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Abstract

In this paper, we aim at automatically searching an effi-

cient network architecture for dense image prediction. Par-

ticularly, we follow the encoder-decoder style and focus

on designing a connectivity structure for the decoder. To

achieve that, we design a densely connected network with

learnable connections, named Fully Dense Network, which

contains a large set of possible final connectivity structures.

We then employ gradient descent to search the optimal con-

nectivity from the dense connections. The search process

is guided by a novel loss function, which pushes the weight

of each connection to be binary and the connections to be

sparse. The discovered connectivity achieves competitive

results on two segmentation datasets, while runs more than

three times faster and requires less than half parameters

compared to the state-of-the-art methods. An extensive ex-

periment shows that the discovered connectivity is compat-

ible with various backbones and generalizes well to other

dense image prediction tasks.

1. Introduction

Dense image prediction is a collection of computer vi-

sion tasks that produce a pixel-wise label map for a given

image. Such tasks range from low-level vision to high-

level vision, including edge detection [40], saliency de-

tection [16] and semantic segmentation [28]. To address

these tasks, Long et al. propose fully convolutional net-

works (FCNs), which follow an encoder-decoder style [28].

The encoder is transformed from a pre-trained image clas-

sifier, while the decoder combines low-level and high-level

features of the encoder to generate the final output. As fol-

lows, various methods based on FCNs are proposed, which

focus on adjusting the architecture of the decoder manu-

ally to achieve a better fusion of multi-level encoder fea-
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Figure 1: Framework Overview. (a) Transform the pre-

trained image classifier into a Fully Dense Network with

learnable connections. (b) Search the optimal connectivity

with the proposed sparse loss in a differentiable manner. (c)

Drop the useless connections and stages to obtain the final

architecture. Best viewed in color.

tures [40, 32, 20, 16, 12, 41, 44, 30]. However, design-

ing the architecture remains a laborious task, which requires

lots of expert knowledge and takes ample time.

Inspired by the success of neural architecture search

(NAS) in image classification [49, 50, 24, 26], we aim at

automatically designing a decoder for dense image predic-

tion tasks. However, directly employing the methods from

image classification is not sufficient, because (1) dense im-

age prediction requires producing a pixel-wise label map,

while image classification focuses on predicting a class la-

bel, (2) the key to dense image prediction is encoding multi-

level features, while image classification aims at extracting

global features, and (3) dense image prediction usually re-

quires a pre-trained image classifier for faster training and

better performance, while the network for image classifica-

tion can be designed and trained from scratch. Thus, we

face two major challenges: (1) We are required to design
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a novel search space to combine multi-level features of the

pre-trained classifier. (2) The feature maps are usually in

high resolution, bringing in heavy computation complexity

and memory footprint. Thus, the proposed algorithm needs

to design a time and memory efficient network.

To solve the first challenge, we propose a densely con-

nected network named Fully Dense Network (FDN) as the

search space, which defines a large set of possible final ar-

chitectures. FDN follows the encode-decode style, where

the encoder is converted from the pre-trained image clas-

sifier and the decoder consists of learnable dense connec-

tions (Figure 1a). To solve the second challenge, we de-

sign a novel loss function to search the optimal connectiv-

ity in a differentiable way. The proposed loss forces the

weight of each connection to be binary and the connectivity

to be sparse (Figure 1b). After training, we prune FDN to

obtain the final architecture with sparse connectivity (Fig-

ure 1c), which is time and memory efficient. The three steps

above (Figure 1) form the proposed method named Sparse-

Mask, which can automatically search an efficient decoder

for dense image prediction tasks. Particularly, the proposed

method focuses on designing the connectivity structure to

achieve a better fusion of low-level and high-level features.

To validate the effectiveness of our method, we take

a comprehensive ablation study on the Pascal VOC 2012

benchmark [10] with MobileNet-V2 [33] as the backbone.

Results show that our method discovers an architecture that

outperforms the baseline methods by a large margin within

18 GPU-hours. We then transfer the architecture to other

backbones, datasets and tasks. Experiments show that the

discovered connectivity has a good generalization ability,

which achieves competitive performance, runs more than

three times faster, and has less than half parameters.

In summary, we propose a novel method that automati-

cally designs an efficient connectivity structure for the de-

coder of dense image prediction tasks in a differentiable

way. Our contributions are three-folds, (1) we propose Fully

Dense Network to define the search space, (2) we introduce

a novel loss function to force the dense connections to be

sparse, and (3) we conduct comprehensive experiments to

validate the effectiveness of our method as well as the gen-

eralization ability of the discovered connectivity.

2. Related Work

2.1. Architecture Search

Our work is motivated by differentiable architecture

search [34, 37, 26, 1], which is based on the continuous

relaxation of the architecture representation, allowing effi-

cient search with gradient descent. [34, 37] propose a grid-

like network as the search space, while [26] relax the search

space to be continuous and search the space by solving a

bilevel optimization problem. Other works in architecture

search employ reinforcement learning [4, 49], evolutionary

algorithms [31, 39, 25], and sequential model-based opti-

mization [29, 24] to search the discrete space.

To the best of our knowledge, the most related work is

MaskConnect [1], which is designed for image classifica-

tion. Compared to it, our method is unique in three aspects:

(1) We propose a novel sparse loss, which allows an arbi-

trary number of input features, resulting in a larger and more

flexible search space. As for MaskConnect, the number of

input features is fixed. (2) We propose an efficient way to

concatenate multiple feature maps with different spatial res-

olutions instead of simply padding and summation. (3) Fol-

lowing the encoder-decoder style [32], we design a search

space for dense image prediction tasks, which differs no-

tably from that of MaskConnect.

As for dense image prediction, [34, 37, 11] propose to

embed a large number of architectures in a grid-like net-

work. However, the searched network has to be trained from

scratch. Differently, our method utilizes a pre-trained im-

age classifier and has a much larger search space. Our work

is also complementary to [5], which constructs a recursive

search space and employs random search [13] to discover

the best architecture. Such a method focuses on extracting

multi-scale information from the high-level features, while

ours aims at the fusion of the low-level and high-level fea-

tures. Besides, the search space and search approach are

significantly different. AutoDeepLab [23] is also related

to our work. However, our method focuses on designing

the connectivity of the decoder while AutoDeepLab aims at

searching the architecture of the encoder.

2.2. Dense Image Prediction

Currently, there are two prominent paradigms for dense

image prediction. [40, 32, 20, 16, 12, 41, 44, 30] propose

an encoder-decoder network for combining low-level and

high-level features, while [6, 46, 42, 8, 45, 43] utilize dilated

convolutions to keep the receptive field size and design a

multi-scale context module to process high-level features.

In this paper, we follow the encoder-decoder style, of

which the key is designing a connectivity structure to fuse

low-level and high-level features. [32] introduce skip con-

nections to combine the decoder features and the corre-

sponding encoder activations, resulting in a network named

U-Net. Alternatively, [40] aggregate multiple side outputs

to generate the final result. [16] introduce short connections

and deep supervision, while [27] enhance the U-Net archi-

tecture with an additional bottom-up path. Differently, we

aim at automatically designing a sparse connectivity struc-

ture to fuse the multi-level features more effectively.

3. Methods

In this paper, we aim at automatically transforming a pre-

trained image classifier into an efficient fully convolutional
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network (FCN) for dense image prediction tasks. Con-

cretely, given a pre-trained image classifier, we follow the

three steps as shown in Figure 1. (1) Transform the classifier

into a densely connected network with learnable connec-

tions, i.e. Fully Dense Network (FDN). See Section 3.1. (2)

Employ gradient descent to train the FDN with a novel loss

function, which forces the dense connections to be sparse.

See Section 3.2. (3) Prune the well-trained FDN to obtain

the final network architecture. See Section 3.3.

3.1. Fully Dense Network

We follow the encoder-decoder style [3, 32] in dense im-

age prediction tasks to design the search space, resulting

in a super-network named Fully Dense Network (FDN). As

shown in Figure 1a, the encoder is a pre-trained image clas-

sifier, while the decoder combines multi-level features of

the encoder and the decoder with learnable connections.

3.1.1 The Encoder

An image classifier is usually composed of multiple con-

volution layers, a global average pooling layer [21], and

a multi-layer perceptron (MLP). To transform the classi-

fier into an encoder, we simply drop the MLP and keep

the rest of the network unchanged. As shown in Fig-

ure 1a, the encoder consists of three convolution stages, as

well as a global average pooling layer. Each convolution

stage contains multiple convolution blocks, such as residual

block [15] and inception block [36]. Because the features

inside a stage usually have the same spatial and channel di-

mensions, it’s reasonable to assume that the feature of the

last block contains the most useful information. We thus re-

strict the decoder from accessing the other features within a

stage. Concretely, the input features of the decoder is lim-

ited to the last feature of each encoder stage and the feature

after global average pooling, which are noted as El and G

respectively. l is an index ranging from 1 to L, where L is

the number of convolution stages.

3.1.2 The Decoder

We focus on automatically designing the connectivity

structure between the encoder and the decoder, as well as

the connections inside the decoder. The first problem is to

decide the number of stages in the decoder automatically.

To achieve that, we initialize the decoder with a large num-

ber of stages and employ the search algorithm to select the

most important ones. Concretely, the decoder is initialized

with the same number of stages as the encoder, i.e. L stages.

The feature generated by each stage of the decoder is noted

as Dl, where l is an index ranging from L to 1, as shown

in Figure 1a. Additionally, El and Dl have the same spatial

dimensions by our design.

The second problem is to automatically choose the input

features for each decoder stage. Inspired by DenseNet [17],

we propose to initialize the decoder as a densely connected

network. Many classic architectures in dense image pre-

diction tasks are a subset of the proposed network, such as

U-Net [32]. As shown in Figure 1a, the input features of

decoder stage l contains three parts, which are Ei (i >= l),

Di (i > l) and G. Our method then selects the most impor-

tant features for each decoder stage automatically. Notably,

the proposed FDN is significantly different from DenseNet

in three aspects. (1) FDN is densely connected in network-

level while DenseNet only has block-level dense connec-

tions. (2) The input features of a decoder stage in FDN

are from both inside and outside the decoder, following the

encoder-decoder style. (3) The input features of a decoder

stage in FDN have different spatial dimensions.

The last problem is to efficiently combine the input fea-

tures inside each decoder stage. In MaskConnect, the input

features are padded to the largest spatial/channel dimen-

sions and summed into one feature. The fused feature is

then processed by a convolution block. To make the fusion

more flexible, we propose to concatenate all the input fea-

tures channel-wisely and then apply a convolution block to

produce the output. However, all the features are required to

be up-sampled to the same spatial dimensions before con-

catenating, which has heavy memory footprint and compu-

tation complexity. To reduce memory usage and speed up

computation, we show that (1) concatenating the features

and then applying convolution is equal to applying convo-

lution to each feature and then take a summation, and (2) the

order of bilinear upsampling and point-wise convolution is

changeable.1 Thus, the operations within a decoder stage

can be formulated as Equation 1,

Dl =
∑

t∈Tl

wt
lf↑(conv

t
l (t)),

Tl = {Ei|i >= l} ∪ {Di|i > l} ∪ {G},

(1)

where f↑ is bilinear upsampling, convtl is a convolution

block, and wt
l is a weight to indicate the importance of each

connection.

3.2. Searching the Optimal Connectivity

The proposed FDN contains 2L(L+1) possible final ar-

chitectures, which is a huge space to search. For example,

there’re 230 architectures when the encoder has 5 stages.

Our goal is to automatically pick the optimal connectivity

out of all the possible ones. To achieve that, we are required

to (1) select the most important decoder stages from the L

ones, and (2) choose the input features for each selected

stage. In practice, the first problem can be reduced to the

second one. Concretely, we first select the input features for

1The proofs are shown in the supplementary material.

6770



all the L decoder stages, and then remove the stages with-

out any in-connections or any out-connections, as shown in

Figure 1b and 1c.

Each connection in FDN contains a weight wt
l to indi-

cate its importance, as shown in Equation 1. To select mul-

tiple input features out of all the possible ones for a decoder

stage, the most straight forward way is to formulate wt
l as a

binary indicator. If wt
l = 1, the feature t is chosen as the in-

put of the l-th stage. However, directly optimizing over dis-

crete space is data inefficient, which requires lots of compu-

tation resources [26]. Alternatively, we propose to relax wt
l

to be a continuous number between 0 and 1, which is then

optimized by gradient descent in a differentiable manner.

To relax the discrete optimization problem into a contin-

uous one, wt
l is required to satisfy a constraint that the value

of wt
l needs to be close to 0 or 1. Besides, wl = {wt

l |t ∈ Tl}
is desired to be sparse, since we aims at discovering an ef-

ficient architecture. To achieve the two constraints, we pro-

pose a novel loss function in Equation 2, which forces wt
l to

be binary and wl to be sparse.

Ls(wl, α) = µ(Lm(wl, wl)) + Lm(α, µ(wl)),

Lm(p, q) =− p× log(q)− (1− p)× log(1− q),
(2)

where µ(·) represents the mean, × is element-wise multipli-

cation, and α is a hyper-parameter that controls the sparsity

ratio. As shown in Figure 2, Lm(wl, wl) pushes wt
l close to

either 0 or 1, resulting in a binary-like value. Lm(α, µ(wl))
forces the mean of wl to be close to α. When α is close

to 0, most values in wl also tend to be 0, which makes the

connections sparse. The final loss is shown in Equation 3,

L = Ltask + λ

L∑

l=1

Ls(wl, α), (3)

where λ controls the balance between the task-oriented loss

and the sparse loss.

Notably, wt
l in Equation 1 cannot entirely indicate the

importance of the connection when it is relaxed to be a con-

tinuous number. Because the amplitude of convtl (t) also has

an influence on the final value of wt
lf↑(conv

t
l (t)). To re-

duce the influence of convtl (t), we introduce batch normal-

ization (BN) [18] to normalize the amplitude of convtl (t)
into N (0, 1):

Dl =
∑

t∈Tl

wt
lf↑(bn

t
l(conv

t
l (t))). (4)

3.3. Pruning Fully Dense Network

To obtain the final architecture, we prune FDN accord-

ing to the following rules: (1) Drop all connections whose

wt
l < σ, where σ is a pre-defined threshold. (2) Drop all

stages that do not have any input features. (3) Drop all
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Figure 2: The proposed sparse loss. The dashed line

shows the loss function while the solid line presents the gra-

dient. (a) When minimizing Lm(wl, wl), it forces wl close

to either 0 or 1. (b) Lm(α, µ(wl)) pushes the mean of wl

near α, which makes wl sparse when α is close to 0.

stages of which the generated feature is not used by other

stages. After pruning, wt
l and bnt

l in Equation 4 are re-

moved. The network is trained on the target dataset under

the supervision of Ltask only to obtain the final result.

4. Experiments

In this section, we first describe the experimental details

of employing our method SparseMask to automatically de-

sign a decoder for dense image prediction tasks given a pre-

trained image classifier. We then take an extensive experi-

ment to evaluate our approach and compare the discovered

architecture with other baseline methods.

4.1. Experimental Setup

The experiment is designed to automatically search a de-

coder for semantic segmentation with the proposed method.

Concretely, we employ our method on the PASCAL VOC

2012 benchmark [10], which contains 20 foreground ob-

ject classes and one background class. This dataset con-

tains 1, 464, 1, 449 and 1, 456 pixel-wise labeled images

for training (train), validation (val), and testing (test) re-

spectively. We augment the train set with the extra annota-

tions provided by [14], resulting in 10, 582 training images

(trainaug). In our experiment, the trainaug set is used for

training, while the val set is used for testing.

To speed up the search process and reduce memory foot-

print, we employ MobileNet-V2 [33] as the pre-trained im-

age classifier, which contains 9 convolution stages, result-

ing in 290 possible architectures2. The sparsity ratio α in

2FDN based on MobileNet-V2 is shown in the supplementary material.
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(a) Encoder: MobileNet-V2 (b) Decoder

Figure 3: The automatically designed architecture. We

employ SparseMask to search an efficient decoder for se-

mantic segmentation with MobileNet-V2 [33] as the en-

coder. The training dataset is the PASCAL VOC 2012

benchmark [10]. Best viewed in color.

Equation 2 is set as follows,

αl = min(
2

|Tl|
, 0.5), l ∈ [1, L], (5)

where |Tl| represents the number of input features for stage

l. Under this setting, each decoder stage tends to select two

input features. λ in Equation 3 is set to 0.01. The task-

related loss Ltask is set to the pixel-wise cross entropy.

As for training, we follow the protocol presented in [8].

Concretely, we set the learning rates to 0.005 (encoder) and

0.05 (decoder) initially, which decrease to 0 gradually ac-

cording to the “poly” strategy. For data augmentation, we

randomly scale (from 0.5 to 2.0) and left-right flip the input

images, which are then cropped to 513 × 513 and grouped

with batch size 16. We train the network for 50 epochs

with SGD, of which the momentum is set to 0.9 and the

weight decay is set to 4e-5. Notably, the searching is fin-

ished within 18 hours on a single Nvidia P100 GPU with

16G memory.

After training, we prune the network with σ = 0.001
and train the final architecture following the same proto-

col. The automatically designed architecture is shown in

Figure 3. All decoder stages take the feature after global

average pooling as the input, which shows its importance

for semantic segmentation. The high-level features and the

low-level features are also very important, which provides

the semantic information and pixel-wise location informa-

tion respectively. The middle-level information is less use-

ful compared to other features.

Method mIoU #Params3 FPS4

FCN [28] 63.80% 2.22+0.03M 156

Deeplab-V3 [8] 72.51%5 2.22+0.67M 50

U-Net [32] 64.72% 2.22+0.16M 97

SparseACN [48] 72.23% 2.22+0.72M 74

FDN (Ltask) 72.72% 2.22+1.93M 37

Ltask + Lsp 72.04% 2.22+1.92M 42

Ltask + Lbp 73.23% 2.22+0.89M 76

Ours 73.18% 2.22+0.56M 98

Table 1: Performance on Pascal VOC 2012 val set with

MobileNet-V2 as the backbone.

4.2. Experimental Results

Performance Evaluation The discovered architecture is

evaluated on the val set with mean intersection-over-union

(mIoU) as the metric. As shown in Table 1, our architec-

ture outperforms the strong baseline FCN [28] and the state-

of-the-art method Deeplab-V3 [8] by a large margin. Be-

sides, our method runs much faster than Deeplab-V3 and

has fewer parameters. Notably, all the methods employ

MobileNet-V2 as the backbone and follow the same train-

ing and testing protocol. Besides, no multi-scale testing and

left-right flipping are applied to the test images.

Manually Designed Models Our search space contains

many classic architectures designed by experts. To show

the architecture discovered by our method is better than

the others in the search space, we select two well-known

architectures to compare with, namely U-Net [32] and

SparseACN [48]. U-Net is a classic architecture that fol-

lows the encoder-decoder style. Compared to it, the con-

nectivity pattern of our model is more expressive, which

combines more than two input features within a decoder

stage and have a better fusion of multi-scale information.

As a result, our method outperforms U-Net by a large mar-

gin (Table 1). SparseACN proposes a pre-defined sparse

connection pattern for densely connected networks, which

shows a significant parameter and speed advantages with-

out performance loss. Compared to the pre-defined connec-

tion pattern, the connectivity of our model is more flexible

and sparser. Experiments in Table 1 show that the discov-

ered model outperforms SparseACN in mIOU, the number

of parameters and FPS, which demonstrates the advantage

of our approach. We also compare with the super-network,

FDN. Results show that our method achieves a superior per-

formance with a much sparser connectivity (Table 1).

3Parameters come from two parts: the encoder and the decoder.
4In this paper, FPS (test phase) is measured on a Nvidia Titan-Xp GPU

with a 512× 512 image as input.
5w/o COCO pre-training, multi-scale evaluation and deep supervision.

6772



2
3

4
5 1e-2

5e-32e-3
1e-3

63
64
65
66
67
68
69
70
71
72
73
74

35 45 55 65 75 85 95 105 115 125

mIoU

FPS

Rand Rand (Rule) MaskConnect L1 Ours

Figure 4: Comparison with random search, MaskCon-

nect [1], and L1 loss. Best viewed in color.

1

0

𝑤"

𝑤#

𝑤"

𝑤#

Figure 5: The Sparsity of Connectivity. Top-left is the

weights trained with the proposed loss, while bottom-right

is that with L1 loss. The proposed loss forces wl to be bi-

nary and the connectivity to be sparse. Best viewed in color.

Randomly Sampled Models We compare with random

search to show the effectiveness of the proposed search

method. As shown in Figure 4, both “Rand” and “Rand

(Rule)” represent the models randomly selected from our

search space. However, the models in “Rand (Rule)” follow

a constraint observed from the connectivity pattern in Fig-

ure 3: the input features of all but the last decoder stages

are limited to {El, G}. Results show that (1) Both “Rand”

and “Rand (Rule)” contain networks achieving good perfor-

mance, which shows the effectiveness of our search space.

(2) Most networks in “Rand (Rule)” are better than that

in “Rand”, which shows that our search method can dis-

cover a good strategy for connectivity. (3) Our model out-

performs all the randomly sampled networks, which shows

the effectiveness of the proposed search method. As for

the search time, our approach is much faster than random

search. Since we only need to train the entire network once,

while random search usually needs to train hundreds of sub-

networks before finding a good model.

The Sparse Loss To show the effect of the proposed

sparse loss, we take an ablation study on the binary part

and the sparse part of Ls, noted as Lbp and Lsp. As shown

in Table 1, (1) With Ltask only or Ltask+Lsp, the searched

connectivity is dense, resulting in low FPS and large model

size. (2) With Ltask + Lbp, we can obtain a model with the

best mIoU and a reasonable FPS, which shows the effec-

tiveness of the binary part. (3) By adding Lsp, the searched

model (Ours) achieves similar mIoU with fewer parameters,

compared to that of Ltask + Lbp.

We also take an experiment to compare with MaskCon-

nect [1] and the widely used L1 loss. As shown in Fig-

ure 4, we employ the search method of MaskConnect on

our search space with different hyper-parameters (k), where

k is the number of selected input features for each decoder

stage. By increasing k from 2 to 5, the searched archi-

tecture achieves a better mIoU. However, the architecture

of our method outperforms all the models discovered by

MaskConnect in both mIoU and FPS. We attribute it to

the flexibility of the proposed sparse loss, which enables

a much larger search space. Concretely, our method allows

an arbitrary number of input features for a decoder stage,

while MaskConnect allows exactly k features. Thus, our

method can discover a more expressive connection pattern

in a search space with fewer constraints.

The architecture designed by L1 loss also performs

worse than ours, as shown in Figure 4. Besides, it runs

nearly 3 times slower when the strength is 1e-3, which

shows that our loss function is more effective at learning

sparse connectivity. By increasing the strength of L1 loss

from 1e-3 to 1e-2, the FPS improves a lot, but the perfor-

mance drops significantly. The reason is that L1 loss tends

to shrink all the weights, leading to the drop of useful con-

nections after pruning. Concretely, when the strength is

5e-3, the largest dropped connection (6.5e-4) is only 2.6×
smaller than the smallest reserved one (1.7e-3), while ours

is 200× smaller (1.3e-4 vs. 2.7e-2). Thus, the influence

of the dropped connections in our method can be ignored.

Such results show that our sparse loss is good at obtaining

binary values.

To further show the effectiveness of our loss function, we

visualize the weight of each connection. As shown in Fig-

ure 5, wl learned with our method is shown in the top-left

corner, of which most squares are close to red or green. This

indicates that our method is good at approximating binary

values. Besides, the proposed loss is also helpful to sparsity,

as most squares are in red. The bottom-right corner presents

the weights trained with L1 loss. The color of most squares

is between red and green, which means that L1 loss has lit-

tle effect to approximate binary numbers. Besides, there’re

only a few squares in red, which shows that L1 loss has a

marginal effect to sparsity.
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(a) Encoder (b) Decoder
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Figure 6: Transfer the automatically designed architecture

to other backbones. The features between MobileNet-V2

and the new backbone are matched by spatial dimensions.

Method mIoU #Params FPS Memory6

Deeplab-V2 [7] 79.7% - - -

RefineNet [20] 84.2% - - -

ResNet38 [38] 84.9% - - -

PSPNet [45] 85.4% 45+23M 11.5 0.9+2.3G

DeepLab-V3 [8] 85.7% 45+16M 10.5 0.6+2.3G

EncNet [43] 85.9% 45+18M 11.7 0.8+2.3G

Exfuse [44] 86.2% - - -

Ours (Res101)7 85.4% 45+ 7M 39.2 0.6+1.3G

Table 2: Performance on the test set of PASCAL VOC 2012

benchmark (pre-trained on MS COCO).

Batch Normalization In Equation 4, we employ a BN

layer to normalize the feature before multiplying with wt
l .

To verify its effectiveness, we conduct an experiment by re-

moving the introduced BN layers. As a result, the mIoU of

the discovered architecture (72.21%) becomes much lower

than that with BN layers (73.18%).

5. Transfer to X

The connectivity is searched for semantic segmentation

on Pascal VOC 2012 benchmark with MobileNet-V2 as the

backbone. To show the generalization ability of the connec-

tivity, we directly employ it to other backbones, datasets,

and tasks without tuning.8

6Memory (parameters+features, training phase) are measured on a

Nvidia Titan-Xp GPU with a 512× 512 image as the input.
7http://host.robots.ox.ac.uk:8080/anonymous/

WDAEVT.html
8The qualitative results are shown in the supplementary material.

5.1. Transfer to Other Backbones

Our method automatically designed a connectivity for

the decoder with MobileNet-V2 as the encoder. To show the

generalization ability, we transfer the discovered connec-

tivity to other image classifiers (backbones), such as VGG

nets [35] and ResNets [15]. However, there’re no direct cor-

respondences between the features of different backbones.

To transfer the sparse connectivity structure, we propose to

match the features by the spatial dimensions. If a match

fails, we simply drop the corresponding decoder stage. By

following the simple rule, we transfer the automatically de-

signed connectivity to other image classifiers. As shown

in Figure 6, the encoder contains 5 convolution stages, in

which a down-sampling operation is employed followed by

multiple convolution blocks. Then a global average pool-

ing layer is used to extract global information. Such an en-

coder represents many widely used CNNs including VGG

nets and ResNets. Compared to Figure 3, the connectivity

structure is similar except that one stage is removed from

the decoder because there is no corresponding feature.

To evaluate the performance of the transferred architec-

ture, we conduct an experiment on the PASCAL VOC 2012

benchmark. The training and testing protocol is a little dif-

ferent from Section 4.1. Concretely, we have three steps for

training, (1) train the network on MS COCO dataset [22]

with learning rate 0.01 for 30 epochs, (2) train the network

on the trainval set of [14] with learning rate 0.001 for 50
epochs, and (3) train the network on the trainval set of

the original VOC dataset with learning rate 0.0001 for 50
epochs. The learning rate for the decoder in each step is 10
times larger than the above learning rate. After training, we

evaluate the model on the test set of PASCAL VOC 2012

benchmark with multi-scale inputs and left-right flipping.

Results in Table 2 show that our method achieves com-

petitive performance, although the architecture is searched

on MobileNet-V2 rather than ResNet101. Moreover, our

decoder requires half the parameters and runs more than 3
times faster. When training the network, our method oc-

cupies much less GPU memory. Concretely, our method

can be trained on a Nvidia Titan-Xp GPU with batch size 8,

while other methods like EncNet are limited to 4 images.

5.2. Transfer to Other Datasets

The architecture is optimized on the Pascal VOC 2012

benchmark. We employ it on another semantic segmenta-

tion dataset ADE20K [47] to verify its generalization abil-

ity. ADE20K is a scene parsing benchmark, which contains

150 categories. The dataset includes 20K/2K/3K images for

training (train), validation (val) and testing (test).

We train our network on the train set for 120 epochs with

learning rate 0.01. We then evaluate the model on the val

set and report the pixel-wise accuracy (PixAcc) and mIoU

in Table 3. Our method achieves comparable results to the
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Method PixAcc mIoU Score

FCN [28] 71.32% 29.39% 50.36%

SegNet [3] 71.00% 21.64% 46.32%

CascadeNet [47] 74.52% 34.90% 54.71%

RefineNet [20] - 40.70% -

PSPNet [45] 81.39% 43.29% 62.34%

EncNet [43] 81.69% 44.65% 63.17%

Ours (Res101) 80.91% 43.47% 62.19%

Table 3: Performance on the val set of ADE20K.

Name PixAcc mIoU Score

baseline-DilatedNet 65.41% 25.92% 45.67%

rainbowsecret 71.16% 33.95% 52.56%

WinterIsComing - - 55.44%

CASIA IVA JD - - 55.47%

EncNet-101 [43] 73.74% 38.17% 55.96%

Ours (Res101) 72.99% 38.15% 55.57%

Table 4: Performance on the test set of ADE20K.

state-of-the-art PSPNet and EncNet, while requires much

fewer parameters and runs much faster. We then fine-tune

our network on the trainval set for another 20 epochs with

learning rate 0.001. The outputs on the test set are submitted

to the evaluation server. As shown in Table 4, our method

outperforms the baseline by a large margin and achieves

competitive results compared to EncNet.

5.3. Transfer to Other Tasks

We transfer the network designed for semantic seg-

mentation to other dense image prediction tasks, namely

saliency detection [16] and edge detection [40].

Saliency Detection MSRA-B [19] is a widely used

dataset for saliency detection, which contains 5, 000 images

with a large variation. There are 2, 500/500/2, 000 images

used for training (train), validation (val) and testing (test)

respectively. After training on the train set, we evaluate our

method on the test set. The performance is reported in Ta-

ble 5. Our method is significantly better than the FCN base-

line. Even compared to the state-of-the-art DSS [16], our

method achieves comparable result with only 1
5 parameters.

Besides, our method runs nearly 3 times faster.

Edge Detection BSDS500 [2] contains 200 training

(train), 100 validation (val) and 200 test (test) images,

which is a widely used dataset in edge detection. The train-

val set is used for training, which is augmented in the same

Method Fβ MAE #Params FPS

FCN [28] 0.861 0.099 2.22+0.01M 186

DSS [16] 0.906 0.054 2.22+2.71M 38

Ours 0.903 0.055 2.22+0.56M 110

Table 5: Saliency detection results on the test set of MSRA-

B. All methods are based on MobileNet-V2.

Method ODS OIS AP R50

HED [40] 0.775 0.792 0.826 0.937

Ours 0.775 0.794 0.833 0.933

Table 6: Edge detection results on the test set of BSDS500.

Both methods are based on VGG16.

way as [40]. When evaluating on the test set, standard non-

maximum suppression (NMS) [9] is applied to thin the de-

tected edges. The results are reported in Table 6, where our

method outperforms the baseline method HED in two met-

rics (OIS and AP) and achieves the same ODS.

6. Conclusion

We presented SparseMask, a novel method that automat-

ically designs an efficient network architecture for dense

image prediction in a differentiable way, which follows

the encoder-decoder style and focuses on the connectiv-

ity structure. Concretely, we transformed an image clas-

sifier into Fully Dense Network, which contains a large set

of possible final architectures and learnable dense connec-

tions. With the supervision of the proposed sparse loss, the

weight of each connection is pushed to be binary, result-

ing in an architecture with sparse connectivity. Experiments

show that the resulted architecture achieved competitive re-

sults on two semantic segmentation datasets, which requires

much fewer parameters and runs more than 3 times faster

than the state-of-the-art methods. Besides, the discovered

connectivity is compatible with various backbones and gen-

eralizes well to many other datasets and dense image predic-

tion tasks. Notably, We focus on connectivity search in this

paper. However, the proposed search method can be easily

extended to layer search. We plan to combine connectivity

search and layer search in our future work.
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