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Abstract

Video Recognition has drawn great research interest and

great progress has been made. A suitable frame sampling

strategy can improve the accuracy and efficiency of recogni-

tion. However, mainstream solutions generally adopt hand-

crafted frame sampling strategies for recognition. It could

degrade the performance, especially in untrimmed videos,

due to the variation of frame-level saliency. To this end,

we concentrate on improving untrimmed video classifica-

tion via developing a learning-based frame sampling strat-

egy. We intuitively formulate the frame sampling proce-

dure as multiple parallel Markov decision processes, each

of which aims at picking out a frame/clip by gradually ad-

justing an initial sampling. Then we propose to solve the

problems with multi-agent reinforcement learning (MARL).

Our MARL framework is composed of a novel RNN-based

context-aware observation network which jointly models

context information among nearby agents and historical

states of a specific agent, a policy network which generates

the probability distribution over a predefined action space

at each step and a classification network for reward calcu-

lation as well as final recognition. Extensive experimental

results show that our MARL-based scheme remarkably out-

performs hand-crafted strategies with various 2D and 3D

baseline methods. Our single RGB model achieves a com-

parable performance of ActivityNet v1.3 champion submis-

sion with multi-modal multi-model fusion and new state-of-

the-art results on YouTube Birds and YouTube Cars.

1. Introduction

Recently, video recognition has attracted great research

interest in the computer vision community, due to its impor-

tance in real-world applications such as video surveillance,

∗This work was done when Wenhao Wu was a research intern at Baidu.
†Corresponding author (e-mail: shifeng.chen@siat.ac.cn).
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Figure 1. A demonstration of our approach. At each time step,

each agent relies on context information among nearby agents to

take action for adjusting its sampling location. When all agents

stop, the prediction is emitted by the classification decision.

video search, and video recommendation. A video contains

a sequence of frames, both spatial information, and tempo-

ral relation are important for accurate recognition. Com-

pared to recognizing well-trimmed clips, untrimmed videos

pose a more critical challenge since not all the frames con-

sistently respond to the specified ground-truth label. Pick-

ing out the most informative frames can be an effective

method for recognition.

Existing research efforts [45, 36, 12, 10, 13, 7, 11, 41, 3,

52, 33, 47, 8, 1, 16, 29, 35, 42, 44, 56, 5, 20] mainly focus

on building effective and efficient video modeling networks.

Generally speaking, they can be divided into two directions,

namely, (1) two-stage solutions [8, 1, 16, 29, 35] which ex-

tract spatial feature vectors from video frames and then inte-

grate the obtained local feature sequence into one compact

video descriptor for recognition; (2) the 2D [45, 36, 10, 7]

or 3D convolution based [41, 11, 3, 52, 33, 47, 42, 44, 56, 5]

6222



end-to-end video classification methods. Though great

progress has been achieved by these methods, limited atten-

tion is paid to the aforementioned variation of frame-level

salience among different frames. The mainstream methods

all propose to sample input frames by hand-crafted strate-

gies, for instance, evenly sampling N frames/clips from the

original video is done in [45, 20, 29], sampling N succes-

sive frames from a video is adopted by [41, 33, 47], and

directly feeding all video frames in the test phase is chosen

in [3, 52, 1, 35]. Sampling N frames/clips either evenly or

successively from an untrimmed video cannot guarantee op-

timum. Meanwhile, feeding all the frames is a sort of brute-

force and introduces a much unnecessary computation bur-

den. Therefore, in this paper, we concentrate on how to pick

out the most discriminative frames from untrimmed videos

to achieve better classification performance.

Intuitively, an effective algorithm for humans to pick out

N representative frames from an untrimmed video can be

as follows: we first observe N scenes of the whole video,

according to the initial observation, then we infer where

to check next time until we find out the satisfying frames

round by round. Motivated by this, we proposed to for-

mulate frame selection as N parallel Markov decision pro-

cesses. As is known, a Markov decision process can be

naturally modeled by the reinforcement learning framework

[38]. Inspired by the success of reinforcement learning in

solving sequential decision-making problems, we propose a

multi-agent reinforcement learning (MARL) framework to

select multiple discriminative frames or video clips from an

untrimmed video to improve the recognition performance.

The workflow of our system is illustrated in Figure 1.

Specifically, there are N agents in our framework and

each of them is responsible for selecting one informative

frame/clip from an untrimmed video. They initially sam-

ple N frames/clips evenly from the entire video and itera-

tively decide that each of their samples should come from

temporally preceding or later location until encountering a

STOP action at Tstop-th step or the maximum step number

Tmax is reached. To both combine nearby context and track

previous status information for better decision making, we

design a shared RNN-based context-aware observation net-

work to model the local environment and its nearby context

information as well as historical states to generate a status

vector for each agent. Conditioned on the status vector, the

policy network estimates the probability distribution over

the predefined action space, according to which each agent

takes action to adjust its sampling location. A carefully de-

signed reward function is proposed and the MARL frame-

work is optimized following REINFORCE [49] by maxi-

mizing the expected reward.

To verify the effectiveness of our proposed multi-agent

reinforcement learning framework for frame sampling,

extensive experiments are conducted on several popular

untrimmed video classification datasets, including Activi-

tyNet v1.2 and v1.3 [2], YouTube Birds and YouTube Cars

[55]. Results show that the proposed scheme achieves re-

markable improvement over 2D/3D CNN baseline solutions

which are equipped with different hand-crafted sampling

strategies. In more detail, a new state-of-the-art on YouTube

Birds and YouTube Cars is achieved and our single RGB

model reaches a comparable performance of ActivityNet

v1.3 champion submission with multi-modal multi-model

fusion. To sum up, we make the following contributions.

• We focus on a previously overlooked point, i.e., the

frame sampling strategy, in improving untrimmed

video classification performance and intuitively for-

mulate it as a Markov decision process.

• Multi-agent reinforcement learning is adopted to solve

the formulated sequential decision problems. A novel

framework that takes both context information and his-

torical environment states into consideration for deci-

sion making is designed.

• The proposed method can be effectively applied to var-

ious existing untrimmed video recognition models to

improve the performance, which is well witnessed by

the excellent experimental results.

2. Related Work

2.1. Action Recognition

Our paper is closely related to works on deep-learning

based action recognition, including end-to-end convolu-

tional classification networks and two-stage recognition so-

lutions. Karpathy et al. firstly introduces CNN for video

classification in [24]. Then two-stream ConvNet [36] is

proposed to merge the predicted scores from RGB and op-

tical flow modalities, and the performance is improved by

a large margin. ST-ResNet [10] further introduces resid-

ual connections between the two streams of [36] and shows

great advantages in results. Currently, TSN [45] and C3D

[41] are two well-known baseline methods for video recog-

nition. The former is a 2D CNN based approach while the

latter is based on 3D CNN. There are numerous follow-

up studies to improve the aforementioned two baselines.

For example, TLE [7], ShuttleNet [35], AttentionClusters

[29] and NetVlad [1, 16] are proposed for better local fea-

ture integration instead of directly AVG-Pooling as used in

TSN. OFF [37] and motion feature network [26] are pro-

posed for integrating motion information modeling into a

spatial CNN network, instead of using two streams. I3D

[3] inflates deeper networks than C3D for spatial-temporal

modeling. Given the heavy computation overhead of I3D,

a series of works [52, 33, 5, 56, 42, 44, 20] are done to

strike good effectiveness-efficiency trade-off. Meanwhile,
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nonlocal network [47], compact generalized nonlocal net-

work [54] and Nonlocal + GCN [48] bring great perfor-

mance gain by leveraging extra network modules to capture

feature-point-wise or ROI-wise spatial-temporal relations.

The frame sampling strategies of all the aforementioned

state-of-the-arts are hand-crafted. Instead, we propose to

use the learning-based strategy to improve recognition per-

formance for untrimmed videos.

2.2. Reinforcement Learning

Our work is largely inspired by those on leveraging rein-

forcement learning to solve vision problems. [31] is a clas-

sical work that uses RL for the spatial attention policy in

image recognition, as well as in [28]. [27] proposes an aes-

thetic aware reinforcement learning framework to learn the

policy for image cropping and achieves promising results.

RL is also adopted for object detection in [32], for video

object segmentation in [18] and object tracking in [17, 34].

As for semantic level video understanding, RL has also

played an important role. For instance, it is utilized for ac-

tion detection in [53], for action anticipation in [14], for nat-

ural language grounding in [19] and for video description

in [46]. Our work is most closely related to the ones that

use reinforcement learning for action recognition. In [4],

the part activation policy of human body parts is learned

with RL for action prediction. [40] focuses on skeleton-

based action recognition and RL is adopted to distinguish

discriminative poses. Following [53], the Fast-Forward al-

gorithm is proposed in [9] to reduce the computation burden

for untrimmed video classification. In this work, RL is uti-

lized for both frames skipping planning and early stop de-

cision making. In [51], the authors also focus on fast video

prediction by adaptively selecting relevant frames on a per-

video bias using reinforcement learning. Closely related

work mainly focuses on improving prediction efficiency and

a single agent is used for decision making. In contrast, we

emphasize improving untrimmed video classification base-

lines and our model adopts multiple agents to cooperatively

select multiple frames.

3. Approach

In this paper, we formulate frames selection as multiple

sequential decision-making problems. Therefore, it natu-

rally fits into the reinforcement learning framework. Figure

2 illustrates the multi-agent reinforcement learning frame-

work of our proposed model. The model can be seen as

multiple agents that interact with a video sequence of F

frames/clips over time. Each agent picks a specific frame

out of F frames and employs a context-aware observation

network to encode the explored environment into a vector,

ha
t which is then fed into the following policy network to

generate a proper action ua
t from the action space A. This

action adjusts the frame that the agent to pick at the next

time step. N agents are identified by a ∈ A ≡ {1, 2, ..., N}.

All agents are initialized to be evenly distributed over the

temporal space. When all agents decide to pick the current

frame (to take the STOP action), a classification network

emits the prediction based on the selected frames.

3.1. Architecture

Context-aware observation network The context-

aware observation network is composed of a basic obser-

vation network fo parameterized by θo, followed by a con-

text network. The basic observation network is used to en-

code the video information at the frame/clip selected by the

agent (namely, the local environment) into a feature vector

oat providing it as input to the context network. CNN based

networks, both 2D CNN and 3D CNN are good at capturing

features in frames or frame clips, and hence either of them

can be adopted as the basic observation network. Unlike the

single-agent system, for the multi-agent system, the action

selected by each agent not only depends on its local environ-

ment state but is also impacted by its context information.

Hence, we design a context-aware module fh upon the ba-

sic observation network, parameterized by θh, to maintain a

joint internal state of agents which summarizes history con-

text information by a recurrent neural network. To make it

work effectively, each agent only accesses context informa-

tion from its 2M neighboring agents but not from all agents.

More formally, at the time step t, the agent a observes a

concatenated state sat = [oa−M
t , ..., oat , o

a+M
t ] and its pre-

vious hidden states ha
t−1 as inputs of the context module,

then produces its current hidden states ha
t :

ha
t = fh(h

a
t−1, s

a
t ; θh). (1)

Especially, if M is set to 1, then the first agent loses the rear

information while the last agent loses the front information.

We use the beginning and ending frame/clip of the video

to compensate for the information needed for the two cases

respectively. For the multi-agent model, all of these agents

share the context-aware observation network.

Policy network We adopt a fully connected layer fol-

lowed by a softmax function as the policy network param-

eterized by θu. In every time-step t, each agent a selects

an action ua
t ∈ U to execute, according to the probabil-

ity distribution π(ua
t |h

a
t ; θu) generated by the policy net-

work. The action space consists of three predefined ac-

tions, namely, moving ahead, moving back and staying. The

moving stride is set to be δ frames/clips. When all agents

choose staying, it means a STOP action is encountered.

Note that we still make parameters of the policy network

shared among all agents so that our model is readily appli-

cable for testing at arbitrary N .

Classification network The classification network fp
is parameterized by θp. At each time step, these selected

frames go through the classification network to produce its
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Figure 2. The proposed multi-agent reinforcement learning framework is composed of a context-aware observation network for capturing

environment state h
n

t , a policy network for estimating probabilistic distribution over action space and a classification network for video-

level prediction. There are N (which is 3 for illustration) agents and the environment is the F sampled frames/clips in our system. The

agent interacts with the environment by taking action u
n

t to adjust sampling locations iteratively. The context-aware observation network is

designed to allow context information communication among nearby agents. GRU, which integrates preceding and current states, is used

to model the sequential decision making property of our system.

corresponding prediction logit lat ∈ R
C , where C is the

number of classes. At the last time step, these prediction

scores lTstop
= {l1Tstop

, l2Tstop
, ..., lNTstop

} before Softmax

normalization are aggregated with average pooling to yield

the final video-level prediction. In our proposed method, the

classification network can be easily replaced with any video

classification module, such as Two Stream [36], TSN [45]

and 3D CNNs [41]. For the simplicity in design, the classi-

fication network shares the parameters of layers before the

last classifier layer with the observation network.

3.2. Objectives

The overall objective of the MARL-framework is to si-

multaneously maximize the expected reward of the frame

sampling network and minimizing the classification loss.

We use standard back-propagation to train the classifi-

cation network parameterized by θp, and REINFORCE

[49] to optimize the parameters of the basic observa-

tion network, the context module and the policy network

θπ = {θo, θh, θu}. Hence, our loss function consists of

the MARL loss LMARL(θπ) and the classification loss

LCls(θp).

3.2.1 MARL Objective

Reward function The reward function reflects how good

the actions taken by the agents. When all the agents take

actions, each agent gets its own reward rat based on the clas-

sification probability pat = Softmax(lat ) of the t-th time

step. The reward is given to encourage the agent to find a

more informative frame which can improve the probability

of correct prediction step by step. Hence, we design a sim-

ple reward function that encourages the model to increase

its confidence. Specifically, for the t-th (t > 1) time step,

agent a receives a reward follows:

rat = pat,gt − pat−1,gt, (2)

where pat,c represents the probability of predicting the video

as class c at the t-th time step for agent a, and gt is

the ground-truth label of the video. All agents share the

same reward function. Considering the sequential decision-

making scenario, it is more appropriate to consider a cu-

mulative discounted rewards, where rewards obtained in

the more distant future contribute less to the current step.

Specifically, at the time step t, the discounted return for

agent a is

Ra
t =

Tstop−t∑

i=0

γirai+t, (3)

where γ ∈ (0, 1] is a constant discount factor that controls

the importance of future rewards.

Policy gradient Given U , a space of action sequences.

Following REINFORCE [49], our objective can be ex-
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pressed as

J(θπ) =
N∑

a=1

∑

u∈U

π(u|s; θπ)R
a. (4)

In our case we wish to learn network parameters θπ that

maximize the equation (4). The gradient of J(θπ) is

∇θπJ(θπ) =

N∑

a=1

∑

u∈U

π(u|s; θπ)∇θπ log π(a|s; θπ)R
a.

(5)

This leads to a non-trivial optimization problem due to the

high dimension of the action sequence space. REINFORCE

addresses this by using Monte Carlo sampling to obtain K

interaction sequences to approximate the policy gradients:

∇θπJ(θπ) ≈
1

K

K∑

k=1

N∑

a=1

Tstop∑

t=0

∇θπ log π(ua
t,k|s

a
t,k; θπ)R

a
t .

(6)

Then we can use stochastic gradient descent to minimize

the loss function:

LJ(θπ) = −
1

K

K∑

k=1

N∑

a=1

Tstop∑

t=0

log π(ua
t,k|s

a
t,k; θπ)R

a
t . (7)

Maximum entropy To prevent policies from becoming

deterministic too quickly, researchers use entropy regular-

ization [50, 30]. Its success has sometimes been attributed

to the fact that it “encourages exploration” [30]. The greater

the entropy, the more ability of exploration an agent will

have. Therefore, we follow the practice of using the entropy

of policy to increase the ability to explore by:

LH(θπ) = −

N∑

a=1

Tstop∑

t=0

∑

u∈A

π(ua
t |s

a
t ; θπ) log π(u

a
t |s

a
t ; θπ).

(8)

Hence, the overall loss for MARL Objective is a combi-

nation of the two losses:

LMARL(θπ) = LJ(θπ) + λ1LH(θπ), (9)

where λ1 is a constant scaling factor.

3.2.2 Classification Objective

A cross-entropy loss is applied to minimize the KL diver-

gence between the ground truth distribution y and predic-

tion p:

LCls(θp) = −

C∑

c=1

yc log pc. (10)

Finally, we minimize a hybrid loss that combines all the

losses:

Loss = LCls(θp) + λ2LMARL(θπ), (11)

where λ2 is a constant scaling factor.

4. Experiments

4.1. Datasets and Evaluation Metrics

ActivityNet is a large-scale video benchmark for human

activity understanding [2]. The first version of this dataset

(termed as ActivityNet v1.2) has 100 classes of human ac-

tivities. and its second version (termed as ActivityNet v1.3)

contains 19,994 videos from 200 activity categories. More-

over, the ActivityNet dataset has temporal annotations of

action instances for training data. It is also worth noting that

the labels of the test set are not publicly available and thus

the performances on ActivityNet dataset are all reported on

the validation set. We decode videos at 1fps and use RGB

frames in our experiments. Following the official evalua-

tion script, the evaluation metric is based on mean average

precision (mAP) for action recognition on ActivityNet.

YouTube Birds and YouTube Cars are two challenging

video datasets for fine-grained video classification which

consist of 200 different bird species and 196 different car

models respectively [55]. We experimented with the RGB

frames of the two datasets. Videos in YouTube Birds and

YouTube Cars were downsampled to 2fps and 4fps respec-

tively. We employ top-1 precision as the evaluation metric

for the two datasets.

4.2. Implementation Details

One of the major differences in current video architec-

tures is whether the convolutional operators use 2D (image-

based) or 3D (video-based) kernels. Hence, we choose two

successful video classification methods for feature extrac-

tion in our method, namely temporal segment network [45]

and C3D [41]. The temporal segment network is equipped

with segmental modeling (5 segments) to capture long-

range temporal information and C3D uses 3D ConvNets to

extract the temporal and spatial information of a video clip.

Training When using 2D ConvNets as our backbone, we

first pre-train classification network fp with the method in-

troduced in [45]. For 3D ConvNets, we use the C3D [41]

features provided by ActivityNet’s [2] website which are

extracted every 8 frames with a temporal resolution of 16

frames. We use the pre-trained weights to initialize fp, then

jointly train the network with extra components. Adam with

the initial learning rate of 0.0001 is adopted. The parame-

ters used in the experiments are set as follows. We set F

to 120, 100 and 100 for ActivityNet, YouTube Birds and

YouTube Cars respectively. For the videos shorter than F

frames, we cyclically repeat their frames to derive a video

of F frames. In the policy network, we use a gated recur-

rent unit (GRU) cell with the hidden size of 1024 to model

the sequential decision process and Tmax is set to 10. γ is

empirically set to 0.9 and λ1, λ2 are set to 1. We set N to 5

during training.

Testing Many state-of-the-art methods rely on some so-
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Architecture
ActivityNet v1.2 ActivityNet v1.3

R25 U25 All Ours R25 U25 All Ours

C3D 62.06 62.89 63.00 64.13 59.73 60.68 60.83 62.00

BN-Inception 78.76 80.02 80.50 81.99 75.08 76.48 77.33 78.32

ResNet-101 80.73 81.94 82.26 83.76 78.69 79.96 80.64 81.54

Inception-V3 81.90 82.66 83.25 85.01 79.27 80.33 80.86 82.34

ResNet-152 82.72 83.71 84.07 85.70 80.69 82.08 82.53 83.81

Table 1. Performance comparison of different ConvNet architectures on the ActivityNet dataset. For different architectures, randomly

sampling 25 frames (R25), uniformly sampling 25 frames (U25), using all frames (All) and using our method to sample 25 frames (Ours)

are evaluated. All architectures are based on ImageNet [6] pre-trained model, except C3D.

phisticated testing strategy or post-processing techniques,

such as 10-crop testing, to boost performance. However,

our framework does not demand these testing strategies.

We simply sample 25 frames (N is set to 25) uniformly

per video as the initial temporal location, and single-center

cropping is applied to the selected frames from MARL to

make the final prediction directly. During evaluation, we

use maximum a posterior estimation to choose the action

for each agent according to π(ua
t |s

a
t ; θπ).

4.3. Improvements over 2D/3D CNN Baselines

MARL improves various backbones Here we exam-

ine our framework with several recent network architec-

tures on the ActivityNet dataset using the RGB modal-

ity. Specifically, we equip MARL to five deep architec-

tures: BN-Inception [23], Inception-V3 [39], ResNet-101

[21], ResNet-152 [21], and C3D [41]. For each architec-

ture, we evaluate three hand-crafted frame sampling strate-

gies as baselines: randomly sampling 25 frames (R25), uni-

formly sampling (U25) and using all frames (All). For ran-

dom sampling, we evaluate three times and report the av-

erage results. Since the average duration of videos in Ac-

tivityNet is 117s and we decode videos at one fps, we set

F to be 120, which indicates that using all frames means

using 120 frames. For 2D ConvNets, we follow the TSN

[45] framework and train the network on annotated action

instances, all these 2D ConvNets are initialized with Ima-

geNet pre-trained weights [6]. For C3D, we also carry out

experiments with TSN-style training strategy by sampling 5

clips and predicting labels based on consensus. An average

pooling on logits predicted from each sampled frame/clip

is followed to produce video-level predictions for different

sampling strategies in these experiments.

The results are summarized in Table 1. We observe

that deeper models with higher accuracy (on ImageNet

dataset [6]) result in better performance in the video clas-

sification task, and our method consistently obtains robust

improvements over various 2D/3D architectures. For each

architecture, our method achieves the best performance and

improved over them by a large margin on both datasets com-

paring with randomly sampling, uniformly sampling and

Strategies Instance Video

R25/U25/All 80.69/82.08/82.53 80.17/81.23/81.73

Ours 83.81 82.98

Table 2. Performance comparison between different supervision

on ActivityNet v1.3 val set.

using all frames.

We can see that even with a very powerful ResNet-

152 backbone, MARL can largely boost recognition per-

formance, specifically, the gain over U25 and All is 1.99%

and 1.63% on ActivityNet v1.2, and as is 1.73% and 1.28%

on ActivityNet v1.3. This verifies the effectiveness of our

method, regardless of shallower or deeper baseline models.

Instance level v.s. video level supervision Annotations

of action instances in untrimmed videos are expensive and

hardly available under most circumstances. Experiments

are carried out to show that our method consistently im-

proves over the baseline method. Besides using these anno-

tated activity instances when training the network, we train

our model when only the video-level labels are used. In

this experiment, the powerful ResNet-152 is utilized as our

backbone network. We present the experimental results of

our proposed MARL with annotated instances information

(Instance) and video-level information (Video) in Table 2.

From the results of ActivityNet v1.3 val set, we observe

that our method achieves the best performance in compari-

son with the three hand-crafted baseline strategies, whether

instance-level supervision is available or not. It is also wor-

thy of noting that, our method with video-level information

achieves even better performance than the model trained

with instance-level supervision and tested with all frames.

It further confirms that MARL is effective in picking dis-

criminant frames in untrimmed videos.

4.4. Comparison with State­of­the­arts

Comparison with other frame selection methods We

make comparisons under the scenario of observing the same

number of total frames and results demonstrate our method

outperforms other methods as shown in Figure 3. The re-
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Method Backbone Pre-trained top-1 mAP

IDT [43] - ImageNet 64.70 68.69

C3D [33] - Sports1M 65.80 67.68

TSN [45]∗ BN-Inception ImageNet 72.97 76.56

P3D [33] ResNet-152 ImageNet 75.12 78.86

RRA [55] ResNet-152 ImageNet 78.81 83.42

Ours ResNet-152 ImageNet 79.82 83.81

TSN [45]∗ BN-Inception Kinetics 78.98 81.80

Ours BN-Inception Kinetics 80.22 83.52

C16 Ensemble - - 90.9

Ours SEResNeXt152 Kinetics 85.72 90.05

Table 3. Comparing with methods on the ActivityNet v1.3 vali-

dation dataset using RGB modality. * indicates the results of our

implementation. C16 denotes the champion submission of the Ac-

tivityNet 2016 challenge, it fuses multiple powerful models and

multi-modal (RGB, optical flow and audio) results.

sults of these methods are directly cited from Adaframe

[51] whose authors reproduce FrameGlimpse [53] and Fast-

Forward [9]. To be fair, we use the same preprocessing

method, backbone network (i.e. ResNet-101) and training

strategy of backbone as Adaframe [51]. Note that the per-

formances of our solution in Figure 3 are lower than those

reported in Table 1, this is because the backbone is not

trained as what TSN [45] does for a fair comparison. In

this experiment, the number of observed frames is calcu-

lated by averaging the total number of frames observed for

each video at all steps of MARL.

Comparison with other SOTAs We also compare our

method with other state-of-the-art methods on these chal-

lenging datasets. Table 3 shows results on ActivityNet

Method YouTube Birds YouTube Cars

BN-Inception∗ 60.13 61.96

I3D [3]∗ 40.68 40.92

TSN [45]∗ 72.361 74.340

RRA [55]∗ 73.205 77.625

U25/All/Ours 76.56/76.77/79.01 76.49/76.99/79.77

Table 4. Comparing with methods on YouTube Birds and YouTube

Cars. * indicates the results of the method come from the latest

project page of these datasets.

v1.3, where the results of state-of-the-art-methods all come

from published paper or tech reports. We compare with

several well known video recognition methods, which

once achieved the state-of-the-art performance, including

improved trajectories (iDT) [43], 3D convolutional net-

works (C3D) [41], temporal segment networks (TSN) [45],

Pseudo-3d residual network (P3D) [33], and Redundancy

Reduction Attention (RRA) [55]. We see that our method

with ResNet-152 outperforms all these previous methods

on the ActivityNet v1.3. Moreover, as shown in Ta-

ble 3, it is beneficial to pre-train a model using Kinetics

dataset[25] and then transfer it to the video classification

task on ActivityNet dataset. “SEResNeXt152” pre-trained

on Kinetics and finetuned on ActivityNet1.3 is the cur-

rent SOTA model which won the champion of Action Pro-

posal task in ActivityNet2018[15]. We conducted experi-

ments with RGB modality based on “SEResNeXt152”, it

achieves SOTA mAP of 87.95% (U25), 88.15% (All) and

90.05% (MARL). For readers’ reference, here we list the

results of the 2016 champion submission as well as ours

with SE-ResNeXt-152 [22] pre-trained on Kinetics dataset.

To be noted, our results on ActivityNet v1.3 are obtained

by only using 1fps RGB frames during the training phase

and a single-center cropping strategy in validation. Even

with this simple train and test setup, our single RGB model

still achieves comparable results with the 2016 champion

submission which fuses multiple powerful models and inte-

grates RGB, optical flow and audio modalities.

Table 4 shows results on YouTube Birds and YouTube

Cars. To make a fair comparison, the Inception-V3 [39]

with the same architecture as RRA [55] is used as the back-

bone. Our method surpasses RRA on all these two datasets

since categories in fine-grained tasks often share a similar

appearance in general and hence require to focus more on

the informative frames to distinguish from each other. Our

best performance is 5.805% above that of other methods on

the YouTube Birds and 2.145% on the YouTube Cars.

4.5. Ablation Study

Number of agents Our model is trained with N of 5 and

we evaluate how the testing performance of ActivityNet 1.3

val set varies when N changes. Results can be found in
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Figure 4. Visualization of the selected frame with different strategies on ActivityNet. The first row show frames from uniformly sampling,

the second row depicts frames from our method without context-aware observation while the last row contains frames from our method.

N=5 N=15 N=25 N=120 All

ResNet-152 80.19 82.99 83.81 83.72 82.53

Table 5. Impact of N on ActivityNet v1.3 val set in terms of mAP.

Table 5. It can be observed when N increases, the perfor-

mance gradually improves at first. There is a very inter-

esting phenomenon. When N reaches the total number of

frames (which is 120), the performance slightly drops to

83.72% but is still better than feeding all frames directly

(82.53%). It is because that some agents might select the

same frame to avoid less informative frames, but not all the

irrelevant frames are skipped by the agents. In this case,

though performance drops, it is still better than 82.53%.

Such results evident the variation of frame-level saliency

in the untrimmed video and support our motivation.

Context range We explore the impact of parameter M

in context-aware observation network by ablation study. We

carry out experiments with MARL frameworks with vari-

ous settings of M . The experimental results are listed in

Table 6. Basically, our method still works for untrimmed

videos when M = 0. It outperforms uniformly sampling by

0.91% and is even better than using all frames. The use of

the context-aware observation network improves the non-

context model with clear margins. However, no obvious

gain is obtained by increasing M . Larger M means larger

network size and cost, so we empirically set M to 1.

Policy network transferring We show that the

learned policy network can still be effective when it

is transferred directly. (1) With Resnet-152, perfor-

mances of directly applying sampling networks trained on

ActivityNet1.2/Youtube-Cars(Birds) to ActivityNet1.3 are

shown in Table 7, see Cars’S, Birds’S and ANet1.2’S. (2)

Our policy network trained for ResNet-101 classifier still

works for ResNet-152 classifier on ActivityNet1.3, which

is indicated as “cross-cls” in Table 7.

Qualitative results We also visualize some examples of

U25 All M=0 M=1 M=2 M=4

mAP 82.08 82.53 82.99 83.81 83.80 83.72

Table 6. Evaluation of context range on ActivityNet v1.3 val set

using ResNet-152. U25 and All are hand-crafted strategies.

U25 All MARL Birds’S Cars’S ANet1.2’S cross-cls

82.08 82.53 83.81 82.70 82.66 83.41 83.43

Table 7. The performance of different settings on ActivityNet v1.3

val set.

selected frames with different strategies on the validation

data of ActivityNet in Figure 4. From top to bottom, frames

picked by uniformly sampling, M = 0 and M = 1 are

depicted. We see that our method is able to automatically

select important frames according to surroundings and to

avoid irrelevant frames.

5. Conclusion

In this paper, we presented a multi-agent reinforce-

ment learning method for untrimmed video recognition,

which can be effectively applied to existing video recogni-

tion frameworks to select the informative frames/clips from

the untrimmed video. Experiments demonstrate that our

method outperforms state-of-the-art baseline methods by a

substantial margin, which verifies the effectiveness of our

method. In the future, we plan to distillate our MARL

based recurrent frame sampling network into a smaller feed-

forward CNN to achieve more efficient untrimmed video

classification.
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