
Delving into Robust Object Detection from Unmanned Aerial Vehicles:

A Deep Nuisance Disentanglement Approach

Zhenyu Wu1∗, Karthik Suresh1∗, Priya Narayanan2, Hongyu Xu3†, Heesung Kwon2, Zhangyang Wang1

1Texas A&M University 2U.S. Army Research Laboratory 3University of Maryland

Abstract

Object detection from images captured by Unmanned

Aerial Vehicles (UAVs) is becoming increasingly useful. De-

spite the great success of the generic object detection meth-

ods trained on ground-to-ground images, a huge perfor-

mance drop is observed when they are directly applied to

images captured by UAVs. The unsatisfactory performance

is owing to many UAV-specific nuisances, such as varying

flying altitudes, adverse weather conditions, dynamically

changing viewing angles, etc. Those nuisances constitute

a large number of fine-grained domains, across which the

detection model has to stay robust. Fortunately, UAVs will

record meta-data that depict those varying attributes, which

are either freely available along with the UAV images, or

can be easily obtained. We propose to utilize those free

meta-data in conjunction with associated UAV images to

learn domain-robust features via an adversarial training

framework dubbed Nuisance Disentangled Feature Trans-

form (NDFT), for the specific challenging problem of ob-

ject detection in UAV images, achieving a substantial gain

in robustness to those nuisances. We demonstrate the ef-

fectiveness of our proposed algorithm, by showing state-of-

the-art performance (single model) on two existing UAV-

based object detection benchmarks. The code is available

at https://github.com/TAMU-VITA/UAV-NDFT.

1. Introduction

Object detection has been extensively studied over the

decades. While most of the promising detectors are able

to detect objects of interest in clear images, such images

are usually captured from ground-based cameras. With

the rapid development of machinery technology, Unmanned

Aerial Vehicles (UAVs) equipped with cameras have been

increasingly deployed in many industrial application, open-

ing up a new frontier of computer vision applications in

security surveillance, peacekeeping, agriculture, deliveries,

aerial photography, disaster assistance [40, 25, 3, 14, 44],

etc. One of the core features for the UAV-based applications

is to detect objects of interest (e.g., pedestrians or vehicles).

∗The first two authors contribute equally to this paper.
†Currently works at Apple Inc.

Despite high demands, object detection from UAV is yet

insufficiently investigated. In the meantime, the large mo-

bility of UAV-mounted cameras bring in greater challenges

than traditional object detection (using surveillance or other

ground-based cameras), such as but not limited to:

• Variations in altitude and object scale: The scales of

objects captured in the image are closely affected by

the flying altitude of UAVs. For example, the image

captured by a DJI Inspire 2 series flying at 500 me-

ters altitude [2] will contain very small objects, which

are very challenging to detect and track. In addition,

a UAV can be operated in a variety of altitudes while

capturing images. When shooting in lower altitudes,

its camera can capture more details of objects of inter-

est. When it flies to higher altitudes, the camera can in-

spect a larger area and more objects will be captured in

the image. As a consequence, the same object can vary

a lot in terms of scale throughout the captured video,

with different flying altitudes during a single flight.

• Variations in view angle: The mobility of UAVs leads

to video shoots from different and free angles, in ad-

dition to the varying altitudes. For example, a UAV

can look at one object from front view, to side view, to

bird view, in a very short period of time. The diverse

view angles cause arbitrary orientations and aspect ra-

tios of the objects. Some view angles such as bird-view

hardly occur in traditional ground-based object detec-

tion. As a result, the UAV-based detection model has

to deal with more different visual appearances of the

same object. Note that more view angles can be pre-

sented when altitudes grow higher. Also, wider view

angles often lead to denser objects in the view.

• Variations in weather and illumination: A UAV op-

erated in uncontrolled outdoor environments may fly

under various weather and lighting conditions. The

changes in illumination (daytime versus nighttime)

and weathers (e.g. sunny, cloudy, foggy or rainy), will

drastically affect the object visibility and appearance.

Most off-the-shelf detectors are trained with usually less

varied, more restricted-view data. In comparison, the abun-

dance of UAV-specific nuisances will cause the resulting
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(a) Baseline F-RCNN (b) NDFT-Faster-RCNN (A)

(c) NDFT-Faster-RCNN (A+V) (d) NDFT-Faster-RCNN(A+V+W)

Figure 1: Examples showing the benefit of the proposed NDFT framework for object (vechicle) detection on the UAVDT

dataset: starting from (a) Faster-RCNN [39] baseline, to gradually (b) disentangling the nuisances of altitude (A); (c) disen-

tangling the nuisances of both altitude (A) and view angles (V); and (d) disentangling all the nuisances of altitude (A), view

angles (V), and weather (W). The detection performance gradually improves from (a) to (d) with disentanglement on more

nuisances (red rectangular boxes denote new correct detections beyond the baseline).

UAV-based detection model to operate in a large number of

different fine-grained domains. Here a domain could be

interpreted as a specific combination of nuisances: for ex-

ample, the images taken at low-altitude and daytime, and

those taken the high-altitude and nighttime domain, consti-

tute two different domains. Therefore, our goal is to train

a cross-domain object detection model that stays robust to

those massive number of fine-grained domains. Existing

potential solutions include data augmentation [1, 13], do-

main adaption [34, 8], and ensemble of expert models [26].

However, neither of these approaches are easy to generalize

to multiple and/or unseen domains [34, 8], and they could

lead to over-parameterized models which is not suitable for

UAV on-board deployments [1, 13, 26].

A (Almost) Free Lunch: Fine-Grained Nuisance Anno-

tations. In view of the above, we cast UAV-based object

detection problem as a cross-domain object detection prob-

lem with fine-grained domains. The object types of inter-

est sustain across domains; such task-related features shall

be preserved and extracted. The above UAV-specific nui-

sances constitute the domain-specific nuisances, that should

be eliminated for transferable feature learning. For UAVs,

major nuisance types are well recognized, e.g., altitude, an-

gle and weather. More Importantly, in the specific case of

UAVs, those nuisances annotations could be easily obtained

or even freely available. For example, a UAV can record

its flying altitudes as metadata by GPS, or more accurately,

by a barometric sensor. For another example, weather in-

formation is easy to retrieve, since with each UAV flight’s

time-stamp and spatial location (or path), one can straight-

forwardly obtain the weather of specific time/location.

Motivated by those observations, we propose to learn an

object detection model that maintains its effectiveness in ex-

tracting task-related features while eliminating the recog-

nized types of nuisances, across different domains (e.g., al-

titudes/angles/weathers). We take advantage of the free (or

easy) access to the nuisance annotations. Based on them, we

are the first to adopt an adversarial learning framework, to

learn task-specific, domain-invariant features by explicitly

disentangling task-specific and nuisance features in a su-

pervised way. The framework, dubbed Nuisance Disentan-

gled Feature Transform (NDFT), gives rise to highly robust

UAV-based object detection models, that can be directly ap-

plicable to not only domains in training, but also more un-

seen domains, without needing any extra effort of domain

adaptation or sampling/labeling. Experiments on two real

UAV-based object detection benchmarks suggest the state-

of-the-art effectiveness of NDFT.
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2. Related Works

2.1. Object Detection: General and UAV­Specific

Object detection has progressed tremendously, partially

thanks to established benchmarks (i.e. MS COCO [29] and

PASCAL VOC [15]). There are primarily two main streams

of approaches: two-stage detectors and single-stage detec-

tors, based on whether the detectors have proposal-driven

mechanism or not. Two stage detectors [18, 23, 17, 39, 10,

51, 52] contains region proposal network (RPN) to first gen-

erate region proposals, and then extract region-based fea-

tures to predict the object categories and their correspond-

ing locations. Single-stage detectors [36, 37, 38, 31] apply

dense sampling windows over object locations and scales,

and usually achieved higher speed than two-stage ones, al-

though often at the cost of (marginal) accuracy decrease.

Aerial Image-based Object Detection A few aerial im-

age datasets (i.e. DOTA [49], NWPU VHR-10 [9], and

VEDAI [35] ) were proposed recently. However, those

above datasets only contain geo-spatial images (e.g., satel-

lite) with bird-view small objects, which are not as diverse

as UAV-captured images with greatly more varied altitudes,

poses and weathers. Also, the common practice to detect

objects from aerial images remains still to deploy off-the-

shelf ground-based object detection models [21, 33].

Public benchmarks were unavailable for specifically

UAV-based object detection until recently. Two datasets,

UAVDT [12] and VisDrone2018 [54], were released to ad-

dress this gap. UAVDT consists of 100 video sequences

(about 80k frames) captured from UAVs under complex

scenarios. Moreover, it also provides full annotations for

weather conditions, flying altitudes, and camera views in

addition to the ground truth bounding box of the target ob-

jects. VisDrone2018 [54] is a large-scale UAV-based ob-

ject detection and tracking benchmark, composed of 10,209

static images and 179,264 frames from 263 video clips.

Detecting Tiny Objects A typical ad-hoc approach to de-

tect tiny objects is through learning representations of all

the objects at multiple scales. This approach is however

highly inefficient with limited performance gains. [7] pro-

posed a super-resolution algorithm using coupled dictionary

learning to transfer the target region into high resolution to

“augment” its visual appearance. [47, 27, 30] proposed to

internally super-resolve the feature maps of small objects to

make them resemble similar characteristics as large objects.

SNIP [42] showed that CNNs were not naturally robust to

the variations in object scales. It proposed to train and test

detectors on the same scales of an image pyramid, and se-

lectively back-propagate the gradients of object instances

of different sizes as a function of the image scale during

the training stage. SNIPER [43] further processed context

regions around ground-truth instances at different appropri-

ate scales to efficiently train the detector at multiple scales,

improving the detection of tiny object detection more.

2.2. Handling Domain Variances

Domain Adaptation via Adversarial Training Adversar-

ial domain adaptation [16] was proposed to reduce the do-

main gap by learning with only labeled data from a source

domain plus massive unlabeled data from a target domain.

This approach has recently gained increased attention in the

detection fields too. [46] learned robust detection mod-

els to occlusion and deformations, through hard positive

examples generated by an adversarial network. [8] im-

proved the cross-domain robustness of object detection by

enforcing adversarial domain adaption on both image and

instance levels. [5] introduced a Siamese-GAN to learn

invariant feature representations for both labeled and un-

labeled aerial images coming from two different domains.

CyCADA [24] unified cycle-consistency with adversarial

loss to learn domain-invariance. However, these domain

adaption methods typically assume one (ideal) source do-

main and one (non-ideal) target domain. The possibility

of generalizing these methodologies to handling many fine-

grained domains is questionable. Once a new unseen do-

main emerges, domain adaptation needs explicit re-training.

In comparison, our proposed framework does not assume

any ideal reference (source) domain, but rather tries to ex-

tract invariant features shared by many different “non-ideal”

target domains (both seen and unseen), by disentangling

domain-specific nuisances. The setting thus differs from

typical domain adaptation and generalizes to task-specific

feature extraction in unseen domains naturally.

Data Augmentation, and Model Ensemble Compared to

the considerable amount of research in data augmentation

for classification [16], less attention was paid on other tasks

such as detection [1]. Classical data augmentation relies on

a limited set of pre-known factors (such as scaling, rotation,

flipping) that are easy to invoke, and adopt ad-hoc, minor

perturbations that are unlikely to change labels, in order to

gain robustness to those variations. However, UAV images

will involve a much larger variety of nuisances, many of

which are hard to “synthesize”, e.g., images from differ-

ent angles. [13, 53] proposed learning-based approaches to

synthesize new training samples for detection. But they fo-

cused on re-combining foreground objects and background

contexts, rather than re-composing specific nuisance at-

tributes. Also, the (much) larger augmented dataset adds to

training burden and may cause over-parameterized models.

Another methodology was proposed in [26]. To capture

the appearance variations caused by different shapes poses

and viewing angles, it proposed a Multi-Expert R-CNN

consisting of three experts, each responsible for objects with

a particular shape: horizontally elongated, square-like, and

vertically elongated. This approach has limitations as the

model ensemble quickly becomes too expensive as more

different domains are involved. It further cannot general-

ize to unknown or unseen domains.
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Feature Disentanglement in Generative Models Feature

disentanglement [50] leads to non-overlapped groups of

factorized latent representations, each of which would prop-

erly describe corresponding information to particular at-

tributes of interest. It has mostly been applied to genera-

tive models [11, 41], in order to disentangle the factors of

variation from the content in the latent feature space. In the

image-to-image translation, a recent work [19] disentangled

image representations into shared parts for both domains

and exclusive parts for either domain. NDFT extends the

idea of feature disentanglement to learning cross-domain

robust discriminative models. Due to the different applica-

tion scope from generative models, we do not add back the

disentangled components to reconstruct the original input.

3. Our Approach

3.1. Formulation of NDFT

Our proposed UAV-based cross-domain object detection

can be characterized as an adversarial training framework.

Assume our training data X is associated with an Object de-

tection task O, and a UAV-specific Nuisance prediction task

N . We mathematically express the goal of cross-domain

object detection as alternatively optimizing two objectives

as follows (γ is a weight coefficient):

min
fO,fT

LO(fO(fT (X)), YO)− γLN (fN (fT (X)), YN ),

min
fN

LN (fN (fT (X)), YN )
(1)

In (1), fO denotes the model that performs the object detec-

tion task O on its input data. The label set YO are object

bounding box coordinates and class labels provided on X .

LO is a cost function defined to evaluate the object detec-

tion performance on O. On the other hand, the labels of the

UAV-specific nuisances YN come from metadata along with

X (e.g., flying altitude, camera view or weather condition),

and a standard cost function LN (e.g., softmax) is defined

to evaluate the task performance on N . Here we formu-

late nuisance robustness as the suppression of the nuisance

prediction accuracy from the learned features.

We seek a Nuisance Disentangled Feature Transform

(NDFT) fT by solving (1), such that

• The object detection task performance LO is mini-

mally affected over fT (X), compared to using X .

• The nuisance prediction task performance LN is max-

imally suppressed over fT (X), compared to using X .

In order to deal with the multiple nuisances case, we ex-

tend the (1) to multiple prediction tasks. Here we as-

sume k nuisances prediction tasks associated with label sets

Y 1

N , ..., Y k
N . γ1, ..., γk are the respective weight coefficients.

The modified objective naturally becomes:

min
fO,fT

LO(fO(fT (X)), YO)−
k

∑

i=1

γiLN (f i
N (fT (X)), Y i

N ),

min
f1

N
,...,fk

N

LN (f i
N (fT (X)), Y i

N ) (2)

fT , fO and f i
N s can all be implemented by deep networks.

Interpretation as Three-Party Game NDFT can be de-

rived from a three-competitor game optimization:

max
fN

min
fO,fT

LO(fO(fT (X)), YO)− γLN (fN (fT (X)), YN )

where fT is an obfuscator, fN as a attacker, and fO as an

utilizer (adopting ML security terms). In fact, the two sub-

optimizations in (1) denote an iterative routine to solve this

unified form (performing coordinate descent between {fT ,

fO}, and fN ). This form can easily capture many other

settings or scenarios, e.g., privacy-preserving visual recog-

nition [48, 45] where fT encodes features to avoid peeps

from fN while preserving utility for fO.

3.2. Implementation and Training

Architecture Overview: NDFT-Faster-RCNN As an in-

stance of the general NDFT framework (2), Figure 2

displays an implementation example of NDFT using the

Faster-RCNN backbone [39], while later we will demon-

strate that NDFT can be plug-and-play with other more so-

phisticated object detection networks (e.g., FPN).

During training, the input data X first goes through the

NDFT module fT , and its output fT (X) is passed through

two subsequent branches simultaneously. The upper object

detection branch fO, uses fT (X) to detect objects, while

the lower nuisance prediction model fN predicts nuisance

labels from the same fT (X). Finally, the network mini-

mizes the prediction penalty (error rate) for fT , while max-

imizing the prediction penalty for fN , shown by (2).

By jointly training fT , fO and f i
N s in the above ad-

versarial settings, the NDFT module will find the optimal

transform that preserves the object detection related fea-

tures while removing the UAV-specific nuisances prediction

related features, fulfilling the goal of cross-domain object

detection that is robust to the UAV-specific nuisances.

Choices of fT , fO and fN In this NDFT-Faster-RCNN

example, fT includes the conv1 x, conv2 x, conv3 x and

conv4 x of the ResNet101 part of Faster-RCNN. fO in-

cludes the conv5 x layer, attached with a classification and

regression loss for detection. We further implement fN
using the same architecture as fO (except the number of

classes for prediction). The output of fT is fed to fO af-

ter going through RoIAlign [22] layer, while it is fed to fN
after going through a spatial pyramid pooling layer [23].

Choices of LO and LN LO is the bounding box classifica-

tion (e.g., softmax) and regression loss (e.g., smooth ℓ1) as

widely used in traditional two stage detectors. However, us-

ing −LN as the adversarial loss in the first row of (2) is not

straightforward. If we choose LN as some typical classifi-

cation loss such as the softmax, then maximizing it directly

is prone to gradient explosion. After experimenting with

several solutions such as the gradient reversal trick [16], we

decide to follow [32] to choose the negative entropy func-
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conv1

Altitude 
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View

conv2

Weather

Object Detection Branch

Nuisance Prediction Branch

Nuisance Disentangled Feature Transform

Figure 2: Our proposed NDFT-Faster-RCNN network.

Algorithm 1 Learning Nuisance Disentangled Feature Transform in UAV-based Object Detection via Adversarial Training

Given pre-trained NDFT module fT , object detection task module fO, and nuisances prediction modules f i
N s

for number of training iterations do

Sample a mini-batch of n examples {X1, · · · , Xn}
Update NDFT module fT (weights wT ) and object detection module fO (weights wO) with stochastic gradients:

∇wT∪wO

1

n

n
∑

j=1

[

LO(fO(fT (X
j)), Y j

O) +

k
∑

i=1

γiLne(f
i
N (fT (X

j)))
]

while at least one nuisance prediction task has training accuracy ≤ 0.9 do ⊲ Prevent f i
N s from becoming too weak.

Update nuisance prediction modules f i
N , . . . , fk

N (weights w1

N , . . . , wk
N ) with stochastic gradients:

∇wi

N

1

n

n
∑

j=1

k
∑

i=1

LN (f i
N (fT (X

j)), Y j
N )

Restart f i
N , . . . , fk

N every 1000 iterations, and repeat Algorithm 1 from the beginning. ⊲ Alleviate overfitting.

tion of the predicted class vector as the adversarial loss, de-

noted as Lne. Minimizing Lne will encourage the model

to make “uncertain” predictions (equivalently, close to uni-

form random guesses) on the nuisances.

Since we replace LN with Lne in the first objective in

(2), it no longer needs YN . Meanwhile, the usage of LN

and YN remains unaffected in the second objective of (2).

LN and YN are used to pre-train f i
N s at the initialization and

keep f i
N s as “sufficiently strong adversaries” throughout the

adversarial training, in order to learn meaningful fT that can

generalize better. Our final framework alternates between:

min
fO,fT

LO(fO(fT (X)), YO) +
k

∑

i=1

γiLne(f
i
N (fT (X))),

min
f1

N
,...,fk

N

LN (f i
N (fT (X)), Y i

N ) (3)

Training Strategy Just like training GANs [20], our train-

ing is prone to collapse and/or bad local minima. We thus

presented a carefully-designed training algorithm with the

alternating update strategy. The training procedure is sum-

marized in Algorithm 1 and explained below.

For each mini-batch, we first jointly optimize fT and fO
weights (with f i

N s frozen), by minimizing the first objective

in (3) using the standard stochastic gradient descent (SGD).

Meanwhile, we will keep “monitering” f i
N branches: as fT

is updated, if at least one of the f i
N becomes too weak (i.e.,

showing poor predicting accuracy on the same mini-batch),

another update will be triggered by minimizing the sec-

ond objective in (3) using SGD. The goal is to “strengthen”

the nuisance prediction competitors. Besides, we also dis-

cover an empirical trick, by periodically re-setting the cur-

rent weights of f1

N , ..., fk
N to random initialization, and then

re-train them on fT (X) (with fT fixed) to become strong

nuisance predictors again, before we re-start the above al-

ternative process of fT , fO and f i
N s. This re-starting trick is

also found to benefit the generalization of learned fT [48],

potentially due to helping get out of some bad local minima.

4. Experimental Results

Since public UAV-based object detection datasets (in

particular those with nuisance annotations) are currently of

very limited availability, we design three sets of experi-

ments to validate the effectiveness, robustness, and gener-

ality of NDFT. First, we perform the main body of experi-

ments on the UAVDT benchmark [12], which provides all

three UAV-specific nuisance annotations (altitude, weather,
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(a) DE-FPN (b) NDFT-DE-FPN

Figure 3: An example showing the benefit of the proposed NDFT approach for object detection on VisDrone2018 dataset.

The blue and green rectangular boxes denote pedestrians and cars respectively. Red rectangular boxes denote new correctly

detected objects by NDFT-DE-FPN beyond the baseline of DE-FPN.

and view angle). We demonstrate the clear observation that

the more variations are disentangled via NDFT, the larger

AP improvement we will gain on UAVDT; and eventually

we achieve the state-of-the-art performance on UAVDT.

We then move to the other public benchmark, Vis-

Drone2018. Originally, the nuisance annotations were not

released on VisDrone2018. We manually annotate the nui-

sances on each image: those annotations will be released

publicly, and hopefully will be contributed as a part of Vis-

Drone. Learning NDFT gives a performance boost over the

the best single model, and leads us to the (single model)

state-of-the-art mean average precision (mAP)1 on Vis-

Drone2018 validation set2.

In addition, we study a transfer learning setting from

the NDFT learned on UAVDT, to VisDrone2018. The goal

of exploring transfer is because UAVs often come across

unseen scenarios, and a good transferability of learned fea-

tures facilitates more general usability. When detecting the

(shared) vehicles category, fT shows strong transferability

by outperforming the best single-model method currently

reported on the VisDrone2018 leaderboard [4].

4.1. UAVDT: Results and Ablation Study

Problem Setting The image object detection track on

UAVDT consists of around 41k frames with 840k bounding

boxes. It has three categories: car, truck and bus, but the

class distribution is highly imbalanced (the latter two oc-

cupy less than 5% of bounding boxes). Hence following the

convention by the authors in [12], we combine the three into

one vehicle class and report AP based on that. All frames

are also annotated with three categories of UAV-specific

nuisances: flying altitude (low, medium and high), camera

views (front-view, side-view and bird-view), and weather

1mAP on the 10 categories of objects is the standard evaluation crite-

rion on VisDrone2018.
2The top-2 models on the UAVDT leaderboard are model ensembles.

We compare with only single model solutions for fairness.

condition3(daylight, night). We will denote the three nui-

sances as A, V, and W for short, respectively.

Implementation Details We first did our best due diligence

to improve the baseline (without considering nuisance han-

dling) on UAVDT, to ensure a solid enough ground for

NDFT. The authors reported a AP of ∼20 using a Faster-

RCNN model with the VGG-16 backbone. We replace the

backbone with ResNet-101, and fine-tune hyperparameters

such as anchor scale (16,32,64,128,256). We end up with

an improved AP of 45.64 (using the same IoU threshold =

0.7 as the authors) as our baseline performance. We also

communicated with the authors of [12] in person and they

acknowledged this improved baseline. We then implement

NDFT-Faster-RCNN using the architecture depicted in Fig-

ure 2, also with a ResNet-101 backbone. We denote γ1, γ2
and γ3 as the coefficients in (1), for the Lne loss terms for

altitude, view and weather nuisances, respectively.

Results and Analysis We unfold our full ablation study on

UAVDT in a progressive way: first we study the impact of

removing each individual nuisance type (A, V, and W) . We

then gradually proceed to removing two and three nuisance

types, and show the resulting consistent gains.

Tables 1, 2, and 3 show the benefit of removing flying

altitude (A), camera view (V) and weather condition (W)

nuisances, individually. That could be viewed as learning

NDFT-Faster-CNN (Figure 2) with only the corresponding

one γi (i = 1, 2, 3) to be nonzero. The baseline model with-

out nuisance disentanglement has γi = 0, i = 1, 2, 3.

As can be seen from Table 1, compared to the baseline

(γ1 = 0), an overall AP gain is obtained at γ1 = 0.03, where

we achieve a AP improvement of 0.28.

Table 2 shows the performance gain by removing the

camera view (V) nuisance. At γ2 = 0.01, an overall AP

improvement of 0.52 is obtained. Similar positive observa-

tions are found in Table 3 as well, when the weather (W)

3We discard another “foggy” class because of its too small size.
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Table 1: Learning NDFT-Faster-RCNN on

altitude nuisance only, with different γ1
values on the UAVDT dataset.

γ1

A
Low Med High Overall

0.0 68.14 49.71 18.70 45.64

0.01 69.01 50.46 14.63 45.31

0.02 66.97 46.91 16.69 44.17

0.03 66.38 53.00 15.69 45.92

0.05 65.46 48.43 16.58 44.36

Table 2: Learning NDFT-Faster-RCNN on

view angle nuisance only, with different γ2
values on the UAVDT dataset.

γ2

V
Front Side Bird Overall

0.0 53.34 68.02 27.05 45.64

0.01 57.45 67.61 25.60 46.16

0.02 61.49 66.85 24.93 45.73

0.03 54.55 68.22 23.07 45.42

0.04 64.93 66.83 24.96 46.10

Table 3: Learning NDFT-Faster-

RCNN on weather nuisance only,

with different γ3 values

γ3

W
Day Night Overall

0.0 45.63 52.14 45.64

0.01 45.18 59.66 46.62

0.025 43.72 57.41 44.43

0.05 43.89 50.25 43.79

0.1 44.28 48.78 43.60

nuisance is removed: γ3 = 0.01 results in an overall AP

boost of 0.98 over the baseline, with the more challenging

night class AP increased by 7.52.

Table 4 shows the full results by incrementally adding

more adversarial losses into training. For example, A +
V + W stands for simultaneously disentangling flying al-

titude, camera view and weather nuisances. When using

two or three losses, unless otherwise stated, we apply γi
= 0.01 for both/all of them, as discovered to give the best

single-nuisance results in Tables 1 - 3. As a consistent

observation throughout the table, the more nuisances re-

moved through NDFT, the better AP values we obtain (e.g.,

A + V outperforms any of the three single models, and

A + V + W further achieves the best AP among all). In

conclusion, removing nuisances using NDFT evidently con-

tributes to addressing the tough problem of object detection

on high-mobility UAV platforms. Furthermore, the final

best-performer A + V + W improves the class-wise APs

noticeably on some most challenging nuisance classes, such

as high-altitude, bird-view and nighttime. Improving ob-

ject detection in those cases can be significant for deploying

camera-mounted UAVs to uncontrolled, potentially adverse

visual environments with better reliability and robustness.

Table 4: UAVDT NDFT-Faster-RCNN with multiple at-

tribute disentanglement.

Baseline A V W A+V A+W V+W A+V+W

Flying Altitude

Low 68.14 66.38 71.09 75.32 66.05 68.61 66.89 74.84

Med 49.71 53.00 52.29 51.59 54.07 49.18 56.07 56.24

High 18.70 15.69 16.62 16.08 18.60 19.19 15.42 20.55

Camera View

Front 53.34 53.90 57.45 62.36 61.23 51.05 56.67 64.88

Side 68.02 67.41 67.61 68.47 68.82 68.71 67.62 67.50

Bird 27.05 24.56 25.60 23.97 24.43 27.96 24.41 28.79

Weather Condition

Day 45.63 47.32 45.30 45.18 46.26 45.19 45.90 45.91

Night 52.14 45.82 56.70 59.66 59.16 59.78 53.35 64.16

Overall 45.64 45.92 46.16 46.62 46.88 46.64 46.03 47.91

Adopting Stronger FPN Backbones We demonstrate that

the performance gain by NDFT does not vanish as we adopt

more sophisticated backbones, e.g. FPN [28]. Training

FPN on UAVDT leads to the baseline performance im-

proved from 45.64 to 49.05. By replacing Faster-RCNN

with FPN in the NDFT training pipeline, the resulting

model learns to simultaneously disentangle A + V + W

nuisances (γi = 0.005, i = 1,2,3). We are able to further in-

crease the overall AP to 52.03, showing the general benefit

of NDFT regardless of the backbone choices.

Proof-of-Concepts for NDFT-based Tracking With ob-

ject detection as our main focus, we also evaluate NDFT on

UAVDT tracking for proof-of-concept. We choose SORT

[6] (a popular online and real-time tracker) and evaluate on

the multi-object tracking (MOT) task defined on UAVDT.

We follow the tracking-by-detection framework adopted in

[12], and compare the tracking results based on the detec-

tion inputs from vanilla Faster-RCNN and NDFT-Faster-

RCNN (A + V + W ), respectively. All evaluation proto-

cols are inherited from [12]. As in Table 5, NDFT-FRCNN

largely outperforms the vanilla baseline in 10 out of the 11

metrics, showing its promise even beyond detection.

Table 5: NDFT versus vanilla baseline on MOT task.

IDF IDP IDR MOTA MOTP MT[%] ML[%] FP FN IDS FM

FRCNN 43.7 58.9 34.8 39.0 74.3 33.9 28.0 33,037 172,628 2,350 5,787

NDFT-FRCNN 52.9 66.8 44.5 38.4 76.5 39.8 27.3 32,581 152,379 1,550 5,026

Comparing NDFT with Multi-Task Learning Another

plausible option to utilize nuisance annotations is to jointly

predict YO and Y i
N s as standard multi-task learning. To

compare it with NDFT fairly, we switch the sign from −
to + in (2) first row, through which the nuisance predic-

tion tasks become three auxiliary losses (AL) in multi-task

learning. We minimize this new optimization and carefully

re-tune γis for AL by performing grid search. As seen from

Table 6, while AL is able to slightly improve over the base-

line too (as expected), NDFT is evidently and consistently

better thanks to its unique ability to encode invariances.

The experiments objectively establish the role of adversarial

losses versus standard auxiliary losses.

Table 6: Comparing the baseline Faster-RCNN, adding aux-

iliary losses, and our proposed NDFT method.

Altitude View Weather

Overall Low Med High Front Side Bird Day Night

Baseline 45.64 68.14 49.71 18.70 53.34 68.02 27.05 45.63 52.14

AL 45.69 66.58 50.80 18.28 61.49 66.85 24.93 45.62 53.64

NDFT 46.81 70.48 55.06 16.12 57.06 68.07 27.59 46.05 59.56
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(a) DE-FPN (b) NDFT-DE-FPN(r)

Figure 4: An example showing the superior performance of NDFT-DE-FPN(r) over DE-FPN for object detection on Vis-

Drone2018 dataset. Red boxes highlight the local regions where NDFT-DE-FPN(r) is able to detect substantially more

vehicles than DE-FPN (the state-of-the-art single-model method on VisDrone2018).

4.2. VisDrone2018: Results and Analysis

Problem Setting The image object detection track on

VisDrone2018 provides a dataset of 10,209 images, with

10 categories of pedestrians, vehicles and other traffic ob-

jects annotated. We manually annotate the UAV-specific

nuisances, with the same three categories as on UAVDT.

According to the leaderboard [4] and workshop report

[55], the best-performing single model is DE-FPN, which

utilized FPN (removing P6) with a ResNeXt-101 64-4d

backbone. We implement DE-FPN by identically following

their method description in [55], as our comparison subject.

Implementation Details Taking the DE-FPN backbone,

NDFT is learned by simultaneously disentangling three

nuisances (A+V+W). We create the DE-FPN model with

NDFT, termed as NDFT-DE-FPN. The performance of DE-

FPN and NDFT-DE-FPN are evaluated using the mAP over

the 10 object categories on the VisDrone2018 validation set,

since the testing set is not publicly accessible.

Table 7: mAP comparison on VisDrone2018 validation set.
DE-FPN NDFT-DE-FPN

γi (i = 1,2,3) 0 0.001 0.003 0.004 0.005 0.01 0.02

mAP 48.41 48.97 49.75 51.66 52.77 51.67 50.42

Results and Analysis As in Table 7, NDFT-DE-FPN

gives rise to a 4.36 mAP boost over DE-FPN, making it a

new state-of-the-art single model on VisDrone2018. Figure

3 shows a visual comparison example.

4.3. Transfer from UAVDT to VisDrone2018

Problem Setting We use VisDrone2018 as a testbed to

showcase the transferablity of NDFT features learned from

UAVDT. We choose DE-FPN as the comparison subject.

Implementation Details DE-FPN is trained on VisDrone

2018 training set and tested on the vehicle category of val-

idation set. We then train the same DE-FPN backbone

on UAVDT with three nuisances (A+V+W) disentangled

(γ1 = γ2 = γ3 = 0.005). The learned fT is then trans-

ferred to VisDrone2018, by only re-training the classifica-

tion/regression layer while keep other featured extraction

layers all fixed. In that way, we focus on assessing the

learned feature transferablity using NDFT. Besides, we re-

peat the same above routine with γ1 = γ2 = γ3 = 0,

to create a transferred DE-FPN baseline without nuisance

disentanglement. We denote the two transferred models

as NDFT-DE-FPN(r) and DE-FPN(r), respectively. Since

vehicle is the only shared category between UAVDT and

VisDrone2018, we compare average precision on the vehi-

cle class only to ensure a fair transfer setting. The perfor-

mance of DE-FPN, NDFT-DE-FPN(r) and DE-FPN(r) are

compared on the VisDrone 2018 validation set (since the

testing set is not publicly accessible).

Results and Analysis The APs of DE-FPN, DE-FPN(r)

and NDFT-DE-FPN(r) are 76.80, 75.27 and 79.50, recep-

tively on the vehicle category. Directly transferring DE-

FPN from UAVDT to VisDrone2018 (fine-tuned on the lat-

ter) does not give rise to competitive performance, showing

a substantial domain mismatch between the two datasets.

However, transferring the learned NDFT to VisDrone2018

leads to performance boosts, with a 4.23 AP margin over

the transfer baseline without disentanglement, and 2.70 over

DE-FPN. It demonstrates that NDFT could potentially con-

tribute to a more generally transferable UAV object detector

that handles more unseen scenes (domains). A visual com-

parison example on VisDrone2018 is presented in Figure 4.

5. Conclusion

This paper investigates object detection from UAV-

mounted cameras, a vastly useful yet under-studied prob-

lem. The problem appears to be more challenging than stan-

dard object detection, due to many UAV-specific nuisances.

We propose to gain robustness to those nuisances, by explic-

itly learning a Nuisance Disentangled Feature Transform

(NDFT), utilizing the “free” metadata. Extensive results on

real UAV imagery endorse its effectiveness.
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