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Abstract

The accuracy of stereo matching has been greatly im-

proved by using deep learning with convolutional neural

networks. To further capture the details of disparity maps,

in this paper, we propose a novel semantic stereo network

named SSPCV-Net, which includes newly designed pyra-

mid cost volumes for describing semantic and spatial in-

formation on multiple levels. The semantic features are

inferred by a semantic segmentation subnetwork while the

spatial features are derived by hierarchical spatial pooling.

In the end, we design a 3D multi-cost aggregation module

to integrate the extracted multilevel features and perform

regression for accurate disparity maps. We conduct com-

prehensive experiments and comparisons with some recent

stereo matching networks on Scene Flow, KITTI 2015 and

2012, and Cityscapes benchmark datasets, and the results

show that the proposed SSPCV-Net significantly promotes

the state-of-the-art stereo-matching performance.

1. Introduction

Stereo matching is indispensable for many computer vi-

sion applications, such as autonomous driving [5], 3D re-

construction [42], augmented realities [8], and robot navi-

gation [1]. By finding pixel-level correspondence between

two images, stereo algorithms aim to construct a disparity

map from a pair of rectified stereo images. In traditional

methods, hand-crafted reliable features are used to identify

cross-image matching pixels or patches for computing the

disparity map [3, 33]. Recently, as in many other computer

vision tasks, convolutional neural networks (CNNs) have

been applied to stereo matching with significant success.

When applying CNNs for stereo matching, many of the

existing works construct a cost volume for computing the

correspondence cost at each position by traversing a set of

possible disparity values. A regression layer is then used to

infer the optimal disparity map based on the cost volume.

While early works calculate the cost in the original image

∗Co-corresponding authors.
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Figure 1. (a)&(b) the input stereo pairs (left and right images) from

KITTI dataset; (c) the semantic segmentation; (d) the predicted

disparity by the proposed SSPCV-Net; (e) the ground-truth of the

disparity estimation; (f) the 3px-error map of the SSPCV-Net pre-

diction.

domain [17, 18, 37], recent works construct the cost vol-

ume using the deep features extracted by the respective net-

works [22, 30, 35, 4]. For these prior works, the cost volume

is constructed at a single level without considering multi-

scale spatial information separately underlying the stereo

image pairs. However, for the considered feature map, a

single-scale cost volume may not be sufficient to capture

the spatial relationship between stereo images. One of our

major ideas in this paper is to develop a new CNN network

with multilevel cost volumes, which we call pyramid cost

volumes, for better capturing the disparity details in stereo

matching.

Our work is also partly inspired by the recent work

of SegStereo [38] that integrates semantic information to

stereo matching through joint learning. As shown in Fig-

ure 1, semantic segmentation captures different objects and

their boundaries in images and shows much spatial and in-

tensity correlation with the disparity map. In particular, an

accurate semantic segmentation can help rectify the dispar-

ity values along the object boundaries, which are usually

more prone to error in stereo matching [2, 15]. Thus, our

network will also integrate both the semantic and the spa-

tial information in multiple levels for constructing pyramid
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cost volumes, and we find that such an approach can im-

prove the stereo-matching accuracy significantly.

More specifically, we design a new semantic stereo net-

work named SSPCV-Net for stereo matching. In this net-

work, after several initial convolutional layers, we take the

extracted deep features as input for two separate branches.

One of them performs the traditional spatial pooling, but

with hierarchical multilevel processing. The other branch is

a semantic segmentation subnetwork. We then build pyra-

mid cost volumes by combining the outputs of these two

branches from input stereo pairs such that these new pyra-

mid cost volumes well represent both semantic and spatial

information in multiple levels. Next, we design a 3D multi-

cost aggregation module to integrate the extracted multi-

level features and perform regression for predicting dis-

parity maps. We employ a two-step strategy to train the

SSPCV-Net: 1) supervised training of the semantic seg-

mentation subnetwork; and 2) joint training of the whole

network with supervision on both semantic segmentation

and disparity estimation. We conduct comprehensive exper-

iments, including a series of ablation studies and compari-

son tests of SSPCV-Net with existing state-of-the-art meth-

ods on Scene Flow, KITTI 2015 and KITTI 2012 bench-

mark datasets, and moreover, we also perform tests on

Cityscapes dataset to compare their generalization abilities.

It is observed that the proposed SSPCV-Net clearly outper-

forms many existing state-of-the-art stereo-matching meth-

ods. The major contributions of this paper are:

• We propose a new semantic stereo network of SSPCV-

Net, in which we construct pyramid cost volumes for

capturing semantic and multiscale spatial information

simultaneously.

• We propose a 3D multi-cost aggregation module in

SSPCV-Net to integrate the extracted multilevel fea-

tures and perform regression for accurate disparity-

map prediction.

• SSPCV-Net significantly promotes the state-of-the-art

performance of stereo matching on the benchmark

datasets of Scene Flow, KITTI 2015 and 2012, and

CityScapes.

2. Related Work

Almost all recent state-of-the-art performances of stereo

matching are achieved by using CNN-based methods. For

example, in [27, 13], disparity value is discretized and dis-

parity estimation is reduced to classification with CNN.

In [28], CNN is used for computing disparity map and op-

tical flow simultaneously. This result can be refined itera-

tively based on error maps [30]. In [34], the disparity is esti-

mated by patch matching. In [23], the use of low-resolution

cost volumes leads to sub-pixel matching accuracy and real-

time speed. In [10], a new 3D convolutional module, as well

as a sparse depth map, is used for improving stereo match-

ing. All these methods construct single-scale cost volumes.

In this paper, we build multilevel cost volumes for better

disparity estimation.

More related to our work are EdgeStereo [35], GC-

Net [22] and PSMNet [4]. In EdgeStereo [35], edge de-

tection is incorporated to accurately estimate depth change

across object boundaries, while in this paper, we incorpo-

rate semantic segmentation to achieve this goal. In GC-

Net [22], cost volumes are regularized by 3D convolutions

before used for disparity estimation. Based on GC-Net,

PSMNet [4] extracts multiscale image information for con-

structing a single cost volume, which is then taken for reg-

ularization and disparity estimation. Following the general

framework of GC-Net and PSMNet, we here construct mul-

tilevel cost volumes, together with a 3D multi-cost aggrega-

tion module, to better capture the global context information

for disparity estimation.

Semantic information has been found to be useful when

integrated to solve many important computer vision prob-

lems. For example, in [9] an integrated SegFlow model is

developed to address optical flow and video segmentation

together, leading to a win-win result. In [20, 43, 21], two

tasks of monocular depth estimation and semantic segmen-

tation are solved simultaneously by using weight-sharing

sub-networks or joint CNN learning. One of our main

goals in this paper is to integrate semantic segmentation into

stereo matching. Related to our work is SegStereo [38],

which combines semantic and image features into a single

cost volume for disparity estimation. Different from Seg-

Stereo, we propose to construct cost volumes for seman-

tic features and image features separately, as well as using

multilevel cost volumes of image features. The experiments

show that the proposed approach can improve the accuracy

significantly.

Multiscale information has been used in many CNN-

based computer vision applications. For example, PSP-

Net [44] and DeepLab [7, 6] embed multiscale features of

scenes to improve semantic segmentation. SPyNet [32] cal-

culates optical flow by warping images in multiple scales.

PWC-Net [36] uses multiscale features to compute optical

flow with a single branch. Different from these works, we

here introduce the multiscale information into stereo match-

ing, as in PSMNet [4]. But as discussed above, PSMNet

constructs a single cost volume using multiscale features,

while we construct multilevel cost volumes directly, result-

ing in much better disparity estimation.

3. Our Approach

The architecture of the proposed SSPCV-Net is shown

in Figure 2. We can see that new pyramid cost volumes

are built to incorporate semantic information and multilevel

spatial context information. In addition, a 3D multi-cost
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Figure 2. Architecture of the proposed semantic stereo network (SSPCV-Net) for disparity estimation. The main pipeline includes: (a)

feature extraction: using ResNet50 [16]; (b) spatial pooling: using average pooling, and the resulted multilevel feature maps are fed into

the semantic segmentation network; (c) multi-cost aggregation: fusing the pyramid cost volumes, and the details of this module is shown

in Figure 4; (d) disparity regression: disparity map is estimated from the cost volumes using 3D convolution.

aggregation module is added for cost-volume aggregation

and regularization.

3.1. Network architecture

We first use ResNet-50 [16] with the dilated network

strategy [6, 40] to extract features from the input pair of im-

ages, and then adopt adaptive average pooling to compress

features into three scales, followed by a 1 × 1 convolution

layer to change the dimension of the feature maps. The

resulting spatial features are simultaneously fed into two

branches of the network – one branch produces spatial pyra-

mid cost volumes directly and the other branch is a semantic

segmentation subnetwork, which generates a semantic cost

volume. The obtained semantic cost volume and the spatial

cost volumes make up pyramid cost volumes. All these cost

volumes are then fed into a 3D multi-cost aggregation mod-

ule for aggregation and regularization. At the end, a regres-

sion layer produces the final disparity map. The pyramid

cost volumes and the 3D multi-cost aggregation module are

elaborated in the following sections.

3.2. Pyramid cost volumes

We design two branches to produce the cost volumes: the

spatial branch generates spatial pyramid cost volumes and

the semantic branch generates one semantic cost volume, as

shown in the box of Pyramid Cost Volumes in Figure 2.

3.2.1 Spatial pyramid cost volumes

We propose to use the idea of pyramid cost volumes to

learn the relationship between an object and its neighbors

in space. Different from PSMNet, where only a single cost

volume is generated from the pyramid features by first up-

sampling them to the same dimension and then performing

4x

8x

16x 16x

8x

4xPooling

Pooling

Pooling

Pooling

Left image feature Spatial Pyramid Cost Volumes Right image feature

Figure 3. The construction process of spatial pyramid cost volumes

from left and right image features by spatial pooling.

concatenation, we instead use multilevel spatial features to

build spatial pyramid cost volumes.

We use hierarchical scales of spatial features after dif-

ferent adaptive average pooling layers in feature extraction

to form levels of cost volumes. Following the idea of GC-

Net [22], for each level of the spatial feature maps, we form

a cost volume by concatenating the corresponding unaries

from the left and right image features and then packing them

into a 4D volume, which contains all spatial context infor-

mation for inferring disparity from this level. As shown in

Figures 2 and 3, three hierarchical levels of feature maps are

particularly used in our SSPCV-Net to form spatial pyra-

mid cost volumes to represent different level of informa-

tion, and the spatial pyramid cost volumes have sizes of

C × αW × αH × αD with α ∈ { 1
4 ,

1
8 ,

1
16} respectively

at each level, where C is number of channels, W and H are
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Figure 4. Details of the 3D multi-cost aggregation module with the hourglass and the 3D feature fusion.

the width and height of original images respectively, and D

is the maximum disparity.

3.2.2 Semantic cost volume

For the semantic branch, the semantic segmentation sub-

network follows PSPNet [44]. With the extracted feature

maps, the subnetwork upsamples the low-dimensional fea-

ture maps to the same size and concatenates all the feature

maps. In the end, it is followed by a convolution layer to

generate the final prediction of the semantic segmentation

map.

To form the single semantic cost volume, we use the fea-

tures before the classification layer. The use of semantic

cost volume aims to capture context cues in a simple man-

ner and learn the similarity of objects’ pixels from the left

and right semantic segmentation features. By concatenating

each unary semantic feature with their corresponding unary

from the opposite stereo image across each disparity level,

and packing them into a 4D volume, we obtain a semantic

cost volume with the size of C × 1
4W × 1

4H × 1
4D, which

is the same size as the largest spatial cost volume.

3.3. 3D multi­cost aggregation module

As shown in Figure 4, both the spatial pyramid cost vol-

umes and the semantic cost volume are fed into the 3D

multi-cost aggregation module. We use a “Hourglass” mod-

ule and a 3D feature fusion module (FFM) to learn differ-

ent levels of spatial context information through the encod-

ing/decoding process. As for the strategy, inspired by the

MSCI (multiscale context intertwining) scheme [25] and

RefineNet [26], we fuse the 4D spatial cost volumes from

the lowest level to the higher ones in a recursive way: we

first upsample the lower level volume to the same size as

its immediately higher level one and feed them into FFM,

then the fused cost volume is further fused with the next

higher level cost volume after the hourglass module. Fi-

nally, the last level fused spatial cost volume is fused with

the semantic cost volume and the result is then upsampled

to the original image size 1×W ×H ×D via the bilinear

interpolation.

Instead of concatenating the features as in BiSeNet [39],

which includes a 2D feature fusion module to help the con-

text information fusion, we develop a 3D feature fusion

module specifically for fusing two cost volumes: first the

two 3D cost volumes are summed up following the residual

block structure in [16], next the adaptive average pooling

is used to transform the concatenated features to a feature

vector and then a weight vector is computed through a fc-

ReLU-fc-sigmoid structure [19], finally, the upsampled one

of the two cost volumes is multiplied by the weight vector

and added with the other cost volume to form the output of
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the FFM module.

3.4. Disparity regression and loss function

We take the disparity regression proposed in [22, 4] to

estimate the continuous disparity map. The softmax oper-

ation σ(·) is first used to normalize the finally fused cost

volume Cd to output a probability P (d) for each disparity

d, which is regarded to as a soft attention mechanism and of-

ten more robust than classification-based approaches. The

predicted disparity d̂ is then calculated as the sum of each

disparity d weighted by its probability as

d̂ =

Dmax
∑

d=0

d× P (d) (1)

where Dmax denotes the maximum disparity.

To train the proposed architecture, we rely on the follow-

ing multi-task loss function.

L = αLdisp + (1− α)Lbdry (2)

which consists of the weighted sum (0 ≤ α ≤ 1 is the

weight) of two terms, namely the disparity loss (Ldisp) and

the boundary loss (Lbdry).

We use the smoothL1
as the basic loss function to train

our proposed SSPCV-Net which has been widely used in

many regression tasks [14, 22]. The disparity loss is defined

as

Ldisp(d
∗, d̂) =

1

N

∑

(i,j)

smoothL1
(d∗i,j , d̂i,j) (3)

where N is the number of all the labeled pixels, d∗ is the

disparity ground-truth. Since the disparity discontinuity

point is always on the semantic boundaries[31], we accord-

ingly deploy the following boundary-loss function as

Lbdry =
1

N

∑

(i,j)

(

|ϕx(semi,j)|e
−|ϕx(d̂i,j)|

+|ϕy(semi,j)|e
−|ϕy(d̂i,j)|

)

(4)

where sem is the semantic segmentation ground-truth label,

and ϕx and ϕy are the intensity gradients between neighbor-

ing pixels along the x and y directions, respectively.

4. Experiments

4.1. Datasets and evaluation metrics

In this section, we use the following stereo datasets

for performance evaluation and comparison of SSPCV-

Net with several recent state-of-the-art networks for stereo

matching:

Scene Flow [28]: This is a synthetic dataset consists of

35,454 training and 4,370 testing image pairs that can be

used for evaluating optical flow and stereo matching perfor-

mance. This dataset has dense and elaborate disparity maps

as ground-truth for training.

KITTI 2015 & KITTI 2012 [29, 12]: These are two

real-world datasets. KITTI 2015 contains 200 training

stereo image pairs with sparse ground-truth disparities and

another 200 testing image pairs without ground-truth dis-

parities. The left (reference) images of the stereo image

pairs have semantic labels. KITTI 2012 contains 194 train-

ing stereo image pairs with sparse ground-truth disparities

and another 195 testing image pairs without ground-truth

disparities. All these images have no semantic labels.

Cityscapes [11]: This is a large dataset of stereo im-

age pairs focusing on urban street scenes. It contains 1,525

stereo image pairs for testing with ground-truth disparities

precomputed using SGM.

Some metrics are used to evaluate the stereo matching

performance. The measure of averaged end-point error

(EPE) is defined by EPE(d∗ − d̂) = ||d∗ − d̂||2. A pixel

is considered to be an erroneous pixel when its disparity er-

ror is larger than t pixels, and the percentages of erroneous

pixels in non-occluded and all areas are calculated. The

percentages of erroneous pixel averaged over background

& foreground regions and all ground-truth pixels are mea-

sured separately. For all error metrics, the lower the better.

4.2. Model specification

We implemented the proposed SSPCV-Net based on Py-

Torch, and the training was done on two Nvidia 1080 GPUs

with Adam (momentum parameters β1 = 0.9 and β2 =
0.999). The stereo image pairs were randomly cropped into

two kinds of size (256 × 512, 256 × 792) before the train-

ing stage. The maximum disparity Dmax was set to 256 for

Scene Flow and 192 for KITTI 2015 & 2012.

For Scene Flow dataset, we trained our model from

scratch using the training split with a constant learning rate

of 0.001 and a batch size of 2 with α = 0.9. The se-

mantic segmentation subnetwork within SSPCV-Net was

first trained for 40 epochs, where segmentation labels were

transformed from object labels, then we did the joint train-

ing of the whole network for 40 epochs.

For KITTI 2015 & 2012, the model trained with Scene-

Flow was used (as pretrain) for further fine-tuning on the

KITTI training dataset. The learning rate for both KITTI

dataset trainings began at 0.01 and was reduced at a rate

of 50% every 100 epochs. The semantic segmentation sub-

network was first trained with the KITTI 2015 dataset for

300 epochs. Then we did the joint training of the whole

network for 400 epochs with α = 0.9 for KITTI 2015, but

with α = 1 (i.e., the boundary loss term Lbdry was ex-

cluded from the loss function) for KITTI 2012 because of

no semantic ground-truth available for use in KITTI 2012

dataset.
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Table 1. Comparison of a number of different model variants for justification of SSPCV-Net on SceneFlow validation dataset (20 epochs)

and KITTI 2015 validation datasets. The percentage of pixels with errors is used for KITTI 2015 evaluation and the averaged end-point

error is used for Scene Flow evaluation.

Semantic Pyramid Dilated Scene Flow KITTI 2015

branch cost volumes convoution validation validation

Single spatial cost volume 2.12 2.63

+Semantic branch X 1.76 2.42

+Semantic branch (Joint-train) X 1.78 2.37

+Spatial pyramid cost volumes X 1.21 2.11

+3D multiple cost volumes X X 1.04 1.99

SSPCV-Net (excluding FFM) X X X 1.07 2.10

SSPCV-Net (excluding boundary loss in joint training) X X X 1.01 1.93

SSPCV-Net X X X 0.98 1.85

The overall training process took about 120 hours for the

Scene Flow dataset and 70 hours for each of two KITTI

datasets. In our experiments, the Cityscapes dataset is only

used to evaluate the generalization ability of the network.

4.3. Ablation studies

We first conducted ablation studies to compare a num-

ber of different model variants for SSPCV-Net on the Scene

Flow dataset and the KITTI 2015 dataset (without pretrain-

ing from Scene Flow), respectively. For KITTI 2015, we

divided the origin training set into a training split (80%)

and a validation split (20%) since the original testing set

has no disparity ground-truth provided. Importance of three

key ideas in SSPCV-Net was evaluated: 1) adding semantic

branch, 2) using pyramid cost volumes and 3) dilated con-

volution in feature extraction. The results are reported in

Table 1 and clearly justify our design choices for SSPCV-

Net: pyramid cost volumes and the semantic information

can promote the accuracy of disparity estimation, and the

feature extraction has been improved when the dilated con-

volution strategy was used in the network.

Some disparity maps regressed from SSPCV-Net by ex-

cluding certain cost volume of different branches or levels

are illustrated in the Figure 5. The lowest-level spatial cost

volume helps improve the accuracy in small objects region

and the highest-level spatial cost volume contains more con-

text information and helps detect more scenes. The seman-

tic cost volume helps produce better edge and better shape

cues. Finally, SSPCV-Net possesses all advantages from the

semantic cost volume and spatial pyramid cost volumes.

4.4. Comparisons with some existing networks

We compared the performance of SSPCV-Net with some

state-of-the-art networks for stereo matching, including

MC-CNN [41], DispNet v2 [15], iResNet-i2 [24], GC-

Net [22], CRL [30], PSMNet [4], EdgeStereo [35], and Seg-

stereo [38].

On Scene Flow – As reported in Table 2 for performance

evaluation results on the Scene Flow dataset, SSPCV-Net

(a)

(b)

(c)

(d)

Figure 5. Disparity maps resulting from SSPCV-Net by excluding

certain cost volume of different branches or levels. (a) Without

the lowest-level spatial cost volume; (b) without the highest-level

spatial cost volume; (c) without the semantic cost volume; (d) from

the full-version SSPCV-Net.

obtained the best averaged EPE (0.87) and 3-pixel error

in all pixels (D1-all) for all regions (3.1) and significantly

outperformed all comparison methods in term of accuracy.

The predicted disparity maps and corresponding errors of

two examples by SSPCV-Net are illustrated together with

the disparity maps by PSMNet in Figure 6, which visually

demonstrates that SSPCV-Net can reach more accurate dis-

parity maps especially at the edge of the objects.

On KITTI 2015 – Table 3 reports the performance eval-

uation results on the KITTI 2015 online leaderboard (by

the KITTI evaluation server), in which the 3-pixel errors

in estimated pixels (D1-est), background (D1-bg), fore-

ground (D1-fg) and all pixels (D1-all) for all regions (ALL)

and non-occluded regions (NOC) are computed. Clearly,

SSPCV-Net achieved the best performance in terms of al-

most all error metrics except for the NOC D1-fg metric

among all comparison methods. The leaderboard ranks

the overall performance based on the ALL D1-all metric,

and SSPCV-Net obtained 2.11%, which is much better than
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Table 2. Results of the performance comparison on Scene Flow dataset.

Method MC-CNN GC-Net iResNet-i2 CRL PSMNet EdgeStereo SegStereo SSPCV-Net

Averaged EPE 3.79 1.84 1.40 1.32 1.09 1.11 1.45 0.87

D1-all - 9.7 5.0 6.7 4.2 - 3.5 3.1

Stereo Pair Ground-truth SSPCV-Net Error Map of SSPCV-Net PSMNet

Figure 6. Two testing results from Scene Flow dataset. From left to right: the left input image of stereo image pair, the ground-truth

disparity, the predicted disparity map by SSPCV-Net, the error map of SSPCV-Net prediction and the predicted disparity map by PSMNet.

Table 3. Results of the performance comparison on the KITTI 2015 dataset.

Method ALL NOC

D1-est D1-bg D1-fg D1-all D1-est D1-bg D1-fg D1-all

MC-CNN [41] 3.88 2.89 8.88 3.89 3.33 2.48 7.64 3.33

DispNet v2 [15] 3.43 3.00 5.56 3.43 3.09 2.73 4.95 3.09

GC-Net [22] 2.87 2.21 6.16 2.87 2.61 2.02 5.58 2.61

CRL [24] 2.67 2.48 3.59 2.67 2.45 2.32 3.12 2.45

EdgeStereo [35] 2.59 2.27 4.18 2.59 2.40 2.12 3.85 2.40

PSMNet [4] 2.32 1.86 4.62 2.32 2.14 1.71 4.31 2.14

SegStereo [38] 2.25 1.88 4.07 2.25 2.08 1.76 3.70 2.08

SSPCV-Net 2.11 1.75 3.89 2.11 1.91 1.61 3.40 1.91

Stereo Pair 1

Stereo Pair 2

SSPCV-Net PSMNet GC-Net

Figure 7. Two testing results from KITTI 2015 dataset. The left panel shows the left image of the input stereo image pair, and for each

input image pair, the predicted disparity and corresponding error maps obtained by SSPCV-Net, PSMNet and GC-Net are presented.

other stereo matching networks. Moreover, we evaluated

the semantic sub-network on KITTI 2015 and got average

IoU of 56.43% for each class and 82.21% for each category.

For visual illustration, Figure 7 presents three examples of

the disparity maps estimated by SSPCV-Net, PSMNet and

GC-Net with the corresponding error maps.
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Table 4. Results of the performance comparison on KITTI 2012 dataset.

Method 2px 3px 4px 5px

Out-Noc Out-All Out-Noc Out-All Out-Noc Out-All Out-Noc Out-All

MC-CNN [41] 3.90 5.45 2.43 3.63 1.90 2.85 1.64 2.39

GC-Net [22] 2.71 3.46 1.77 2.30 1.36 1.77 1.12 1.46

PSMNet [4] 2.44 3.01 1.49 1.89 1.12 1.42 0.90 1.15

EdgeStereo [35] 2.79 2.43 1.73 2.18 1.30 1.64 1.04 1.32

SegStereo [38] 2.66 3.19 1.68 2.03 1.25 1.52 1.04 1.32

SSPCV-Net 2.47 3.09 1.47 1.90 1.08 1.41 0.87 1.14

Stereo Pair SSPCV-Net PSMNet GC-Net

Figure 8. Two testing results from KITTI 2012 dataset. The left panel shows the left image of the input stereo image pair, and for each

input image pair, the disparity maps obtained by SSPCV-Net, PSMNet and GCNet are presented.

Stereo Pair Ground-truth SSPCV-Net PSMNet GC-Net

Figure 9. Two testing results from Cityscapes dataset by SSPCV-Net, PSMNet and GC-Net on the generalization ability.

On KITTI 2012 – Table 4 reports the performance eval-

uation results on the KITTI 2012 online leaderboard, in

which the 2, 3, 4 and 5 pixel errors in all regions (Out-

All) and non-occluded regions (Out-Noc) are evaluated. Al-

though the boundary loss term was excluded from the loss

function for joint training, in this case, SSPCV-Net still

achieved the best performance in five error metrics out of

a total of eight among all comparison methods, and did just

very slightly worse than PSMNet in two and EdgeStereo

in one of the remaining three error metrics. Figure 8 vi-

sually illustrates two examples of the predicted disparity

maps produced by SSPCV-Net, PSMNet and GC-Net, and

it again shows SSPCV-Net can give more reliable and accu-

rate results, especially on ambiguous regions.

On Cityscapes – To evaluate the generalization ability,

we used the test split of Cityscapes to test the models which

were all trained on Scene Flow and KITTI 2015 (without

any training on Cityscapes dataset). Note that the chan-

nel of cost volumes for all compared methods was set to

be 16 in experiments. Figure 9 shows two examples of the

disparity maps estimated by SSPCV-Net, PSMNet and GC-

Net for visual comparison, which show SSPCVT-Net sig-

nificantly outperformed PSMNet and GC-Net on the gen-

eralization ability. Predictions by the proposed SSPCVT-

Net are able to capture the global layout and object details

(shape & edge) quite well.

5. Conclusion

In this paper, we developed a new semantic stereo net-

work of SSPCV-Net, in which pyramid cost volumes are

constructed for describing semantic and spatial information

in multiple levels and a 3D multi-cost aggregation module

is proposed to integrate the extracted multilevel features.

Comprehensive experiments on Scene Flow, KITTI 2015

and 2012, and Cityscapes stereo datasets demonstrated that

the proposed SSPCV-Net can significantly improve the ac-

curacy and generalization ability of stereo matching over

many existing state-of-the-art neural networks.
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