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Abstract

This paper proposes a framework for training language-

invariant cross-modal retrieval models. We also introduce a

novel character-based word-embedding approach, allowing

the model to project similar words across languages into

the same word-embedding space. In addition, by perform-

ing cross-modal retrieval at the character level, the storage

requirements for a text encoder decrease substantially, allow-

ing for lighter and more scalable retrieval architectures. The

proposed language-invariant textual encoder based on char-

acters is virtually unaffected in terms of storage requirements

when novel languages are added to the system. Our contribu-

tions include new methods for building character-level-based

word-embeddings, an improved loss function, and a novel

cross-language alignment module that not only makes the

architecture language-invariant, but also presents better pre-

dictive performance. We show that our models outperform

the current state-of-the-art in both single and multi-language

scenarios. This work can be seen as the basis of a new path

on retrieval research, now allowing for the effective use of

captions in multiple-language scenarios. Code is available

at https://github.com/jwehrmann/lavse.

1. Introduction

This paper addresses the problem of cross-modal retrieval.

The task consists in retrieving content from one modality

given a query on a different modality, e.g., returning an

image based on a textual description. Several important ap-

plications benefit from successful retrieval strategies, such

as image and video retrieval, captioning [32, 37], and navi-

gation for the blind, just to name a few.

One of the contributions of this paper is incorporating an

important feature towards robustness over different retrieval

domains: language-invariant behavior. Besides making the

task language-invariant, we also propose a versatile strategy

that relies solely on character-level learning of word embed-

dings. This means that our embedding approach is virtually

not affected in terms of storage requirements when adding

new languages for the retrieval task. Also, our method can

be extended to learn novel languages without requiring ex-

tra machine translation models that are much more costly

in terms of processing. For such, we present a novel train-

ing procedure that performs both cross-modal and cross-

language alignment by enforcing similar sentences to have

high-similarity in the embedding space, while projecting

correlated image-caption pairs into the same space.

Our contributions also include better image and text en-

coding functions to explicitly leverage inner-attention maps,

which allow for better semantic encoding of both modalities.

We show that the use of region-based non-linear non-local

modules provide a large improvement in predictive perfor-

mance, capable of outperforming state-of-the-art approaches

based on stacked attention layers [22]. We also provide ex-

periments training the text encoder with distinct granularity

of the text being learned. For instance, current state-of-the-

art approaches [36, 7, 14, 38, 22] are based on networks

trained over word-embeddings [25], whereas our proposed

method can be trained in an end-to-end fashion for learning

both word-level and character-level features from scratch

without any preprocessing for the text encoder. More specif-

ically, raw characters are mapped to a word-latent space that

is learned during training, which allows the resulting model

to project words from distinct languages into the very same

word-based embedding space.

We perform a thorough set of experiments to evaluate mul-

tiple aspects of the proposed architecture. In summary, our

contributions are as follows: (i) novel character-based word-

embedding methods; (ii) a cross-language, cross-modal re-

trieval framework; (iii) an improved pairwise ranking loss

function that enables training of word and character-level

models in multilingual scenarios; (iv) an improved image

representation strategy that maps object representations into

the shared semantic space, discarding cross-modality atten-

tion layers, and (v) we provide a transliterated version of YJ

Captions dataset with novel retrieval splits. The proposed

approach outperforms the state-of-the-art methods in both

image retrieval and image annotation tasks, while perform-

ing much faster when compared to the best baseline strategy.
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2. Cross-Language Multimodal Retrieval

We propose a method for training language-invariant

word embeddings that can be used for the retrieval of im-

ages and their respective captions written in multiple lan-

guages, namely CLMR. Formally, consider a set of images

X = {x(i)}
|X|
i=1 and their respective captions C = {c(i)}

|C|
i=1.

Additionally, let L = {li}
|L|
i=1 be a set of languages, and

Tli = {t(i)}
|T |
i=1 be a set of sentences from language li. Cap-

tions c
(i)
l1

and c
(i)
l2

present the same semantic content despite

being written in distinct languages. Likewise, t
(i)
l1

and t
(i)
l2

are generic sentences containing the same semantics though

in distinct languages.

Our approach for learning the cross-modal space follows

the state-of-the-art methods [18, 10, 36, 39], in which two

functions must be approximated, namely ϕ(cli) and φ(x) in

order to project images X and their respective captions C into

the same latent space. Therefore, ϕ(cli) ∈ R
d and φ(x) ∈

R
d can be seen as feature vectors that represent the semantic

content of captions and images in a shared d-dimensional

space, in which correlated image-caption pairs become close

to each other, and the distance of non-correlated pairs should

necessarily be larger than the correlated ones. Therefore,

we want to approximate both vectors so that a similarity

measure s(φ(x), ϕ(cli)) ≈ 1.

Given that our goal is to train language-invariant cross-

modal embedding models, the choice for function ϕ(·) is

particularly important. Such a function should be capable

of learning semantic textual information across distinct lan-

guages, which often requires a very large vocabulary. We

ensure that by using the same similarity measure that is used

for approximating images and captions, we can approximate

two distinct sentences written in different languages though

with the same semantics into the same joint embedded space.

Therefore, we also want that s(ϕ(t
(i)
l1
), ϕ(t

(i)
l2
)) ≈ 1. The

overall architecture of CLMR can be seen in Figure 1.

2.1. Text Encoder

Regarding the text encoding function ϕ(.), it should ide-

ally be capable of approximating high-level semantic con-

cepts from images and captions while learning correlations

between sentences across distinct languages.

Recent studies have mostly focused on encoding image

captions through GRU [5] networks, handcrafted transfor-

mations over word-embeddings, or character-level convolu-

tional networks. Most of those strategies encode text in a

global manner by projecting them onto a high-dimensional

semantic embedding. On the other hand, a recent state-of-

the-art approach [22] makes use of the hidden states of the

GRU network for computing a cross-modal attention be-

tween image regions and captions, a strategy that makes the

test phase much slower when compared to global embedding

methods. In our approach, word vectors are fed into a bidirec-

tional GRU generating |c(i)| d-dimensional hidden-states for

each direction. Those word vectors can be either traditional

ones, as those from CLMR; or character-based generated, as

those from LIWE. Following [22], the final representation is

generated by averaging the textual representation from each

direction.

2.2. Character­based Word Embeddings

Strategies based on word-embeddings and RNNs, or on

handcrafted transformations for encoding sentences present

many significant drawbacks: (i) they require training word

embeddings [28, 25] and RNNs [20] in very large corpora

(with millions or billions of words), consuming a lot of time

and demanding high computational power; (ii) for encoding

a single word or sentence, it is necessary to have at disposal

the entire word-dictionary containing all the known words,

largely increasing the memory requirements to store all data;

(iii) for cross-language or informal domains, the number

of words in the dictionary increases with the number of

languages; (iv) a preprocessing step is required for correcting

typos and standardizing words.

Bearing in mind the advantages of both character-

encoding and word-embedding approaches, we have de-

signed a novel strategy for the representation of the in-

put captions that tries to leverage the advantages of both

while avoiding their drawbacks. This strategy, hereby

called LIWE (Language-Invariant Word Embeddings) learns

to generate word embeddings from character-level inputs,

which can be further processed by either GRUs or convolu-

tional layers. Unlike previous work [29, 17, 16] that generate

word embeddings using characters or similar sub-word in-

formation together with RNNs, our approach is simple to

implement and allows for fast word-embedding computation.

Word-embedding vectors are typically generated by either

pre-training them on a separate large corpus, or fully-training

all word vectors via back-propagated gradients during the

training of the target task. In both strategies, one must have

at hand all known words and store them within a vocabulary

V = {w(i)}
|V|
i=1 so they can be retrieved at training and test

time. Let ̺(i) be the function for retrieving the ith word-

embedding vector. Such a function is often implemented

using one of two main approaches: (i) a binary vector w ∈

{0, 1}|V |×1 so that wi = 1 and
∑|V |

j wj = 1, which is then

multiplied by the embedding weight matrix ΩE ∈ R
|V |×|ω|,

making ̺(i) = w
T
i ΩE ; and (ii) ̺(i) is encapsulated as a

look-up table function so that ̺(i) = ΩEi
.

In LIWE, the ̺(i) function is implemented following a

different strategy. We use the word’s atomic components

wj = {a(i)}
|wj |
i=1 , where a(i) is the ith character token within

word wj . That character is represented as a dense vector,

α ∈ R
24, so that ̺(i) can be implemented as a function that

processes character vectors from each word independently,
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Figure 1. Overall architecture of CLMR.

and that ultimately results in vector R|w|. It is important for

̺(i) to be computed fast since it needs to be computed for

each word for all captions ∈ C and sentences ∈ T .

LIWE is computed by simply concatenating character

embeddings instead of using convolutional layers applied

over the character-level inputs, with the goal of optimizing

the word-embedding space. Additionally, we project the con-

catenation of character-based vectors by using at least one

batch-wise fully-connected layer. Here, the concatenation

of the character-level vectors already works as a low-level

word-embedding. Indeed, the first fully-connected layer ap-

plied over this input learns from the entire input at once

(i.e., achieving the maximum receptive field over the in-

put) projecting the low-level embedding into a higher-level

embedding — which, in turn, achieves a higher degree of

detachment from the syntax in favor of the semantics.

Let Ct × dc be a matrix that encodes a sequence of

character-level embeddings, and dc = 24. That sequence is

split into words, and then concatenated to build a primitive

word-level representation of size Nw ×Cw × 24, where Nw

is the number of words in a given text, Cw is the number of

characters in each word, and 24 is the size of the character

embedding. In this strategy, the number of characters in each

word is crucial, since we concatenate them to feed a fully-

connected layer that does not accept variable-sized inputs.

For handling this issue, we pad the words with a special to-

ken so all the words comprise the same number of characters.

The fixed number of characters is based on the statistics of

the word lengths within the corpora. We employ up to three

fully-connected layers to project the padded Nw × Cw × 24
tensor into a Nw ×Dw matrix that is ready to be processed

by our text-encoding model.

LIWE is thus designed to replace the traditional word-

embedding matrix by a learnable function ̺ that approxi-

mates the behavior of those embeddings without requiring

the storage of many thousands of word-vectors. For in-

stance, assume a LIWE incarnation of LIWE(128,256),

that encodes character-level vectors ∈ R
24 through fully-

connected layers containing respectively f ∈ {128, 256}
neurons. The complexity in terms of parameters required for

learning information from all words in a given vocabulary

is given by: (Na × dc) + ([dc × Cw] × f1) + (f1 × f2),

where Na is the number of characters in the alphabet, re-

sulting in just ≈ 115k parameters. Finally, the corpus

from Flickr30k and Multi30k together (Flickr30K trans-

lated to German) comprises roughly 20,000 words, requir-

ing 20, 000 × 300 = 6, 000, 000 parameters when using

word-embeddings ∈ R
300, and whose memory requirement

is about 50-fold larger than LIWE(128,256). Given that

the difference increases linearly, a corpus of 40, 000 words

would be enough for that configuration of LIWE to run with

two-orders of magnitude fewer parameters for embedding

words.

2.3. Self­Attentive Image Encoder

The image encoding function φ(x) encapsulates three

main steps: (i) a forward pass of an object detector net-

work (Faster R-CNN [31]) trained on the Visual Genome

dataset [21] for extracting the k most important regions

within the image, which is inspired by [1, 22]; (ii) a region-

based mapping into the cross-modal space that is weighted

using a non-linear NLM module; and (iii) a one-dimensional

convolutional layer to project regions into the shared space,

followed by a global average pooling that generates the fi-

nal vector representation of the original image. The last

two steps substantially differ from the baseline approaches

[18, 10], given that we project object-based features onto

the semantic space instead of projecting the image feature

vector generated by the last pooling layer within a given

convolutional network. It is somewhat similar to [22], the

difference being that we compute an inner attention map

through the NLM module, in which all regions are used to

compute the attention weights.

A generic NLM is denoted by:

NLM(x) = σ
(

SOFTMAX
(

q(x)T k(x)
)

v(x)
)

(1)

which can be applied to map long-range spatial depen-

dencies when applied to the regions of input x. This module

is particularly effective for mapping global relations once

it learns a similarity function that compares value xi to all

remaining positions xj , which results in an affinity scalar

value. In this NLM incarnation, the affinity scalar is given by

a matrix multiplication between embeddings resulting from
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q(·) and k(·) functions. q(·), k(·), and v(·) are implemented

as one-dimensional convolutional layers, that reduce input

dimensionality 8-fold. Different from [35], in this work

the resulting weighted feature map is processed by a non-

linearity function σ(x) = max{0,x}+ 0.1×min{0,x}.

Here, the NLM module learns relations across all regions

in order to project them in a weighted fashion onto the cross-

modal space. Therefore, the network is able to give more

weight to important regions and words, while not being

required to compute stacked attention layers across distinct

modalities. This is important because the computation of

stacked attention is rather slow in both training and test

times. Instead, our models can leverage global information

to project image features in a more representative semantic

vector space, an approach that allows for fast search using

very efficient matrix multiplication functions.

2.4. Loss Function

State-of-the-art retrieval frameworks employ the pairwise

ranking loss as the objective function to compute φ(·) and

ϕ(·) gradients. The pairwise ranking loss pushes away in-

stances with small violations from the query and approxi-

mate matching instances maintaining a minimum margin on

the joint embedded space. The default incarnation does that

by summing the computed similarities between the query and

contrastive examples. This approach may suffer from small-

violating negatives domination over hard contrastives [10].

Hard contrastives are those negative examples whose similar-

ity to the query example is the largest with exception to the

positive (matching) example. For a specific query, when the

returned examples contain several negatives with small viola-

tions, a single negative example too close to the query might

not be sufficiently taken into account. In that scenario, to

move the hard contrastive away, such mapping might require

an update step that would bring back the small-violating

negatives, creating local minima in which the model might

get trapped into.

A pairwise ranking loss based on hard contrastives – e.g.,

Max of Hinges loss – has proved to be more suitable for

the ranking task. The drawback of such an approach is that

it optimizes the loss function based on a single hard nega-

tive example for each query. Since we are trying to learn

character-level embeddings from scratch, it becomes unfea-

sible for the optimization process to learn such deep layer

representations from a single random value in the beginning

of training. We overcome this issue by introducing a novel

loss function that increases exponentially the relevance of

the hard contrastives over time, as follows:

J = λ(ǫ) · Jm + (1 − λ(ǫ)) · Js (2)

λ = 1− ηǫ (3)

where λ is the trade-off weight and ǫ is the number of it-

erations. The Sum of Hinges and Max of Hinges for the

cross-modal alignment are given by:

JMs
(x, cl1) =

∑

c′
l1

[α−s(φ(x), ϕ(cl1))+s(φ(x), ϕ(c′l1))]+

+
∑

x′

[α− s(ϕ(cl1), φ(x)) + s(φ(cl1), φ(x
′))]+ (4)

JMm
(x, cl1) = max

c′
l1

[α−s(φ(x), ϕ(cl1))+s(φ(x), ϕ(c′l1))]+

+max
x′

[α− s(ϕ(cl1), φ(x)) + s(φ(cl1), φ(x
′))]+ (5)

where cl1 is image x’s description on the main language l1.

c′l1 and x′ denote the negative examples for the image and

description queries, respectively. s(xi, xj) is the computed

similarity between xi and xj . To compute s(xi, xj) we first

scale xi and xj to have unit norm, so the inner product of

both results become the cosine similarity.

Since we are also dealing with cross-language alignment,

we denote the cross-language loss functions as:

JLs
(tli , ttj ) =

∑

t′
li

[α−s(φ(tlj ), ϕ(tli))+s(φ(tlj ), ϕ(t
′
li
))]

+
∑

t′
lj

[α− s(ϕ(tli), φ(tlj )) + s(φ(tli), φ(t
′
lj
))] (6)

JLm
(tli , ttj ) = max

t′
li

[α−s(φ(tlj ), ϕ(tli))+s(φ(tlj ), ϕ(t
′
li
))]

+ max
t′
lj

[α− s(ϕ(tli), φ(tlj )) + s(φ(tli), φ(t
′
li
))] (7)

where tl1 and tl2 denotes two semantically aligned sentences

from two different languages. Note that tl1 and tl2 have no

semantic relationship with the image captions from the cross-

modal retrieval task and can be obtained from a completely

different corpus.

The final loss function to optimize the multimodal cross-

lingual latent space is given by

min
W

JM (x, cl1) +
1

|L|

|L|
∑

j

JL(tl1 , ttj ) (8)

3. Experimental Setup

3.1. Datasets

We have performed several experiments using four

large-scale datasets for cross-modal retrieval, namely MS

COCO [23], Flickr30k [30], its multi-language version

Multi30k [8], and YJ Captions 26K Dataset [26], the lat-

ter comprising captions in Japanese language for a subset of
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Table 1. Cross-modal results on COCO test set. Cross-modal results on Flickr30k test set. Underlined values outperform the best published

results. Bold values indicate current state-of-the-art results.

Image to text Text to image

Method R@1 R@5 R@10 R@1 R@5 R@10 Σ

Order [36] 49.3 78.5 89.4 39.5 75.0 86.2 417.9

CHAIN [39] 61.2 89.3 95.8 46.6 81.9 90.9 465.7

VSE++ [9] 64.6 - 95.7 52.0 - 92.0 -

DPC [43] 65.6 89.8 95.5 47.1 79.9 90.0 467.9

GXN [13] 68.5 - 97.9 56.6 - 94.5 -

SCO [15] 69.9 92.9 97.5 56.7 87.5 94.8 499.3

SCAN-t2i-avg [22] 70.9 94.5 97.8 56.4 87.0 93.9 500.5

SCAN-i2t-lse [22] 69.2 93.2 97.5 54.4 86.0 93.6 493.9

VSE++* 67.5 93.7 96.8 53.4 84.9 92.4 488.8

LIWE 69.6 93.9 98.0 55.5 87.3 94.2 498.6

CLMR 71.8 93.1 97.6 56.2 87.5 94.2 500.3

LIWE(+Glove) 73.2 95.5 98.2 57.9 88.3 94.5 507.7

Table 2. Cross-modal results on Flickr30k test set. Underlined values outperform the best published results. Bold values indicate current

state-of-the-art results.

Image to text Text to image

Method R@1 R@5 R@10 R@1 R@5 R@10 Σ

VSE++ [9] 52.9 87.2 39.6 79.5

DAN [27] 55.0 81.8 89.0 39.4 69.2 79.1 413.5

DPC [43] 55.6 81.9 89.5 39.1 69.2 80.9 416.2

SCO [15] 55.5 82.0 89.3 41.1 70.5 80.1 418.5

SCAN-i2t-avg [22] 67.9 89.0 94.4 43.9 74.2 82.8 452.2

SCAN-t2i-avg [22] 61.8 87.5 93.7 45.8 74.4 83.0 446.2

VSE++* 56.9 83.2 88.6 41.0 70.5 79.5 419.7

CLMR 64.0 88.3 93.3 46.8 76.4 84.5 453.2

LIWE 66.4 88.9 94.1 47.5 76.2 84.9 458.1

LIWE(+Glove) 69.6 90.3 95.6 51.2 80.4 87.2 474.3

26k images from COCO. COCO is largely used for training

and evaluating systems for image-caption alignment, and it

has become the standard benchmark to evaluate the predic-

tive performance of state-of-the-art methods. It comprises

113,287 images for training, 5,000 images for validation, and

5,000 images for testing. Flickr30k comprehends roughly

28,000 images for training and 1,000 for both validation

and testing. Each image has 5 corresponding textual de-

scriptions. Multi30k was originally developed for training

visually-guided machine translation [8] models, though we

use it as a multi-lingual corpus since it has German captions

for each Flickr image. Finally, the YJ Captions dataset also

comprises roughly 5 captions per image, which results in

a corpus of ≈ 130k Japanese image descriptions aligned

to English ones. Given that the original work is focused

on the task of image captioning and does not provide splits

for image retrieval evaluation, we generate validation and

test splits by randomly sampling ≈ 1k images for each split

while keeping the remaining of the images on the training

set. A final remark regarding YJ Captions is that we per-

form experiments that make use of the transliterated version

of the dataset, which allows training character-based word-

embedding models.

3.2. Evaluation Measures

For evaluating the results, we use the same measures as

those in [18, 36, 10]: R@K (reads “Recall at K”), which is

the percentage of queries in which the ground-truth is one of

the first K retrieved results. The higher its value, the better.

4. Experimental Analysis

We first analyze the predictive performance of our models

on COCO and Flickr30k datasets trained specifically for En-

glish captions. Our second analysis is regarding the results

generated by using our framework for multiple-language

cross-modal retrieval, where we can understand the impact

of training cross-modal and multiple-language models al-

together. Our models trained with the improved non-local

image and text-encoding functions along with the proposed

loss function are denoted as CLMR. Character-based word

embedding models are depicted as LIWE. Hyper-parameters

and training details are reported in the supplementary mate-

rial.

4.1. Single­Language Results

In this section we present the results for both COCO and

Flickr30k test sets in the English language. We first compare

our methods trained only with the cross-modal retrieval loss

function Jm with the state-of-the-art approaches. Results

in Table 1 show that our methods perform on par to state-

of-the-art approaches such as SCAN [22] despite being up

to four-fold faster to train, and up to one order of magni-

tude faster in the test phase (depending on the number of

instances to retrieve). Such difference in running time is due
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Table 3. Single language cross-modal results on Multi30k and YJ Captions test sets.

Image to text Text to image

Method R@1 R@10 R@1 R@10 R@1 R@10 Σ

MULTI30K

VSE++ 47.2 77.0 86.5 33.7 61.1 71.7 343.6

SCAN-t2i 44.5 76.8 86.4 35.7 60.9 71.0 339.6

SCAN-i2t 51.8 82.0 91.0 32.7 61.7 72.2 358.7

CLMR 51.6 79.7 88.9 34.5 63.5 73.6 357.3

LIWE 59.9 87.5 93.7 42.3 71.1 79.8 392.0

YJ CAPTIONS

VSE++ 54.0 82.1 90.9 43.2 76.5 86.5 433.2

SCAN-i2t 51.2 83.0 91.8 39.8 74.6 85.8 426.2

SCAN-t2i 56.5 85.7 93.0 42.5 73.6 83.4 434.6

CLMR[Ours] 57.4 85.3 94.0 45.1 80.1 89.6 451.4

LIWE[Ours] 56.9 86.1 94.1 45.1 78.0 88.2 448.4

to the cross-attention mechanism used within SCAN, while

in our approaches we use non-local inner-attention mod-

ules for building better vector representations. One can ob-

serve that CLMR outperforms all other approaches in R@1
for both image-to-text (71.8%) and text-to-image (57.9%).

Models trained with LIWE, despite fully replacing word-

embeddings by much more memory-efficient learned func-

tion, also present solid performance for all tasks and metrics,

performing only slightly below its word-embedding competi-

tor, namely CLMR. The best performing method on COCO

is LIWE trained with character-based word-embeddings

concatenated to pretrained Glove vectors, leading to 73.2%
R@1 and 57.8% for image-to-text and text-to-image respec-

tively, an absolute improvement of 7.7% when considering

the recall sum (Σ).

Results on Flickr30k depicted in Table 2 show that

LIWE presents the overall top score with a margin for

the text-to-image retrieval, i.e., 47.5% of R@1, an abso-

lute improvement of 1.7% when compared to SCAN-t2i-

avg, though outperforming it by 4.6% in image-to-text R@1

metric. In addition, LIWE performs 3.6% higher on R@1

when compared to SCAN-i2t-avg. Once again, the use of

character-based word-embedding methods presents state-of-

the-art results, and CLMR is superior than all the baselines

for image retrieval tasks considering all the metrics. This

clearly shows that LIWE is quite effective despite approx-

imating word-embeddings via a learned function over the

input characters. In addition, we see more evidence that

LIWE can be complemented with Glove pretrained word-

embeddings. In this case, it seems to be quite effective

given that Flickr30k is a medium-sized dataset, and using

both approaches altogether can help avoiding overfitting.

Hence, LIWE(+Glove) outperforms all the state-of-the-art

approaches by large margins for most metrics (≈ 12% of

relative improvement in text-to-image R@1).

Table 3 depicts results on Multi30k dataset, i.e., the

German version of Flickr30k. For providing fair compari-

son with state-of-the-art approaches, we trained SCAN and

VSE++ models using our loss function. In this experiment

we observe that LIWE is able to outperform all other ap-

proaches, with significant margins. CLMR performed sim-

ilar to the SCAN-i2t approach, though surpassing VSE++

and SCAN-t2i by a margin.

Results on YJ Captions are shown in Table 3. Recall that

this dataset comprises roughly 30 thousand images from the

MS COCO training set, aligned to Japanese captions, that

we have transliterated for allowing training LIWE models.

The best performing method are CLMR, LIWEand SCAN-

t2i, respectively. VSE++ also provides strong performance,

specially for text-to-image.

4.2. Cross­language Results

In this section, we report cross-language experiments as to

evaluate the performance of all models for learning language-

independent representations. In this case, we use to complete

formulation of CLMR, optimizing the complete loss func-

tion J (Equation 2). Once again, all models were trained

using the same loss function. In this case we also add a strong

BERT-Multilingual baseline, which comprises 12-layers and

≈ 110M parameters. We use activation values from its

last layer and use them as fixed word-embedding vectors,

that are processed by a BiGRU layer. Table 4 shows results

of bilingual models, trained for approximating images to

English captions, while also approximating aligned English-

German sentences from Multi30k. Note that LIWE is able to

outperform all baselines in all metrics. BERT-Multilingual

presents quite a strong performance, surpassing values from

the baselines and CLMR. Though, note that it is much costly

in terms of memory, parameters and running time.

Table 5 shows results for models trained in English and

Japanese languages. LIWE shows strong performance (R@1

59.2% for image-to-text), closely followed by SCAN-t2i and

CLMR. This is quite a notable result, specially when we con-

sider how Japanese and English languages are structurally

different. Nevertheless, LIWE was able to learn good repre-

sentations and top state-of-the-art approaches.
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Table 4. Cross-modal results on Multi30k German test set by co-training multi-language sentence embeddings.

Image to text (ENGLISH) Text to image (ENGLISH) Image to text (GERMAN) Text to image (GERMAN)

Method R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10

VSE++ 58.9 91.8 43.9 81.5 49.8 84.6 33.6 70.6

SCAN-t2i 59.4 93.4 45.0 83.7 42.2 82.4 27.9 66.5

SCAN-i2t 58.9 91.8 37.1 79.3 44.4 83.6 26.0 65.5

BERT-Multilingual 62.0 92.1 42.7 82.5 50.9 86.4 33.2 73.5

CLMR 59.9 92.8 43.9 84.3 50.4 86.8 34.6 73.1

LIWE 64.4 94.1 47.5 85.4 53.0 89.1 36.7 76.8

Table 5. Cross-modal results on YJ Captions Transliterated test set by co-training multi-language sentence embeddings.

Image to text (ENGLISH) Text to image (ENGLISH) Image to text (JAPANESE) Text to image (JAPANESE)

Method R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10

VSE++ 54.6 92.7 42.5 87.8 49.4 88.5 38.9 84.5

SCAN-i2t 52.9 92.7 36.4 84.8 42.7 86.9 28.5 79.8

SCAN-t2i 58.2 94.0 47.4 90.3 48.2 89.4 39.6 85.4

CLMR 56.9 92.9 43.2 89.1 51.4 91.7 38.6 87.3

LIWE 59.2 94.7 46.1 90.4 48.6 90.6 37.0 85.6

Table 6. Ablation study: cross-modal results on Flickr30k.

Image to text Text to image

Method R@1 R@10 R@1 R@10

LIWE (Complete) 66.4 92.3 47.5 84.6

LIWE (Without NLM) 61.8 92.3 44.6 82.2

LIWE (Linear NLM) 60.7 93.5 44.7 83.3

LIWE (NLM WR) 56.3 91.3 41.7 79.1

CMLR[JMS
[19]] 60.4 92.2 43.8 83.3

CMLR[JMM
) [10]] Diverges - - -

CMLR[Ours, ǫ = 0.991] 65.8 93.1 47.3 84.2

LIWE(256,256)[JMS
[19]] 63.2 93.0 46.6 84.8

LIWE(256,256)[JMM
[10]] Diverges - - -

LIWE(256,256)[Ours, ǫ = 0.991] 65.3 92.5 47.4 84.6

4.3. Ablation Study on Flickr30k

In Table 6, we show the importance of each component

within CLMR. First, we observe that the complete method

in its default incarnation, denoted by CLMR(Complete) or

simply CLMR, presents the best overall performance. It is

also clear that the application of the Non-Local Module is

quite important given that we can fully discard cross-modal

attention strategies. In addition, we see that it is quite impor-

tant to reduce the input dimnensionality to use it as query of

the NLM module (NLM WR is trained without reducing the

inputs). Finally, results show that the proposed loss function

outperform those from [19], and present themselves as more

stable option than [10].

Figure 2 depicts our proposed approaches along with the

approaches VSE++ and SCAN-t2i. It is quite clear that the

optimization of the proposed loss function leads to much

better results. In this case VSE++ was trained with our loss

function, allowing it to converge in this multilingual scenario.

We also hightlight that after the 5th epoch LIWE outper-

forms CLMR in all languages, becoming the best perform-

ing method across the remaining of the optimization. It is

somewhat surprising that SCAN-t2i underperformed on vali-

dation set when compared to VSE++. Although, it achieved

good predictive performance on test set.

4.4. Time Analysis

In order to demonstrate our approaches’ efficiency, we

have run the evaluation procedure ten times for our methods

and SCAN (our strongest baseline). In average CLMR takes

3.1 seconds to encode data for 1,000 images and 5,000 cap-

tions and takes 0.15 seconds to calculate similarity between

all pairs on CPU, and 0.07s on GPU. CLMR+LIWE takes

5.11s seconds for data encoding, 0.14s for building the simi-

larity matrix on CPU, and 0.05s on GPU. On the other side,

using the original SCAN code, it takes 10s to encode the very

same data, and 180 seconds to build the similarity matrix

on GPU. We have not evaluate their method on CPU. Our

methods encode data up to 30× faster, and calculates sim-

ilarity matrices up to three orders of magnitude faster than

the current state-of-the-art approach (on GPU). In addition,

CLMR+LIWE is able to reduce the word embeddings to a

fixed size number of parameters.

5. Related Work

There is recent work that employ a similar approach to

approximate distinct languages in a semantic space by using

image-caption pairs as pivot points [12, 33]. The work in

[12] introduces such an idea by adapting a traditional pair-

wise loss function from [18], though the authors have only

trained bilingual models. Their approach is limited in learn-

ing good language-invariant embeddings given limitations

of both text and image encoders, as well as the loss function

that is based on the sum of the hinges which often leads

to local minima. The authors in [33] propose a multilin-

gual embedding approach based on deep Partial Canonical

Correlation Analysis, which is designed for handling two

main semantic tasks, namely multilingual word similarity

and cross-lingual image description retrieval.

In [24], the authors show that different languages have

similar word embedding spaces. Based on this notion, sev-
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Figure 2. R@1 cross-modal language-invariant values for image-to-text and text-to-image across training epochs on Flickr30k (first row) and

Multi30k (second row).

eral papers have proposed algorithms for cross-language

alignment [11, 42, 2, 34, 3, 4, 6]. Our work follows the same

assumption, though from the best of our knowledge, this is

the first work that makes use of character-based inputs to

improve multi-language cross-modal retrieval.

Previous work have extensively explored the cross-modal

retrieval task relying on word-level features [36, 7, 14, 38,

22]. In [41, 39, 40], authors explored a character-level mod-

ule designed to learn textual semantic embeddings by con-

volving raw characters with distinct granularity levels. De-

spite being conceptually much simpler and requiring fewer

parameters, their methods outperformed state-of-the-art re-

sults.

Anderson et al. [1] proposed the use of an object detector

to extract regions features from raw images instead of a

single feature representation for the image. Lee et al. [22]

have shown that such features could increase cross-modal

retrieval performance with the aid of stacked attention layers,

once it is capable of retain more detailed information and

highlight more relevant content.

Recently, Elliott et al. [8] created the Multi30k dataset

that extends the Flickr30K dataset with German translations

created by professional translators over English descriptions.

To the best of our knowledge, our work is the first to propose

character-level embeddings that are language-invariant via

a co-training strategy that leverages aligned multi-language

corpora for helping in the task of cross-modal retrieval.

6. Conclusions

In this paper, we propose a novel approach for cross-

modal retrieval that learns language-invariant multimodal

embeddings. The proposed framework CLMR makes use

of improved text and image encoding functions, along with

a more robust loss function. We also introduce a novel data

representation approach, in which we replace the traditional

word-embedding matrix with a module that maps the charac-

ter sequences to a word-level embedding space.

We have shown that our novel architecture outperforms

state-of-the-art models for the image annotation task (R@1)

in the widely used MS COCO and Flickr30k datasets, while

not requiring costly computation of cross-modal attention

mechanisms. Our models also present the best performance

and overall suitability for learning language-invariant repre-

sentations, as seen in the results for the Multi30k dataset.

As future work, we intend to explore several other lan-

guages within this framework, and also verify the potential

of the proposed co-training strategy for other cross-modal

tasks such as image captioning, visual question & answering

and image synthesis.
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