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Abstract

Current image translation methods, albeit effective to

produce high-quality results in various applications, still do

not consider much geometric transform. We in this paper

propose the spontaneous motion estimation module, along

with a refinement part, to learn attribute-driven deforma-

tion between source and target domains. Extensive exper-

iments and visualization demonstrate effectiveness of these

modules. We achieve promising results in unpaired-image

translation tasks, and enable interesting applications based

on spontaneous motion.

1. Introduction

High-quality image generation is a fascinating task and

has gained much attention in computer vision community.

There has been great progress using generative adversar-

ial networks (GAN) [9, 32]. Image translation, which pro-

duces modified images in target domain based on a given

input from source domain, has been widely used in applica-

tions of style transfer [22], sketch/photo conversion [3, 15],

label-based image synthesis [31], face editing [39] etc. Re-

cent research trends continuously towards high practicality,

e.g., images in high resolutions [36], and unpaired image

translation [42], or using better latent space for more effec-

tive control [13, 21].

Image translation mostly imposes the requirement of

aligned or similar domains for texture or appearance trans-

form. For example, in style transfer, the output image gener-

ally shares the same content with input. The building blocks

of these networks, such as convolution/deconvolution layers

and activation functions, are spatially corresponding. As

shown in Fig. 1(a)-(d), visual artifacts, such as ghosting,

could appear when nonsmile and smile faces are not geo-

metrically aligned in image space.

In this paper, we take advantage of geometric correspon-

dence in appearance transform. Taking the smiling face as

an example in Fig. 1(e)-(f), decent results can be produced

Project page: https://github.com/mikirui/ADSPM

(a) Input (b) StarGAN [4] (c) CycleGAN [42]

(d) MUNIT [8] (e) Ours (SPM) (f) Ours (SPM + R)

Figure 1. Examples of nonsmile-to-smile faces transform, where

“Ours (SPM)” shows our deformed result and “Ours (SPM + R)”

indicates our final result after further refinement.

by applying geometric transform only, and they are better

when a small refinement network follows. This architecture

can greatly reduce visual artifacts mentioned above. This

paper tackles the following three issues.

Single Image Deformation Although several

previous methods [37, 40, 35] employ various

flow/warping/deformation by estimating motion, they

are different from what we need in two aspects. First,

traditional motion field estimation requires a pair of images

to construct dense pixel correspondence, while in our

task only one image is available. Second, motion fields

for deformation are conditioned by examples, where one

input image may need various motion constrained by target

examples.

Different from all these settings, our goal is more like

estimation of natural tendency of input images. We term

it spontaneous motion (SPM) to distinguish from ordinary

optical flow. This new tool adds a new dimension to image

translation by introducing unpaired geometric transform. It

also enables new ways of visualization, and finds interesting

applications (described in Sec. 4.1). For example, in our

framework, SPM for different target domains can be viewed

as motion basis (Fig. 5), and linearly combining SPM basis
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enables convenient geometric edit (Fig. 7).

High Ill-posedness Our framework is trained with neither

paired data nor ground-truth motion field across domains.

Cycle reconstruction loss and learning common latent space

were considered to deal with unpaired data [42, 24]. Our

geometric transform estimation across domains is even

more ill-posed, since this set-to-set motion is more ambigu-

ous compared to image-to-image correspondence given no

ground-truth motion. Our spontaneous motion module ap-

plies two domain classifiers for translation result generation

and motion estimation.

Inevitable Errors Estimated motion fields are inevitably

with errors due to large prediction freedom, missing-motion

area to be filled (teeth of smiling faces are area missing in

non-smile faces), and fine texture requirement for high qual-

ity results. Our system has a refinement module to fix re-

maining visual artifacts with an attention mask to filter out

unnecessary changes on original images.

Our contributions are as follows. 1) We propose an end-

to-end unpaired image translation system considering geo-

metric deformation. 2) A conditional spontaneous motion

estimation module, along with domain classifiers and a re-

finement step, to boost performance. 3) Our new framework

achieves promising results in image translation, especially

for unaligned scenarios.

2. Related Work

Unpaired Image Translation Several unsupervised im-

age translation methods were proposed. By introducing

cycle-consistency loss for reconstruction, methods of [42,

41, 18] train the translation network across two domains

without paired data. They train two separate networks for

bidirectional image generation between source and target

domains. Methods of [4, 30] extend the framework by intro-

ducing additional conditions to generate images in multiple

domains. Another stream of research [25, 24, 34, 38, 28]

is based on the assumption that images in source and tar-

get domains share the same latent space and in [13, 21],

style and content are disentangled to control generated im-

age style. They successfully translate images across do-

mains. Because geometric relationship between domains is

not considered, data that is not aligned or structurally very

different cannot be well dealt with.

Geometry-Aware Image Translation There exists work

to build geometric relationship during image transla-

tion/generation. In [8, 27], geometric inconsistency be-

tween domains is mitigated with designed discriminator

or losses. We note the generators are still composed

of convolution-based blocks, which limit the generation

power. Methods of [6, 37, 7, 40] estimate correspondence

between two images. Dong et al. [6] relied on human body

parsing, while Geng et al. [7] generated dense correspon-

dence based on face landmarks. Methods of [37, 40] di-

rectly learn dense correspondence between two images. For

these methods, paired reference images are needed to train

or test, which does not fit semantic-level set-to-set transfor-

mation. Cao et al. [1] added another network for landmark

learning; it cannot be trained in an end-to-end manner.

Our method is different. We do not need reference im-

ages and our framework is designed in an end-to-end way.

Besides, the estimated spontaneous motion is conditioned

on source domain content and target domain attributes,

which can achieve semantic-level geometric transformation

and generation.

3. Proposed Method

Given an image in source domain Is ∈ R
H×W×3 and

target domain indicator ct ∈ {0, 1}N (N is the total num-

ber of attributes), e.g. smiling, angry, and surprising. Our

goal is to generate a high-quality image It with attribute

ct while keeping the identity of Is. Our framework resem-

bles previous generative models by iteratively training gen-

erator/discriminator networks. However, in order to better

handle geometric transform, we incorporate two new mod-

ules in generator G as spontaneous motion module SPM

(Sec. 3.1) and refinement module R (Sec. 3.2). Two types

of classifiers are proposed as new losses to facilitate train-

ing. We extend our framework to high-resolution image

generation (512× 512) with special designs (Sec. 3.3). Our

overall framework is depicted in Fig. 2. We elaborate on

each module in the following.

3.1. Spontaneous Motion Module

According to the analysis in Sec. 1, our spontaneous mo-

tion module aims to predict motion field w based on input

image Is and target indicator ct. We use an encoder-decoder

network structure for its powerful fitting ability. For the de-

sign of this module, we consider the following facts.

Motion Field Decoding In conventional image regres-

sion problems [14, 35, 5], activation functions in the final

layer is usually not applied, in order to leave the output un-

bounded. This is because ground-truth pixel values are al-

ways in range [0, 1]H×W×3, which supervise and prevent

network output from divergence. In our motion estimation

task, contrarily the output motion values can be largely var-

ied, and the network can only be trained under indirect su-

pervision, making convergence an issue, as verified in our

experiments.

In order to mitigate this problem, we utilize tanh() as the

last activation function to limit output in [−1, 1] rather than

[−∞,+∞]. Moreover, we introduce an empirical multi-

plier λw to get the final w. This seemingly tricky coefficient

is actually quite reasonable in many tasks, such as face edit-
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Figure 2. Our overall framework. Our generator G contains spontaneous motion module SPM and refinement module R. Two domain

classifiers Dw and Dc are utilized to drive generation of final results and motion fields under different conditions, while Dd is utilized to

distinguish real images from fake ones.

ing, since only local deformation is needed. In our paper,

we set λw to [0.1, 0.2] for different datasets. Visualization

of our estimated motion field with different targets is given

in Fig. 5.

Motion Field Direction To deform input to the target

image, backward motion is usually considered as a vec-

tor from the target to source points [14, 6, 33]. However,

such motion representation may not be suitable for convo-

lution/deconvolution layer networks with aligned operators,

since the representation is aligned to the unknown deformed

image rather than the input one. Forward motion can mit-

igate the problem to some extent due to the alignment be-

tween input and forward motion. But deforming with for-

ward warping may bring holes and more artifacts than with

the backward one.

We experiment with these two solutions and adopt back-

ward motion representation for deforming, because its re-

sult contains less artifacts and is more stable. Denoting im-

age coordinates as i = (x, y)T , the set of valid image coor-

dinates as V , input image as Is(i), deformed image as Id(i)
and motion field as w(i) = (u(i), v(i))T , we formulate the

deformation step with bilinear interpolation as

Id(i) =

{
Ĩs(i+ w(i)), if i+ w(i) ∈ V ,

0, otherwise.
(1)

where Ĩs(i) is bilinear interpolation operator.

As for the network structure of spontaneous motion mod-

ule, we construct the encoder with 3 stride-2 convolution

layers (each followed by instance normalization and ReLU)

and 6 residual blocks to extract 8× down-sampled feature

map f . A decoder then processes and up-samples f by 3

deconvolution layers to a 2-channel motion field with the

same size as the input image. In addition, high-level fea-

ture f is utilized for attention mask learning, which will be

described in Sec. 3.2.

To generate different dense motion fields for target in-

dicators, we design two classifiers as constraints for both

generation results and motion field estimation.

Domain Classifiers We design image and motion domain

classifiers in training. For image classifier Dc, like that of

[4], we add Dc on top of discriminator D as a constraint to

classify the generated images into target domain c. During

training on D, real image Is and its attribute cs are utilized

to train Dc with loss Ld
cr. At the stage of training generator

G, Dc is fixed and the classification loss Lg
cr of generated

images is utilized to optimize G. The losses Ld
cr and Lg

cr

are defined as

Ld
cr = EIs,cs [−logDc(cs|Is)] (2)

Lg
cr = EIs,ct [−logDc(ct|G(Is, ct))] (3)

Although the classifier for generation results can guide the

prediction of motion, we note a constraint on motion helps

it more directly and better – motion fields for one domain

(such as a face expression exemplified later in Fig. 5) have

common features. It does not vary much even with differ-

ent input images. With this observation, we design a classi-

fier Dw for motion fields, which classifies different motion

fields into categories according to the target condition. It

makes motion under different conditions share similar pat-

terns and thus reduces bias or noise in generation steps. The

classification loss for this classifier is formulated as

Lcw = EIs,ct [−logDw(ct|SPM(Is, ct), Is)]. (4)

3.2. Refinement Module

The deformed image Id is further refined to reduce arti-

facts and enhance textural details. Specifically, two compo-

nents are used.
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Refinement with Residual Learning We employ a re-

finement sub-network after deforming image Id. Instead

of directly learning in images space, we learn the resid-

ual r between deformed image and the unknown target, i.e.

It = Id + r, since to learn residual for a well deformed im-

age is easier and more reliable. As for the network structure,

n residual blocks [10] are sequentially concatenated without

any downsample operation. The residual blocks are used for

finer structure update. Thus we do not shrink images spa-

tially, and instead take multiple stacked residual blocks to

ensure final effect. In our experiments, we set n = 12 to

balance performance and efficiency.

Attention Mask In image translation, generally only es-

sential regions need to be updated (e.g. only mouth and its

surrounding are changed when transforming neutral faces

to smiling ones). We propose learning an attention mask m,

which marks important regions. The results are denoted as

It = Id + r ·m.

Specifically, as mentioned in Sec. 3.1, we obtain down-

sampled feature map f in module SPM . f catches high-

level semantic information. We utilize it for attention mask

learning. We build the attention mask module M with 3 de-

convolutional layers to up-sample f into a 1-channel mask

m, the same size as the input. Sigmoid layer is used as the

final activation layer to range the output mask in [0, 1].
Directly learning an attention mask without any addi-

tional constraints is difficult, due to possible trivial solution

of a mask with all-region selected. To avoid this problem,

we introduce a regularization term Lm to enforce sparsity

of masks in L1-norm:

Lm =
1

CHW

C∑

i=1

H∑

j=1

W∑

k=1

|mijk|, (5)

where C, H and W are channel number, height and width

of the mask respectively. The loss forces the attention mask

to focus on the most important region.

3.3. Higher Resolution

To generate high resolution (HR) image by a single gen-

erator is difficult. Previous work [16, 23, 17] adopted

coarse-to-fine or multi-stage training strategies. By incor-

porating motion estimation and refinement modules, we ex-

tend previous coarse-to-fine strategies to a pipeline with ex-

tra priors.

Priors and Adaptation Previous coarse-to-fine strategies

are usually applied to final output, i.e. using generated low-

res (LR) images to guide HR generation. In our framework,

we have more useful clues from LR, i.e. motion field wl for

deformation, residual rl for refinement, mask ml for atten-

tion in low-resolution form. We utilize them to facilitate HR

result generation.

We first train our initial framework with LR images I ls
until convergence. For higher resolution results, we feed

in HR image Ihs and start from the well-trained LR frame-

work while the weight of LR model is updated simultane-

ously in this stage. After obtaining motion field wl, resid-

ual rl, attention mask ml from LR generator with down-

sampled I ls from Ihs , we up-sample them to produce coarse

results, i.e. U(wl), U(rl) and U(ml) with the same size as

HR images Ihs . We further incorporate three light-weighted

enhancement networks (Tw, Tr and Tm) respectively, each

only contains two convolutional layers and a residual block.

Finally, we estimate motion field wh as

wh = U(wl) + Tw(U(wl)). (6)

Bilinear upsampling is used with the same process to obtain

residual rh and attention mask mh. With these intermediate

results, we deform Ihs by wh to get Ihd and then refine Ihd to

yield final output Iht = Ihd + rh ∗mh.

Resolution Adaptive Discriminator During training, the

discriminators are designed as follows. In the LR-image

training stage, we only train the LR image discriminator Dl.

We set real image I ls as the positive sample while the gener-

ated I lt is the negative one. In the HR image training stage,

for Dl, we have down-sampled I ls as the positive sample

and generated LR image I lt as the negative one. Besides,

we down-sample generated HR image Iht to LR and feed

them to Dl as another type of negative samples. As for Dh,

Ihs and final generation result Iht are positive and negative

samples respectively. Dh share similar network structure as

Dl, and yet with more convolution layers.

3.4. Other Loss Functions

Adversarial Loss Ordinary generative adversarial loss is

set for G and Dd formulated as

Ladv =EIs [logDd(Is)]+

EIs,ct [log(1−Dd(G(Is, ct)))].
(7)

Reconstruction Loss Similar to [4, 42], we reconstruct

images in cycle flow. With source image Is, generated im-

age It, and source image attribute cs, we formulate the re-

construction loss Lrec as

Lrec = EIs,ct,cs‖Is −G(G(Is, ct), cs)‖1. (8)

Total Loss The final loss function for generator G is

Lg =λcr · L
g
cr + λcw · Lcw+

λm · Lm + λadv · Ladv + λrec · Lrec.
(9)

The loss function for D is

Ld = λcr · L
d
cr − λadv · Ladv. (10)

In our experiments, we set λcr, λm, and λadv all to 1.0, and

set λrec and λcw to 10.0 and 0.5 respectively.
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Input SPM SPM +R Ground Truth

Figure 3. Results on a synthetic dataset. SPM indicates results

generated by spontaneous motion module, and SPM+R denotes

final refinement results.

4. Experiments

We conduct experiments on both CelebA [26] and RaFD

[20]. CelebA contains 200K celebrity images and 40 at-

tributes for each image with resolution 218 × 178. We uti-

lize CelebA-HQ [16] in resolution 1024 × 1024 for high-

res image usage. To demonstrate the effectiveness of our

framework, we select attributes with geometric deforma-

tion, i.e. ‘Smiling’, ‘Arched eyebrow’, ‘Big Nose’, and

‘Pointy nose’ as condition to train our framework. RaFD is

a smaller dataset with 67 identities, each displaying 8 emo-

tional expressions, 3 gaze directions and 5 camera angles.

We only train on frontal faces for robustness.

We implement the system on PyTorch [29] and run it on

a TITAN Xp card. During our two-stage training, we first

train on LR framework with 128 × 128 images and batch

size 16 for 1 × 105 iterations. Then we train our extended

network on higher resolutions 256× 256 or 512× 512 with

batch size 8 for another 2 × 105 iterations. We use Adam

[19] with learning rate 1e-4 to optimize our framework.

4.1. Analysis

Effectiveness of SPM Module We first visualize learned

SPM. We experiment with an extreme case to learn image

translation between a set of squares and circles. The posi-

tion, color and size are random. The results in Fig. 3 demon-

strate that our SPM module produces reasonable shapes.

Remaining visual artifacts are further reduced by the refine-

ment module.

Roles of Different Modules For the spontaneous motion

module, we aim to generate reasonable geometric move-

ment, e.g. lips stretched for smiling faces. For the refine-

ment module, it further suppresses noise and adds more

texture on deformation results to make images look more

realistic. A few intermediate and final ‘smiling’ results

produced from these modules under different resolutions

(128× 128 to 256× 256) are shown in Fig. 6. Effects from

these two stages are clearly and respectively demonstrated.

Besides, to further study the roles of different modules,

Input No M No R Full

Figure 4. Ablation study on important modules. No M indicates

no spontaneous motion estimation, No R refers to no refinement.

Full indicates our final full framework.

we train our framework with no spontaneous motion mod-

ule (No M) and no refinement module (No R) respectively

to see how results are altered. We show results in Fig. 4

and the quantitative comparison in Tab. 1. Without motion

estimation, the geometric shape of images are wrong. The

effect is like pasting patterns from the target domain to spe-

cific regions. Without the final refinement, results may con-

tain distortions (right face in the 1st example) and artifacts

(nose in the 2nd sample). Images also lack details to be a

smiling face.

These experiments manifest the usefulness of both mod-

ules and our framework leverages their advantages.

SPM Field in Different Conditions Motion patterns for

the same face expression are generally similar even with

different input images. For example, non-smiling to smil-

ing faces need to ‘stretch’ pixels of lips. Taking the RaFD

dataset as an example, motion fields for different emotions

are visualized in Fig. 5. They tell different parts of faces

required to be updated to achieve ideal facial expression.

Spontaneous Motion Field Basis Combination Trans-

formation varies when applying different motions to the

same image. Since motion fields are independent, we can

combine motion fields with simple addition operations. By

adding differently learned motion fields, we achieve rough

expression combination without re-training the network,

under the condition that the combined transformation does

not conflict with each other. We demonstrate the effect of

combination in Fig. 7. The difference in generated micro-

expression is very useful for fine face attribute creation.

4.2. Comparisons

We compare with several prevalent methods in image

translation. They are StarGAN [4], CycleGAN [42], MU-

NIT [13] and Ganimorph [8]. StarGAN [4] is the first

framework for multi-condition image translation. Cycle-

GAN [42] and MUNIT [13] are important methods in image

translation. Ganimorph [8] is a geometry-aware framework
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Input Angry Contemptuous Disgusted Fearful Happy Sad Surprised

Figure 5. Spontaneous motion field visualization under different conditions, where “Input” denotes neutral faces (best viewed in color).

Input SPMl SPMh Rl Rh w

Figure 6. Intermediate and final results output from the higher resolution framework, where SPMl and SPMh refer to LR and HR

deformation results. Rl and Rh are LR and HR refinement results. w indicates corresponding high resolution motion fields.

based on CycleGAN [42], which is another solution to geo-

metric transformation across domains in image translation.

4.2.1 Visual Comparison

We conduct experiments on the two datasets for com-

parative evaluation. On the CelebA dataset, we treat

each attribute x transformation as a two-domain translation

from non-x to x. Fig. 8 shows that CycleGAN, MUNIT,

and Ganimorph cannot capture domain information when

the attribute transformation is subtle, like ‘Big Nose’ and

‘Pointy Nose’. They tend to reconstruct the input image in-

stead. Both StarGAN and our method handle such subtle

domain translation thanks to the domain classifiers.

Our method better tackles geometry variation and image

misalignment. For other attributes like ‘smiling’, though

all previous methods transform source images to target do-

main, various types of geometric deformation lead to qual-

ity difference on results, causing noticeable ghosting or ar-

tifacts. Our method, contrarily, alleviates this issue.

For the RaFD dataset (Fig. 9), similarly, StarGAN han-

dles domain transformation and yet are with room to im-

prove details and geometric shapes, especially for the

‘happy’ expression. Our framework satisfies target condi-

tions better thanks to our explicit spontaneous motion mod-

ule and our two domain classifiers for training.

4.2.2 Quantitative Comparison

Distribution Discrepancy To evaluate generated faces

quantitatively, we extract features with a deep face feature

extractor VGGFace2 [2] and use FID [12] to measure fea-

ture distribution discrepancy between real and generated

faces. For each attribute, we first extract feature Fr from
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Input Ms Me Mn Ms +Me Ms +Mn Ms +Me +Mn

Figure 7. Motion field basis combination. First row: motion fields under different conditions. Second row: deformation results by applying

corresponding motion fields. Ms: ‘smiling’ transform, Me: ‘arched eyebrow’ transform, Mn: ‘pointy nose’ transform. Ms + Me,

Ms +Mn, Ms +Me +Mn are with two or three corresponding motion field combination.
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Input StarGAN [4] CycleGAN [42] Ganimorph [8] MUNIT [13] Ours

Figure 8. Visual quality comparison on the CelebA dataset.

real faces with such an attribute in test set, and then ex-

tract features Fgi
from translated images (to this attribute)

by each method to be compared.

We calculate FID between Fr and Fgi
for each method.

Results in Tab. 1 demonstrate that our framework achieves

the lowest FID score among all methods, which indicates

that the feature distribution of our generated images is clos-

est to that of real images.

Classification Accuracy Following [4], we compute the

classification accuracy of facial expression on generated

images. We first train a facial expression classifier with
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Figure 9. Visual quality comparison on different expressions on the RaFD dataset.

Methods / (×1e3) S ↓ BN ↓ PN ↓ AE ↓ Acc.(%) ↑

StarGAN 3.676 7.875 6.933 3.751 95.67

CycleGAN 4.011 5.262 4.886 4.171 91.23

Ganimorph 4.689 5.645 5.129 5.570 86.25

MUNIT 5.189 5.551 4.761 5.271 81.43

Ours (No M) 3.224 6.051 5.682 4.667 88.29

Ours (No R) 3.022 6.505 5.894 3.911 90.96

Ours (Full) 2.907 5.137 4.704 3.678 97.85

Real - - - - 98.75

Table 1. Quantitative comparison in terms of distribution discrep-

ancy and classification accuracy. For each facial attribute, we com-

pare FID scores among methods. “S”, “BN”, “PN” and “AE” indi-

cate Smiling, Big Nose, Pointy Nose and Arched Eyebrow respec-

tively, while “Acc.” refers to classification accuracy.

ResNet-18 [11] on the RaFD dataset with the train set. We

achieve near-perfect accuracy of 98.75% on test set. Then

we apply this well-trained classifier to compute classifica-

tion accuracy on synthesized images output from different

methods. The results in Table 1 indicate that we achieve the

best results in terms of classification accuracy. StarGAN

works also very well benefited by its domain classification

framework.

4.2.3 User Study

We also conduct user study for method comparison among

101 subjects, with 21 groups of generated samples. Given

an input image, subjects are instructed to choose the best

Methods S (%) BN (%) PN (%) AE (%)

StarGAN 10.17 25.66 16.83 24.24

CycleGAN 14.41 8.85 14.85 28.79

Ganimorph 5.93 5.31 6.93 1.52

MUNIT 11.44 7.96 11.88 3.03

Ours 58.05 52.21 49.50 42.42

Table 2. User study for different attribute translation among meth-

ods. The value refers to the ratio of selecting as best item.

item based on quality of attribute transfer, perceptual real-

ism, and preservation of identity. The results in Table 2

demonstrate that our method performs best among different

facial attribute transformation methods, while StarGAN [4]

performs well for subtle facial attribute (e.g. Big Nose)

transformation and CycleGAN [42] yields decent output on

obvious attributes (e.g. Arched Eyebrow, Smiling).

5. Conclusion

In this paper, we have introduced geometric deformation

into image translation frameworks. We proposed sponta-

neous motion estimation module followed by refinement to

fix remaining artifacts in deformation results. Extensive ex-

periments manifest the effectiveness of our proposed frame-

work. It achieves promising results for image translation

and enables new visualization and applications. Our method

may also shed lights on geometric-aware image translation.
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