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Abstract

In image-based disease prediction, it can be hard to give

certain cases a deterministic “disease/normal” label due to

lack of enough information, e.g., at its early stage. We call

such cases “unsure” data. Labeling such data as unsure

suggests follow-up examinations so as to avoid irreversible

medical accident/loss in contrast to incautious prediction.

This is a common practice in clinical diagnosis, however,

mostly neglected by existing methods. Learning with un-

sure data also interweaves with two other practical issues:

(i) data imbalance issue that may incur model-bias towards

the majority class, and (ii) conservative/aggressive strategy

consideration, i.e., the negative (normal) samples and pos-

itive (disease) samples should NOT be treated equally - the

former should be detected with a high precision (conser-

vativeness) and the latter should be detected with a high

recall (aggression) to avoid missing opportunity for treat-

ment. Mixed with these issues, learning with unsure data

becomes particularly challenging.

In this paper, we raise “learning with unsure data” prob-

lem and formulate it as an ordinal regression and propose

a unified end-to-end learning framework, which also con-

siders the aforementioned two issues: (i) incorporate cost-

sensitive parameters to alleviate the data imbalance prob-

lem, and (ii) execute the conservative and aggressive strate-

gies by introducing two parameters in the training proce-

dure. The benefits of learning with unsure data and va-

lidity of our models are demonstrated on the prediction of

Alzheimer’s Disease and lung nodules.

1. Introduction

The early-prediction of disease in medical image analy-

sis often assumes that a deterministic “disease/normal” la-

bel can be given to each sample. However, there can be

many cases violating such an assumption, since they do not

exhibit obvious evidence for determination at early stage.

For example, many patients with Alzheimer’s Disease (AD)
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Predict score

Figure 1. Illustration of our main idea of this work. The red, blue

and green points denote the data points of positive, unsure and

negative. The points in the region between two dashed lines are

predicted as unsure. As shown, the thresholds marked by black are

biased towards the majority (unsure) class. Such an effect can be

measured by g(ξ±1). In addition, there is a gap between the con-

ventional classification and the task in medical image diagnosis, in

which the benign class should be predicted with cautious, whereas

the malignant should be predicted with high recall. Such a gap can

be measured by h(γ±1). We then introduce cost-sensitive parame-

ters ξ±1 and γ±1 to alleviate imbalanced problem and incorporate

conservative/aggressive strategies during learning, respectively.

ever experienced an intermediate stage called mild cogni-

tive impairment (MCI) between normal control (NC) and

AD. However, MCI does not necessarily convert to AD. The

prediction of MCI progression is very difficult at early stage

since the MRI/PET of those samples do not show many

changes in the lesion regions (e.g. two-side hippo-campus).

The accurate prediction for these data needs follow-up ex-

aminations, as illustrated by the case in Fig. 2 that it cannot

be determined as positive until it converts to AD after 24

months. In contrast, the incautious prediction at early stages

for these cases can cause irreversible loss, such as missing

golden opportunity for treatment. In this paper, we call

these cases as “unsure data”, which should be considered

but has been largely neglected in the literature.
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Table 1. Comparison of predictions between on unsure data and

sure data using DenseNet with binary labels on the ADNI dataset.

Data split # of data acc FPR

sure data 24 83.33 13.33

unsure data/MCI 51 61.09 37.04

Most existing methods [16, 14, 4] just simply rule out

these unsure data during model training, hence easily re-

sult in wrong predictions for this portion of data. To see

this, we conducted an experiment on the ADNI dataset1 of

which the MCI class is regarded as unsure class. We train a

binary classifier (3D’s version of Densenet [13]), regarding

AD + MCI-developed-to-AD (MCIc) as the positive class

and the rest (NC + MCIs) as the negative class. As shown

in Table 1, the accuracy and false-positive-rate (FPR) on the

unsure data (MCIc/MCIs) are much worse than those on the

sure data (AD/NC). In other words, the unsure data are hard

to be correctly predicted.

There exists one that looks similar, but quite different

concept called “hard samples” in the machine learning lit-

erature. Hard samples arise either from noisy labels or due

to the limitation of model capacity. People try to accurately

predict them using active learning [29] or boosting methods

[8]. However, unsure data are defined by its nature, e.g.,

at early stage of disease. Hence, it is hard to give a deter-

ministic label due to lack of information. This type of data

can take a large portion of a dataset for model training. We

argue that it is responsible and reasonable to identify such

unsure data rather than assigning a binary label to each data

item without assurance. Labeling a case as unsure practi-

cally means that the case needs a follow-up examination.

Compared with the traditional multi-class problem

which assumes independence among classes, the “learn-

ing with unsure data” faces three challenges: (i) Label de-

pendence issue: the negative (normal), unsure and positive

(disease) levels increase in terms of the severity of disease.

Hence, the traditional cross-entropy (CE) loss, which as-

sumes the independence among classes, may fail to model

such a relationship. (ii) Data imbalance issue: since the un-

sure data may be the majority class, which may lead the

model to bias towards the unsure class, as illustrated by

g(ξ±1) in Figure 1. (iii) Diagnosis strategy issue: the neg-

ative and positive samples are often treated differently in

clinical practice, as illustrated by h(γ±1) in Figure 1. For

example, it is reasonable to take recall of malignant cases

more seriously than benign ones. Hence, it is important to

take such strategy into consideration during diagnosis.

In this paper, we raise the “learning with unsure data”

problem and formulate it as an ordinal regression problem

and propose a end-to-end learning framework to model the

unsure data. In such a framework, three groups of parame-

ters are introduced to address the above three practical is-

1http://www.loni.ucla.edu/ADNI
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Figure 2. Illustration of a follow-up (screening (sc), 12 month and

24 month) MCI case with Hippocampus in Glass Brain and 3D &

slice view of Hippocampus volume mapping (HVM). The volume

of HVM is linearly mapped to the color: the darker, the more se-

rious of Hippocampus atrophy. The volume of hippocampus and

predicted score by our model are also given.

sues: threshold parameters, cost sensitive parameters (ξ)

and strategy parameters (γ). Specifically, we extend the

probability model of binary labels to the classification prob-

lem with unsure data by incorporating threshold parameters.

To alleviate the data imbalance problem, we further adopt

the cost-sensitive loss [17] by introducing cost-sensitive pa-

rameters. During the training process, these parameters can

be optimized to fit the data from majority class, and hence

may lead to more predictions of infrequent classes (posi-

tive and negative) with smaller value of threshold parame-

ters. Besides, different from [17], our method can automat-

ically learn the cost-sensitive parameters (together with the

threshold parameters and the parameters of backbone neu-

ral network) via stochastic gradient descent. Furthermore,

to execute the conservative and aggressive (C/A) strategies,

we additionally introduce strategy parameters to adjust the

margin (threshold) parameters for prediction.

We apply our model to Alzheimer’s Disease (AD) and

Lung Nodule Prediction (LNP), in which the early detection

is important. For AD, the MCI is regarded as the unsure data

and the develop-to-AD/conversion prediction needs follow-

up examination. For LNP, we follow the standard in the

previous works [4, 26, 15] on Lung Image Database Con-

sortium (LIDC) [22] to label malignant and benign; the oth-

ers, which are discarded by existing models, are regarded

as unsure data. The results demonstrated that our method

is superior to others, especially cross-entropy loss. Besides,

by considering the data imbalance, the macro-F1 can be fur-

ther improved. Moreover, we show that different strategies

can result in varying results in terms of precision/recall on

positive and negative classes. Particularly, by implementing

the C-A strategy, all positive samples are either detected as

positive (in most case) or unsure. Such a result agrees with

clinical expectations that the negative ones should not miss

the opportunity for early treatment. In addition, we also

find that learning with unsure data improves the prediction

accuracy on sure data.
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Figure 3. Illustration of the architecture of our unsure data model. A variant of DenseNet is adopted as the backbone. ξ−1,1 which are the

cost-sensitive parameters denote the orange margin g(ξ−1,1) from black threshold to green threshold. γ−1,1 which are strategy parameters

denote the blue margin h(γ−1,1) from green threshold to red threshold.

2. Related Works

2.1. Modeling Unsure Data

The most related literature considering the unsure data

is [28], which considers the partial ranking problem. How-

ever, different from partial ranking which considers the pair-

wise data, the “unsure” data in medical analysis implies that

it lacks enough information hence is impossible to deter-

mine whether a case/patient is positive (of disease) or not.

Moreover, to the best of our knowledge, the unsure data

issue has not been explored in medical analysis in the lit-

erature. Note that one can not confuse it with hard sam-

ples, which have ground truth labels however are easy to

be wrongly classified. Correspondingly, many works were

proposed to classify those samples, such as active learning

[24, 29] and prediction with noisy labels [5].

2.2. Ordinal Regression/Classification

Some works [9, 25] simply cast our task as a common

multi-class problem without considering the ordinal rela-

tionship among classes, and apply Cross-entropy (CE) loss

or mean-variance loss. Besides, [23] transforms ordinal re-

gression as a series of binary classification sub-problems

to model the distribution of each sub-problem. However,

they ignore the ordinal relationship among negative, unsure

and positive classes. Other works regard them as ordinal

regression problem, including [19, 10, 20]. In detail, [19]

wraps a leading matrix factorization CF method to predict

a probability distribution for each class. [10] proposes a

probabilistic model with penalized and non-penalized pa-

rameters. [20] generates the probabilities for each class via

modeling a series of conditional probabilities. [3] uses Pois-

son and binomial distribution to model each class.

2.3. Imbalance Data Issue

The typical way to alleviate the imbalanced issue [11]

is by either over-sampling [6] on minor classes or under-

sampling [21] on major classes. Since under-sampling can

lose information, [7, 30] presented a way to quantitatively

set the weight of minor class based on the cost-sensitive

loss. However, the cost matrix should be pre-set. [17] mod-

ified the cost matrix in the cross-entropy loss and were able

to optimize to learn it iteratively. However, the learning of

parameters in cost matrix relies on validation set. In this pa-

per, we modified it to make it useable to ordinal regression

loss and can learn it without using validation set.

3. Methodology

Our data consist of N samples {xi, yi}N1 where xi ∈ X
collects the ith sample (e.g. imaging data) and with label

yi ∈ Y = {−1, 0, 1} with −1, 0, 1 denoting the negative,

unsure and positive status, respectively. For simplicity, we

denote X and y as the {xi}N1 and {yi}N1 respectively. The

fw : X → R is a discriminant function (e.g. the neural

network output) that is dependent on parameters w.

3.1. Predictive Model with Binary Data

For binary classification problem, the response variable

yi (i = 1, ..., N ) are often assumed to be generated from:

yi =

®

1 fw(x
i) + εi > 0

−1 fw(x
i) + εi < 0

(1)

with ε1, ..., εN
i.i.d
∼ G(·). Different G leads to different

model and corresponding loss function: (i) Uniform Model:

G(x) = x+1
2 (ii) Probit Model: G(x) = Φ(x) (Φ is dis-

tribution function of N (0, 1)) (iii) Logit Model: G(x) =

sigmoid(x) = exp(x)
1+exp(x) . The loss function, which is the
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negative log-likelihood of P(y|X) = ΠN
i=1G

(

fw(x
i)yi

)

, is

ℓ(w) = −
∑N

i=1 log
(

G
(

fw(x
i)yi

))

.

3.2. Unsure Data Model

We formulate our problem as ordinal regression problem

[19], since the severity of the disease from negative class

(-1), unsure data (0) to positive class (1) is increasing. We

extend the (1) to incorporate unsure data, by introducing

the (1) to model unsure data, with threshold parameter λ
∆
=

(λ−1, λ1) (λ1 > λ−1),

yi =











1 fw(x
i) + εi > λ1

0 λ−1 ≤ fw(x
i) + εi ≤ λ1

−1 fw(x
i) + εi < λ−1

(2)

We call such a model as Unsure Data Model (UDM), in

which the loss function can be similarly derived as:

ℓ(w, λ) = −
N
∑

i

[1{yi = 1}log
(

1− P1(x
i)
)

+ 1{yi = 0} log
(

P1(x
i)− P−1(x

i)
)

+ 1{yi = −1}log
(

P−1(x
i)
)

] (3)

where

P1(x
i) = G(λ1 − fw(x

i)), P−1(x
i) = G(λ−1 − fw(x

i))
(4)

During the test stage, the xi is simply classified based on

the following rule:

yipred =











1 fw(x
i) > λ1

0 λ−1 ≤ fw(x
i) ≤ λ1

−1 fw(x
i) < λ−1

(5)

3.3. Data Imbalance

There are some diseases that are difficult to be em-

ployed with accurate prediction, such as lung nodules and

Alzheimer’s Disease, etc. Hence, it is common for such

diseases to have unsure data accounted for a large propor-

tion in the population, which may cause the optimization

bias towards the unsure class. To alleviate such a problem,

we adopt the idea in [17] by introducing cost-sensitive pa-

rameter ξ
∆
= (ξ1, ξ−1) in the training process, in which the

P±1(x
i) in (4) are modified as

P1(x
i) = G

(

−f(xi) + λ1 + log ξ1
)

P−1(x
i) = G

(

−f(xi) + λ−1 + log ξ−1

)

,

Note that our method is different from [17]: (1) the param-

eters in [17] are sample-dependent and ours are only class-

dependent; (2) the [17] applies on CE loss and is not ap-

plicable to our case; (3) the optimization in [17] relies on

validation set, which is not reasonable in medical imaging

setting; in contrast, ours can directly implement stochastic

gradient descent to optimize ξ, which is simpler and com-

putation efficient.

We explain why such a model can alleviate the data im-

balance problem. Note that ξ can partly fit the data to

counteract the effect of data imbalance. In more details,

the unsure data is often more frequent than sure data in

medical analysis. Under such a distribution, directly opti-

mizing ℓ(w, λ) in (3) may learn large threshold parameter,

hence may cause the model to collapse in the unsure data,

as shown in the result of cross-entropy in the experimental

result. If we set log ξ1 > 0 and log ξ−1 < 0, the learned λ

tends to be smaller. During prediction stage, we adopt the

same strategy as (5) with threshold parameters (λ−1, λ1).
With smaller λ, the sure data (infrequent class) will be more

encouraged to be successfully classified.

Remark 1 Note that the UDM, together with data imbal-

ance alleviation, can also be adapted to multi-class clas-

sification problem. However, our model mainly focuses on

modeling the unsure data, which implies large difficulty to

explicitly give a label. Under such cases, it is cautious to

classify it as “unsure data”, which suggests the follow-up

examination or using data from other modalities.

3.4. Conservative and Aggressive Strategy

In disease prediction of medical analysis, the negative

class and positive class are often treated differently in clini-

cal diagnosis. To avoid serious consequences of the disease

(such as missing the treatment opportunity), it is expected

that the positive samples should be fully detected while con-

trol the false-discovery-rate of the negative ones for most

diseases, which correspond to aggressive and conservative

strategies, respectively. To model such strategies, we pro-

pose to introduce parameter γ
∆
= (γ1, γ−1), in which the (4)

is modified as

P1(x
i) = G

(

−f(xi) + λ1 + log ξ1 + γ1
)

P−1(x
i) = G

(

−f(xi) + λ−1 + log ξ−1 − γ−1

)

,

Again, since only λ is included during the test stage (i.e.,

(5)), the enforcement of γ1 > 0 may cause smaller value

of λ1, hence can tend to predict positive samples more ag-

gressively. Combining with such a enforcement, the loss

function in (3) is then modified as

g(w,λ, ξ, γ) = ℓ(w, λ, ξ, γ)+

ρ1 max(c1 − γ1, 0) + ρ−1 max(c−1 − γ−1, 0) (6)

where c±1 are preset hyper-parameters. The sign of them

correspond to a strategy, i.e.,
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Table 2. Comparison between our methods and baselines on LIDC-IDRI dataset. F1,ma (all β = 1 in Eq. 7) is adopted as evaluation metric.

Loss F1,ma Recall−1 Recall0 Recall1 Precision−1 Precision0 Precision1

Poisson[3] 62.59 81.19 37.22 77.34 52.84 68.21 63.87

NSB[20] 66.34 24.31 86.75 74.22 86.89 59.27 68.84

MSE 55.45 93.46 58.25 12.00 92.59 55.05 21.43

CE 65.60 48.17 74.45 69.53 61.05 62.60 78.07

UDM 69.34 20.64 89.91 71.09 88.24 58.64 72.22

UDM+CS 71.47 26.15 83.91 79.69 89.06 59.64 66.67

Table 3. Comparison between our methods and baselines on ADNI dataset. F1,ma (all β = 1 in Eq. 7) is adopted as evaluation metric.

Loss F1,ma Recall−1 Recall0 Recall1 Precision−1 Precision0 Precision1

Poisson[3] 38.17 15.00 95.65 0.00 60.00 58.67 0.00

NSB[20] 36.70 55.00 67.39 0.00 39.29 60.78 0.00

MSE 37.59 10.00 86.96 7.14 33.33 56.34 33.33

CE 32.62 0.00 82.61 50.00 0.00 60.32 41.18

UDM 39.63 50.00 78.26 0.00 47.62 63.16 0.00

UDM+CS 40.91 5.00 82.61 28.57 33.33 56.72 40.00

1. c1 > 0, c−1 > 0: conservative strategy on negative

class and aggressive strategy on positive class, which

matches well with clinical situation.

2. c1 < 0, c−1 > 0: conservative strategy on both nega-

tive and positive class, which is reasonable in case that

the mistakenly diagnose as positive one can also bring

serious consequence.

3. c1 > 0, c−1 < 0: aggressive strategy on both nega-

tive and positive class, which is only applicable to the

disease that early detection diagnose is very important.

4. c1 < 0, c−1 < 0: aggressive strategy on negative class

and conservative strategy on positive class, which is

not reasonable in most cases.

We take the first case as an example for explanation.

Note that c±1 enforces both γ1 and γ−1 to be positive,

which encourages smaller value of λ1 and λ−1. Note that

under the same distribution of {f(xi)}Ni=1, combined with

the fact that we only use λ±1 as threshold parameters, the

smaller values of both can encourage less and more samples

to be classified as negative and positive class, respectively.

Remark 2 For simplicity, we called conservative on nega-

tive and aggressive strategy on positive as c-a strategy, in

which the c±1 are encouraged to be greater than 0.

4. Experiments

In this section, we evaluate our models on lung nodule

(benign/unsure/malignant) classification and AD/MCI/NC

classification. The introduction of datasets (LIDC-IDRI and

ADNI dataset) will be introduced in section 4.1, followed

by the implementation details and introduction of evalua-

tion metrics in section 4.2 and section 4.3, respectively. We

then present our experimental results in section 4.4, and

those with conservative-aggressive (c-a) and conservative-

conservative (c-c) strategies in section 4.5 and 4.6, respec-

tively. As an explain to the results, we visualize some cases,

including bad cases in section 4.7. Finally, we tested our

model of predicting sure data in 4.8 to close this section.

4.1. Dataset

For lung nodule classification, we adopt LIDC-IDRI

dataset [1], which includes 1010 patients (1018 scans) and

2660 nodules. For each nodule, there are 1-7 radiolo-

gists drawing the contour and providing a malignancy rating

score (1-5). We followed [4, 14, 27] to label benign and ma-

lignant nodules. Specifically, the cases with average score

(as) above 3.5 are labeled as malignant; below 2.5 are la-

beled as benign; others (as: 2.5-3.5) that are dropped by

those methods, are labeled as unsure class in our paper.

As for AD/MCI/NC classification task, we adopt ADNI

dataset [12], in which samples are MRI images of two-side

hippocampus ROIs. As mentioned earlier, the MCI class is

regarded as unsure class. The data is split to 1.5T and 3.0T

MRI scan magnetic field strength, with 1.5T containing 64

AD, 208 MCI, and 90 NC and 3.0T dataset containing 66

AD, 247 MCI and 110 NC. DARTEL VBM pipeline [2] is

then implemented to preprocess the data. The voxel size is

2× 2× 2 mm3 for MRI images.

4.2. Implement Details

All input images of lung nodules and Hippocampus ROIs

are cropped as a size of 48× 48× 48. We take G(·) as logit

model in this paper. Besides, we modified DenseNet [13]

as the backbone (fw(·)) for our model. Specifically, we

replaced the 2D convolutional layers with the 3D convolu-

tional layers with the kernel size of 3 × 3 × 3. Two 3D

convolutional layers with 3 × 3 × 3 kernels are adopted to
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Table 4. Comparisons between ours (c-a strategy) and baselines on LIDC-IDRI dataset, with βrec
1 = β

pre

−1 = 2 in Fβ,ma in Eq. 7.

Loss Fβ,ma Recall−1 Recall0 Recall1 Precision−1 Precision0 Precision1

Poisson[3] 66.72 66.51 50.47 85.94 61.18 68.97 56.70

NSB[20] 69.77 24.31 86.75 74.22 86.89 59.27 68.84

MSE 60.36 90.09 47.57 44.00 93.59 46.23 26.19

CE 65.55 48.17 74.45 69.53 61.05 62.60 78.07

UDM 69.34 20.64 89.91 71.09 88.24 58.64 72.22

UDM+CS 71.47 26.15 83.91 79.69 89.06 59.64 66.67

UDM+CS+CA 73.61 23.85 82.65 85.94 94.55 60.51 62.86

Table 5. Comparison between ours (c-a strategy) and baselines on ADNI dataset, with βrec
1 = β

pre

−1 = 2 in Fβ,ma in Eq. 7.

Loss Fβ,ma Recall−1 Recall0 Recall1 Precision−1 Precision0 Precision1

Poisson[3] 26.88 0.00 47.83 64.29 0.00 53.66 23.68

NSB[20] 30.05 15.00 93.48 0.00 37.50 59.72 0.00

MSE 32.50 10.00 86.96 7.14 33.33 56.34 33.33

CE 32.62 0.00 82.61 50.00 0.00 60.32 41.18

UDM 37.55 0.00 82.61 64.29 0.00 60.32 56.25

UDM+CS 38.38 5.00 82.61 28.57 33.33 56.72 40.00

UDM+CS+CA 49.41 25.00 84.78 35.71 45.45 63.93 62.50

replace the first 2D convolutional layer with the kernel size

of 7 × 7. We used three dense blocks with the size of (6,

12, 24) while the block size of traditional DenseNet121 is

(6, 12, 24, 16). To preserve more low-level local informa-

tion, we discard the first max-pooling layer following after

the first convolution layer. We adopt the ADAM [18] with

a learning rate of 0.001 to train the network. Restricted by

GPU memory, the mini-batch size is set to 4. For data aug-

mentation, we adopted random rotation, shifting and trans-

posing for all training images to prevent overfitting. Both

datasets are split into train, validation and test set (1585,

412 and 663 for LIDC-IDRI; 625, 80 and 80 for ADNI).

The epoch number is optimized via the performance on the

validation set.

4.3. Evaluation Metrics
Since our task belongs to multi-task classification sce-

nario, we adopt metric of Fβ,ma, which is modification of

Fβ in binary classification and is defined as:

Fβ,ma =
2 · Recallβ,ma × Precisionβ,ma

Recallβ,ma + Precisionβ,ma

(7)

where

Recallβ,ma =

∑

i={−1,0,1} β
rec
i Recalli

∑

i={−1,0,1} β
rec
i

Precisionβ,ma =

∑

i={−1,0,1} β
pre
i Precisioni

∑

i={−1,0,1} β
pre
i

Precisioni =
TPi

TPi + FPi

, Recalli =
TPi

TPi + FNi

(8)

with TPi, FPi and FNi denoting the number of true positive

samples, false positive samples, and false negative samples

for the i-th class. If all β’s in 7 are set to 1, it degenerates

to Macro-F1 (F1,ma), which is often adopted by measuring

the performance for multi-class [28]. To evaluate different

strategies, we incorporate different β, using weighted pre-

cision and recall. In this paper, we mainly consider two

strategies by adopting different values of βpre and βrec:

• Conservative-Aggressive (c-a): Focusing more on pre-

cision of negative class and recall on positive class, i.e.,

β
pre
−1 = βrec

1 > 1, others = 1

• Conservative-Conservative (c-c): Focusing more on

precision of both negative and positive class, i.e.,

β
pre
−1 = β

pre
1 > 1, others = 1.

4.4. Comparisons with Baselines

To validate the effectiveness of our model, we compared

our model UDM with densenet using CE loss, NSB [20],

Possion model in [3]. Besides, we also compare another

method, which regards it as regression problem. Although

it considers the order among three classes, it assumes the

increment between consecutive classes are the same, which

may not agree with reality. As shown in Table. 2 and Table.

3, our model outperforms others a lot in both tasks. More-

over, by additionally adopting cost-sensitive (CS) parame-

ters (UDM+CS), the result can be further improved and the

imbalanced issue can be alleviated. To see this, note that on

LIDC-IDRI dataset (Table 2), compared with UDM without

CS, the recall of both negative and positive improved 5.51

% and 8.6 %, respectively. Particularly, on ADNI dataset

(Table 3), most methods seriously suffer the imbalanced is-

sue. Without CS, the recall of positive for Poisson, NSB,

MSE and UDM is almost 0, so as to the negative class of

10595



Table 6. Comparisons between ours (c-c strategy) and baselines on LIDC-IDRI dataset, with β
pre

1 = β
pre

−1 = 2 in Fβ,ma in Eq. 7.

Loss Fβ,ma Recall−1 Recall0 Recall1 Precision−1 Precision0 Precision1

Poisson[3] 60.35 78.44 35.02 73.44 50.29 62.36 64.83

NSB[20] 67.39 24.31 86.75 74.22 86.89 59.27 68.84

MSE 55.58 93.46 58.25 12.00 92.59 55.05 21.43

CE 67.25 21.10 84.54 78.91 90.20 58.39 66.01

UDM 66.58 35.32 84.86 64.84 79.38 59.78 71.55

UDM+CS 67.87 33.94 81.07 79.69 79.57 61.34 67.55

UDM+CS+CC 68.72 29.82 87.38 72.66 86.67 60.61 70.99

Table 7. Comparison between ours (c-c strategy) and baselines on ADNI dataset, with β
pre

1 = β
pre

−1 = 2 in Fβ,ma in Eq. 7.

Loss Fβ,ma Recall−1 Recall0 Recall1 Precision−1 Precision0 Precision1

Poisson[3] 36.30 15.00 95.65 0.00 60.00 58.67 0.00

NSB[20] 30.88 15.00 93.48 0.00 37.50 59.72 0.00

MSE 36.25 10.00 86.96 7.14 33.33 56.34 33.33

CE 28.96 10.00 93.48 0.00 33.33 58.11 0.00

UDM 36.39 50.00 78.26 0.00 47.62 63.16 0.00

UDM+CS 39.68 5.00 82.61 28.57 33.33 56.72 40.00

UDM+CS+CC 42.03 25.00 76.09 21.43 35.71 59.32 42.86

Table 8. Comparison between UDM+CS+CA and the binary clas-

sifier without unsure data in terms of prediction on sure data in AD

and Lung nodule (LN). “R”,“P” stand for Recall and Precision.

Task Method F1,ma R−1 R1 P−1 P1

AD
Binary 79.13 95.00 57.14 76.00 88.89

Ours 84.95 95.00 71.43 82.61 90.91

LN
Binary 88.54 88.53 89.84 93.69 82.14

Ours 88.92 84.86 95.31 96.85 78.71

CE. By leveraging CE parameters, our UDM+CS performs

much more balanced, as highlighted by the blue color.

To further validate the contribution of CS parameters to

alleviating the imbalanced problem, we compare the thresh-

old parameters and also the prediction number of each class.

As shown in Fig. 5, the threshold parameters learned by

UDM+CS (green lines) are with smaller magnitude than

those in UDM (black lines), hence can avoid the model to

bias towards the unsure one (the number of cases that are

predicted as unsure class: 446 (with CS) v.s. 467).

4.5. Conservative­Aggressive Strategy

We compare c-a strategy with others in this section. For

our model 6, c1 = c−1 = 0.01 (UDM+CS+CA). To better

measure the c-a strategy, we set β
pre
−1 = βrec

1 = 2 in Fβ,ma

(Eq. 7) for c-a strategy. The ρ±1 = 20 for LIDC-IDRC and

= 30 on ADNI dataset, respectively. As shown in Table. 4

and 5, UDM+CS+CA outperforms UDM+CS by 2.14 % on

LIDC-IDRI dataset and 11.03 % on ADNI dataset in terms

of Fβ,ma. In addition, in terms of Recall1 and Precision−1,

UDM+CS+CA boosts 6.25 % and 5.49 % on for LIDC-

IDRI dataset; 7.14 % and 12.12 % on ADNI dataset, com-

pared with UDM+CS. Although Poisson [3] and CE have

higher Recall1 than ours, they bias largely towards positive

and unsure classes (Precision−1 = Recall−1 = 0%). Be-

sides, the positive class is predicted as either positive or

unsure, which suggests treatment or more examinations,

hence can avoid the irreversible loss.

Such a improvement can be contributed to the parame-

ters γ±1. Again, as shown by UDM+CS+CA from Fig. 5,

the smaller threshold parameter (λ1) for positive class en-

courages more cases to be predicted as positive class (185

v.s. 153), to the aggressive strategy. On the other hand,

the smaller threshold parameter (λ−1) for negative class en-

courages less cases to be predicted as negative class ones

(59 v.s. 64), which corresponds to the conservative strategy.

4.6. Conservative­Conservative Strategy

For c-c strategy, we set c1 = −0.01 and c−1 = 0.01.

The β
pre
−1 = β

pre
1 = 2 in Fβ,ma (Eq. 7). As shown in Ta-

ble. 6 and 7, UDM+CS+CC outperforms UDM+CS by 0.85

% on LIDC-IDRI dataset and 2.35 % on ADNI dataset in

terms of Fβ,ma. Again, UDM+CS+CA improves by 3.44

% on Precision1 and 7.10 % on Precision−1 for LIDC-IDRI

dataset; 2.86 % on Precision1 and 2.38 % on Precision−1

on ADNI dataset. Such a result validates the effectiveness

of our models to control policy into our model.

4.7. Visualization

We visualize some lung nodules in Fig. 4.7 as an exam-

ple to illustrate the advantages over others. Top left, top

right, bottom left, bottom right correspond to benign (nega-

tive), malignant (positive), unsure and some bad cases. The

nodules are marked by green box, and the scores below the

figure are predicted probability of listed models. Compared

with benign nodules, the malignant nodules are with larger

size, lower density (more dark), more irregular (e.g. lobu-
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Figure 4. Comparisons between our method (UDM+CS+CA) and baselines for lung nodule prediction in terms of probabilities (scores

below each case) of ground truth class. Top-left, top-right, bottom-left, bottom-right subfigures refer to benign, malignant, unsure nodules,

and bad cases, respectively. The nodules are marked by green boxes.
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Figure 5. Comparisons in terms of threshold parameters and pre-

dicted number of each class among three methods: UDM (black),

UDM+CS (green), UDM+CS+CA (red).

lation and spiculation), and connect with vessels or pleura.

As shown, the listed benign nodules are with high density

and smooth boundary, which can be successfully predicted

with high probability while others fail. For malignant ones,

they are irregular and with low density. For example, the

last one is a large part-solid nodule (PSN) and hence has

high malignant degree. Our model predict it as benign with

high probability (0.81) while other methods predict as about

0.40. The unsure nodules share part of those characteristics:

e.g. (i) the second and third one are close to the pleura, and

(ii) the fourth one is irregular. It is unclear to determine

whether they belong to benign or malignant, and they are

predicted by our model as unsure.

We also listed some hard cases. Again, they are differ-

ent from unsure class which does not have explicit labels.

As shown in the bottom right, there are with explicit labels

but hard to classify. For instance, (i) the first benign nodule

possesses larger size whereas smooth boundary and high

density, which is a typical benign nodule; however, they are

close to the pleura. (ii) The first malignant nodule is with

pleura indentation, which is a malignant attribute, but it pos-

sesses small size. However, all methods, include ours, fail

to predict them. We leave the resolvement of the limitations

on hard samples in future work.

4.8. Prediction on Sure Data

In this section, we test the ability of our model on pre-

dicting the sure data (in both validation and test sets). As

an comparison, we also implemented a binary classification

model without unsure data in the training process. We can

observe from Table. 8 that UDM+CS+CA can outperform

the binary model in terms of F1,ma (with only negative and

positive classes). Particularly, the recall on positive class

(R1) and precision on negative class (P−1) largely improve,

which can be contributed to the c-a strategies.

5. Conclusion

In this paper, we introduced “unsure data” in medical

imaging analysis. We proposed a new framework to model

such data and alleviate the effect of imbalanced data. More-

over, we leveraged the conservative and aggressive strate-

gies into our framework in the training procedure. Experi-

ments on lung nodule prediction and AD/MCI/NC classifi-

cation show that our method outperforms others in terms of

performance and interpretability.
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