, possibly because it already uses LiDAR data. We also show results for [10] without

ImageNet [4] pretraining, denoted as ‘Monodepth2 no pt’. Data column (data source used for training): D refers to methods that use depth

supervision at training time, S is for self-supervised training on stereo images, MS is for models trained with stereo video.

Sceneflow dataset [24]. The improvements are significant

due to many objects with thin structures present in the

dataset. These results demonstrate that Depth Hints can im-

prove monocular depth estimation in various domains.

7. Depth From Color Tournament

Although it only represents one application domain, the

KITTI dataset has been established as the dominant bench-

mark for measuring the accuracy of depth inferred from

color. Broadly, our Depth Hints approach produces bet-

ter looking results (see Figure 2) and scores indicating that

we are the new state of the art across three major compe-

tition “categories.” Please see Table 3. Of course there are

more or less flattering ways to cluster the competition, so we

present “Our” method in multiple forms, for better compati-

bility within each category. In doing so, we show that Depth

Hints are useful across multiple settings (Stereo vs. MS

(time+stereo frames), low vs. high resolution, with/without

pretraining), making the difference between first and second

place.

Rows in Table 3 are color-coded by category, with the

winning score for each of seven measures marked in bold.

Low-res Stereo is the classic category, with the longest

history of competitors (we show the highest scorers). Our

full method (“Ours Resnet50”) wins decisively on every

metric. One could argue about two “outside” advantages:

we pre-train on Imagenet and our SGM step gets the ben-

efit of a time-tested heuristic. Our ablation experiments in

Sec 6.2 show the difference between using SGM naively

and incorporating its output as a Depth Hint. For complete-

ness, we present results for our method with no pretraining

(“Ours Resnet50 w/o pretraining”). When we compare this

to the highest scoring non pretrained network 3Net [27], we

show better scores in all 7 metrics.

High-res allows for processing of larger inputs. Again

our method (“Ours HR Resnet50”) shows a considerable

improvement over existing methods in all metrics. Similar

to before, we also show results for our method without pre-

training (“Ours HR Resnet50 w/o pretraining”). Our non

pretrained model beats SuperDepth [26] in 6 out of 7 met-

rics (tied in 1), and compares favourably to the concurrent

work monoResMatch [30], which makes use of a signif-

icantly more complex network compared to our encoder-

decoder architecture.

Stereo Video MS could theoretically be the category

with the strongest scores, because each self-supervised al-

gorithm has access to time series movies (M) in stereo (S),

with the opportunity to match occluded regions by search-

ing elsewhere in time. Interestingly, in this category we see

smaller improvements by using our approach over [10] for

lower resolution (“Ours”), but observe a substantial boost in

the high resolution case (“Ours HR”).

Overall, we note that error metrics like SqRel and

RMSE, which penalize large errors in a few pixels, bene-

fit most from Depth Hints. Depth Hints help to recover thin

structures and to more accurately delineate object bound-

aries (Figure 2). The AbsRel metric has smaller gains, since

only a minority of pixels in each image are improved.

The Depth Supervised category is one we cannot com-

pete in. The clear winner here is DORN [6], who avoid self-

supervision entirely, training directly from LiDAR data.

SVSM [21] uses outside synthetic data, and LiDAR data for

finetuning. DVSO [35] obtains depth supervision through

an excellent SLAM system, yielding LiDAR-like point-

clouds, and combines them with self-supervision to achieve

scores similar to ours in their “SimpleNet” model. How-

ever, their paper introduces an important enhancement that

we lack, namely a depth refinement network.
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Input

3Net [27]

Ours

SuperDepth [26]

Monodepth2 HR [10]

Ours HR

Figure 2. Qualitative comparison with exiting methods. Top row: 4 images from the test set. Each subsequent row: depth map generated

by a stereo-only method. Notice how Ours and Ours HR capture thin structures such as traffic lights, traffic signs, lampposts, etc.

Cit. Method PP Data H × W Abs Rel Sq Rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

[18] Kuznietsov DS 187 × 621 0.113 0.741 4.621 0.189 0.862 0.960 0.986

[6] DORN D 385 × 513 crop 0.072 0.307 2.727 0.120 0.932 0.984 0.994

[35] DVSO SimpleNet ✓ D†S 256 × 512 0.107 0.852 4.785 0.199 0.866 0.950 0.978

[35] DVSO ✓ D†S 256 × 512 0.097 0.734 4.442 0.187 0.888 0.958 0.980

[11] Guo StereoUnsupFT → Mono pt D*S 256 × 512 0.099 0.745 4.424 0.182 0.884 0.963 0.983

[21] SVSM w/o finetuning D*S 192 × 640 crop 0.102 0.700 4.681 0.200 0.872 0.954 0.978

[11] Guo StereoSupFTAll → Mono pt D*DS 256 × 512 0.097 0.653 4.170 0.170 0.889 0.967 0.986

[21] SVSM finetuned D*DS 192 × 640 crop 0.094 0.626 4.252 0.177 0.891 0.965 0.984

[9] Monodepth ✓ S 256 × 512 0.138 1.186 5.650 0.234 0.813 0.930 0.969

[25] StrAT S 256 × 512 0.128 1.019 5.403 0.227 0.827 0.935 0.971

[10] Monodepth2 (w/o pretraining) ✓ S 192 × 640 0.128 1.089 5.385 0.229 0.832 0.934 0.969

[27] 3Net (Resnet50) ✓ S 256 × 512 0.126 0.961 5.205 0.220 0.835 0.941 0.974

Ours Resnet50 w/o pretraining ✓ S 192 × 640 0.118 0.941 5.055 0.210 0.850 0.948 0.976

[10] Monodepth2 ✓ S 192 × 640 0.108 0.842 4.891 0.207 0.866 0.949 0.976

Ours ✓ S 192 × 640 0.106 0.780 4.695 0.193 0.875 0.958 0.980

Ours Resnet50 ✓ S 192 × 640 0.102 0.762 4.602 0.189 0.880 0.960 0.981

[26] SuperDepth ✓ S 384 × 1024 0.112 0.875 4.958 0.207 0.852 0.947 0.977

Ours HR Resnet50 w/o pretraining ✓ S 320 × 1024 0.112 0.857 4.807 0.203 0.861 0.952 0.978

[30] monoResMatch ✓ S 256 × 512 crop 0.111 0.867 4.714 0.199 0.864 0.954 0.979

[10] Monodepth2 ✓ S 320 × 1024 0.105 0.822 4.692 0.199 0.876 0.954 0.977

Ours HR ✓ S 320 × 1024 0.099 0.723 4.445 0.187 0.886 0.962 0.981

Ours HR Resnet50 ✓ S 320 × 1024 0.096 0.710 4.393 0.185 0.890 0.962 0.981

[40] Zhan ✗ MS 160 × 608 0.135 1.132 5.585 0.229 0.820 0.933 0.971

[20] EPC++ MS 256 × 832 0.128 0.935 5.011 0.209 0.831 0.945 0.979

[10] Monodepth2 ✓ MS 192 × 640 0.104 0.786 4.687 0.194 0.876 0.958 0.980

Ours ✓ MS 192 × 640 0.105 0.769 4.627 0.189 0.875 0.959 0.982

[10] Monodepth2 ✓ MS 320 × 1024 0.104 0.775 4.562 0.191 0.878 0.959 0.981

Ours HR ✓ MS 320 × 1024 0.098 0.702 4.398 0.183 0.887 0.963 0.983

Table 3. Quantitative results. Adjusting our model slightly, we compare it to the top performers in three different categories on KITTI

2015 [8], using the Eigen split. Data column (data source used for training): D refers to methods that use KITTI depth supervision

at training time, D* use auxiliary depth supervision from synthetic data, D† use auxiliary depth supervision from SLAM, S is for self-

supervised training on stereo images, MS is for models trained with both M (forward and backward frames) and S data.

8. Conclusion

We investigated current issues with reprojection losses

in the self-supervised monocular depth estimation setting.

Based on these observations, we introduced Depth Hints as

a practical approach to help escape from local minima, and

to guide the network toward a better overall solution. The

depth-proposals make for a strong baseline themselves, but

our training mechanism reverts to the default reprojection

loss when the proposals are unhelpful. Qualitatively, Depth

Hints seem to help most with thin structures and sharp

boundaries. Extensive experimentation supports this. Fur-

ther, Depth Hints provide a boost when applied to existing

self-supervision schemes. Combined with a common net-

work architecture, without but preferably with pre-training,

our Depth Hints model achieves the top-scores on the self-

supervised KITTI/Eigen dataset by a significant margin.
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