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Abstract

Salient object detection is a fundamental computer vi-

sion task. The majority of existing algorithms focus on ag-

gregating multi-level features of pre-trained convolutional

neural networks. Moreover, some researchers attempt to u-

tilize edge information for auxiliary training. However, ex-

isting edge-aware models design unidirectional frameworks

which only use edge features to improve the segmentation

features. Motivated by the logical interrelations between

binary segmentation and edge maps, we propose a nov-

el Stacked Cross Refinement Network (SCRN) for salien-

t object detection in this paper. Our framework aims to

simultaneously refine multi-level features of salient objec-

t detection and edge detection by stacking Cross Refine-

ment Unit (CRU). According to the logical interrelations,

the CRU designs two direction-specific integration opera-

tions, and bidirectionally passes messages between the t-

wo tasks. Incorporating the refined edge-preserving fea-

tures with the typical U-Net, our model detects salient ob-

jects accurately. Extensive experiments conducted on six

benchmark datasets demonstrate that our method outper-

forms existing state-of-the-art algorithms in both accuracy

and efficiency. Besides, the attribute-based performance on

the SOC dataset show that the proposed model ranks first

in the majority of challenging scenes. Code can be found at

https://github.com/wuzhe71/SCAN .

1. Introduction

Salient object detection [1, 5, 10, 11, 17] aims to detect

and segment the most attractive objects in images or videos.

∗Li Su (suli@ucas.ac.cn) is the corresponding author.

In the past decades, hundreds of traditional methods have

been developed to address the task of salient object detec-

tion and widely applied as a pre-processing procedure in

other computer vision tasks [2, 3].

Recently, convolutional neural networks (CNNs) greatly

promote the research of computer vision. Early deep salient

object detection models [14, 18, 19, 27, 38] utilize classi-

fication network to determine each region of an image is

salient or not. These models generate better results than

the traditional models along with expensive computation

overhead. Then fully convolutional networks (FCNs) [23]

based approaches [4, 15, 22, 24, 29, 30, 31, 35, 36, 37]

further boost the development of salient object detection.

These works have achieved state-of-the-art performance vi-

a designing reasonable decoders to extract discriminative

multi-level features and aggregate them together. Besides,

researchers also attempt to leverage the complementary in-

formation between the two tasks of salient object detec-

tion and edge detection. Some strategies use edge labels to

improve the training procedure of segmentation networks:

adding auxiliary boundary loss at the end of the segmen-

tation network [24], designing unidirectional framework-

s [12, 39] which only use edge information to improve the

representation ability of segmentation feature. Though the

previous works have demonstrated that fusing edge features

is propitious to generate more accurate segmentation maps,

they may confront the problem of inaccurate edge features.

And the edge information has not been fully exploited in

existing edge-aware frameworks.

In this paper, we investigate the interrelations between

binary segmentation and edge maps, and figure out that

boundary region in the edge map is the proper subset of

object region in the corresponding segmentation map. In-

spired by this observation, we propose a novel edge-aware
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Figure 1: (a) Auxiliary edge loss in [24], (b) Unidirectional fusing aggregated segmentation and edge features [39], (c)

Unidirectional fusing multi-level edge features and predicted edge map [12], (d) The proposed framework. Our model

consecutively stacks multiple cross refinement units in an end-to-end manner, which bidirectionally refine multi-level features

of the two tasks by designing two direction-specific integration operations.

salient object detection approach, named Stacked Cross Re-

finement Network (SCRN), which bidirectionally passes

messages between the two tasks and simultaneously refines

multi-level edge and segmentation features. We first extract

two separate sets of multi-level deep features from a shared

backbone network, which are utilized to construct two par-

allel decoders: one is for edge detection, and the other is

for salient object detection. We extend the logical interrela-

tions from binary map level to feature level, and propose a

Cross Refinement Unit (CRU) which contains two different

direction-specific integration operations. Through consecu-

tively stacking multiple CRUs in an end-to-end manner, the

multi-level features of the two task are gradually improved.

In conjunction with two independent U-Net structures [26],

our framework detects both the salient objects and edges

and outperforms state-of-the-art algorithms in both accura-

cy and efficiency.

In summary, our contributions are concluded as follows:

• We propose an effective Cross Refinement Unit

(CRU), which bidirectionally passes messages be-

tween the two tasks of salient object detection and

edge detection. In the CRU, we design two direction-

specific integration operations to simultaneously refine

multi-level features of the two tasks.

• We propose a novel framework for salient object de-

tection, named Stacked Cross Refinement Network

(SCRN), which stacks multiple CRUs to gradually im-

prove the two sets of multi-level features. Incorporated

with the typical U-Net structures, our framework seg-

ments salient objects from images precisely.

• Extensive experiments conducted on six traditional

benchmark datasets show that our model outperforms

state-of-the-art models in all six metrics. In addition,

we also demonstrate that our model ranks first in the

majority of challenging scenes of the SOC dataset.

2. Related Work

In the past two decades, hundreds of hand-crafted

feature based traditional approaches have been proposed

for salient object detection. More details of them can be

found in [2, 3]. Here we mainly discuss FCN-based deep

aggregation models and edge-aware deep models.

Deep aggregation models. Based on the successful

FCN [23] for semantic segmentation, a large amount of

FCN-based salient object detection models have been

developed for salient object detection. Hou et al. [15]

introduce short connections to the skip-layer structures

within the HED [32] architecture. Zhang et al. [36]

integrate multi-level feature maps into multiple resolutions,

predict the saliency map in each resolution and fuse them

to generate the final saliency map. Deng et al. [7] learn the

residual between the intermediate saliency prediction and

the ground truth by alternatively leveraging the low-level

integrated features and the high-level integrated features of

a FCN. In [35], the work extracts context-aware multi-level

features and then utilizes a bidirectional gated structure

to pass messages between them. Liu et al. [22] leverage

global and local pixel-wise contextual attention network

to capture global and local context information. Zhang et

al. propose a novel attention guided network which

selectively integrates multi-level contextual information in

a progressive manner. Chen et al. [4] propose a reverse

attention network, which eventually explores the missing

object parts and details by erasing the current predicted

salient regions from side-output features.

Edge-Aware models. In addition to training the model only

with segmentation labels, researchers also attempt to use the

edge labels. In [24], the work uses an extra IOU-based edge

loss to directly optimize edges of predicted saliency map-

s. In [39], the authors integrate multi-level convolutional

features recurrently with the guidance of object boundary

information. Guan et al. [12] use the fine-tuned HED to de-

tect edges, which are then served as the complementary in-
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Figure 2: The framework of the proposed SCRN model. We first extract two separate multi-level features for salient object

detection and edge detection. Then we utilize stacked CRUs to refine these features by two different direction-specific opera-

tions. In each CRU, we use a selective mechanism. When refining one layer feature of one task, the lower-level features of the

other task are ignored. In the proposed model, we stack four CRUs in an end-to-end manner. Incorporating with the typical

U-Net structures, we finally generate the segmentation and edge maps at the same time.

formation and integrated with the saliency detection stream

to depict continuous boundary for salient objects. These

approaches simply use edge information to improve the ac-

curacy of saliency maps and have not paid enough attention

on improving the edge features. In this paper, we investi-

gate the logical interrelations between binary segmentation

and edge maps, which are then promoted to bidirectionally

refine multi-level features of the two tasks. Fig. 1 shows

different frameworks of edge-aware deep salient object de-

tection models.

3. Methodology

In this section, we first explore the logical interrelations

between the binary segmentation and edge maps. Then we

promote the interrelations to integrate multi-level features

of salient object detection and edge detection, and propose

a novel Cross Refinement Unit (CRU). These features are

gradually refined by stacking multiple CRUs in an end-to-

end manner. Combining with the typical U-Net structures,

we obtain accurate segmentation maps. The overview of the

proposed model is shown in Fig. 2.

3.1. Interrelations of Edge and Segmentation

Salient object detection is a pixel-wise binary classifica-

tion problem. We define a ground truth segmentation map

Ms = {Mp
s , p ∈ (0, 1), p = 1, ..., N}, where p indicates

one pixel of an image and N is the number of pixels in the

image. Then the corresponding edge map can be defined as

Me. For an image, Ms highlights the whole salient objects

and Me only highlights the edges of salient objects. There-

fore, the edge region in Me is the proper subset of the object

region in Ms. This leads to that the logical interrelations can

be represented by:
{

Ms ∧ Me = Me

Ms ∨ Me = Ms,
(1)

where ∧ is the Boolean AND operation and ∨ is the Boolean

OR operation. In this paper, these logical interrelations are

extended to refine the multi-level features of the two tasks.

3.2. Network Architecture

3.2.1 Feature Extraction

Referring to previous works [22, 30, 31], our model is based

on the ResNet50 [13]. We obtain four level features from

the four residual blocks of the backbone network, which are

defined as F = {F i, i = 1, 2, 3, 4}. Given an image with

size of H ×W , the size of each feature is H
2i+1 × W

2i+1 ×C.

C is the channel number of a feature and is equal to 2i+7.

For each level, we use two 1 × 1 convolutional layers to

extract two features with 32 channel number for the two

tasks. Then we use S = {Si
n, i = 1, 2, 3, 4} and E =

{Ei
n, i = 1, 2, 3, 4} to represent the multi-level features of
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salient object detection and edge detection respectively. In

the proposed model, we stack multiple CRUs and use n to

indicate which CRU a feature belongs to. For the features

which have not been refined, n is equal to 0.

3.2.2 Cross Refinement Unit

According to the logical interrelations between binary seg-

mentation and edge maps, we propose the CRU to improve

the multi-level features of the two tasks. Through stack-

ing multiple CRUs in an end-to-end manner, the two sets

of features are gradually refined. More specifically, the in-

put of one CRU is equal to the output of the previous CRU.

The features (Si
n and Ei

n) in nth CRU and i level are calcu-

lated by integrating the features (Sn−1, En−1). Therefore,

we design two direction-specific integration operations in a

CRU. The general formulations of these two operations are

defined as:

Si
n = Si

n−1 + f(Si
n−1, En−1)

Ei
n = Ei

n−1 + g(Ei
n−1, Sn−1)

(2)

where f and g are designed to refine Si
n−1/E

i
n−1 with

En−1/Sn−1 respectively. In addition, they are combined

with the successful residual learning [13] to generate more

discriminative features. The detailed forms of the two func-

tions are designed according to the two different logical

interrelations. Especially, two problems exist in designing

the two functions. One problem is how to integrate features

in each direction. The other problem is how many level

features of one task should be selected to improve one level

feature of the other task. To address these two problems,

we progressively introduce three styles of CRUs in the

following.

Point-to-Point style. For each level feature of one task, we

can directly use the corresponding level feature of the other

task to refine it, namely only using Ei
n−1 and Si

n−1 to refine

each other. This is called point-to-point style of the CRU.

When using segmentation features to refine edge features,

we use the feature level multiplication to approximate the

Boolean AND operation. In this case, the function g in the

point-to-point style is defined as:

g = Conv(Ei
n−1 ⊗ Si

n−1), (3)

where ⊗ is element-wise product and Conv represents a

3× 3 convolutional layer with 32 output channel.

In contrast, the Boolean OR operation cannot be directly

implemented in feature level and it is non-differentiable as

well. Hence we use an alternative strategy to enhance the

segmentation features by integrating the edge features. The

function f in the point-to-point style is formulated as:

f = Conv(Cat(Si
n−1, E

i
n−1)), (4)

Image GT SSPS SPS PPS

Figure 3: Visual comparisons of different styles of the pro-

posed cross refinement model. PPS: point-to-point style,

SPS: set-to-point style, SSPS: selective set-to-point style.

where Cat is the concatenation operation among channel

axis, and Conv also represents a 3 × 3 convolutional layer

with 32 output channel like the Conv of g. But the differ-

ence is that the input channel of the convolutional layer is

64. For all versions of f and g, we follow a rule that the

channel number remains at 32 after applying each function.

After applying the operations defined in Eq. 3 and Eq. 4,

the features of two tasks will become clearer and more

discriminative. On the one hand, the segmentation features

contain complete edge information and can be used to

improve the edge features by the multiplication operation.

On the other hand, the distractors in the segmentation

features can be suppressed by concatenating the edge

features.

Set-to-Point Style. CNNs extract multi-level features

from an input image, which represent different information.

More specifically, the high-level features always represen-

t semantic information (e.g. face), and low-level features

focus on class-agnostic spatial information (e.g. edge, tex-

ture). In order to encode more information in feature refine-

ment, we further propose a set-to-point style, which refines

each layer feature of one task by integrating all-level fea-

tures of the other task. For example, Ei
n−1 is refined by

four-level segmentation features {Sk
n−1, k = 1, ..., 4}. In

this case, the function g is defined as:

g = Conv(Ei
n−1 ⊗

4
∏

k=1

CU(Sk
n−1)), (5)

where CU is a scale transformation operation along with a

1 × 1 convolutional layer with 32 output channel number.

CU aims to ensure the spatial size consistence between seg-

mentation and edge features. When k > i, CU uses bilinear

upsampling operation with scale factor 2k−i. When k < i,
CU uses the bilinear downsampling operation with scale

factor 2i−k. When k = i, CU uses the identity function.

Besides, ⊗ is element-wise multiplication, and
∏

mean-

s element-wise multiplying all-level segmentation features.
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Correspondingly, the function f of this style is defined as:

f = Conv(Cat(Si
n−1, Cat4k=1[CU(Ek

n−1)])), (6)

where Cat[∗] means concatenating all-level edge features

of the (n − 1)th CRU. In this concatenation fashion,

Conv has 160 input channel number. Compared to the

point-to-point style, the segmentation and edge features are

further improved via fusing more information.

Selective Set-to-Point Style. When CNNs extract multi-

level features from an input image, the distractors in fea-

tures are gradually suppressed as CNNs go deeper. The

lower-level features contain many spatial details of back-

ground and the higher-level features focus more on discrim-

inative regions. Since there are more distractors in lower-

level features, we improve the original set-to-point style to

a selective version, and the function g is updated to:

g = Conv(Ei
n−1 ⊗

4
∏

k=i

CU(Sk
n−1)) (7)

And the function f is defined as:

f = Conv(Cat(Si
n−1, Cat4k=i[CU(Ek

n−1)])) (8)

In this selective version, for one level feature of one task,

the lower-level features of the other task are ignored in fea-

ture refinement. For example, the lowest-level edge fea-

ture E1
n−1 is still refined by four-level segmentation features

{Sk
n−1, k = 1, ..., 4}, but the top-most edge feature E4

n−1

is only refined by S4
n−1. Furthermore, the selective style

costs less computation overhead than the original set-to-

point style. Moreover, the performance increases because

less distractors have been introduced in feature integration.

Some visual examples of the three different styles of CRUs

are shown in Fig. 3.

With stacked multiple CRUs, we obtain the improved

multi-level features of the two tasks. Then we use two typi-

cal U-Net structures to fuse them respectively and generate

two H
4
× W

4
× C features by upsampling and concatenat-

ing features from high-level to low-level. Each upsampling

and concatenation operation is followed by a convolutional

layer as the CRU. With two additional 1 × 1 convolutional

layers, two upsampling operations (scale factor 4) and the

sigmoid function, we get the predicted segmentation and

edge maps (Ps, Pe). Given the ground truth segmentation

map GTs, we infer the edge label GTe as [24]. Then the

loss of the proposed framework is formulated as:

L = Lce(Ps, GTs) + Lce(Pe, GTe), (9)

where Lce is the standard cross entropy loss:

Lce = −
N
∑

j=1

∑

c∈{0,1}

δ(GT j = c) log p(P j = c|θ), (10)

where δ is the indicator function, θ ∈ {θs, θe} are parame-

ters corresponding to the maps P ∈ {Ps, Pe}.

4. Experiments

4.1. Implementation Details

The proposed model is implemented on the public Py-

torch toolbox, and we run it on a PC with 3.6Ghz CPU,

16GB RAM and a GTX Titan X GPU. We train the pro-

posed model on DUTS [28] training set as the previous

works [22, 30, 31]. For the convolutional layers in decoder-

s, their weights are initialized by normal distribution with

0.01 standard deviation and zero mean value. And each

convolutional layer is followed by a batch norm layer [16]

except the last two 1 × 1 convolutional layers. For data

augmentation, we use multi scale input images with sizes

of [0.75, 1, 1.25]. We use the stochastic gradient descent to

train the network with momentum of 0.9 and weight decay

of 0.0005. The batch size is set as 8 and the input image

is resized to 352 × 352. It takes 30 epochs for the whole

training procedure. The learning rate is set as 0.002 and

decreased by 10% at 20 epochs. We will make the code

available in the future.

4.2. Datasets and Evaluation Metrics

We evaluate the proposed approach on six tradition-

al benchmark datasets: ECSSD [33], PASCAL-S [21],

DUTS [28], HKU-IS [19], DUT-OMRON [34] and

THUR15K [6]. In addition, we evaluate attribute-based per-

formance on the challenging SOC dataset [8]. Six metrics

are mainly used to evaluate our model and existing state-of-

the-art algorithms. The first two metrics are mean absolute

error (MAE), maximum F-measure (maxF) (see [3] for their

definitions), and both are widely adopted in previous mod-

els [4, 15, 20, 22, 35]. Then weighted F-measure (Fω
β ) [25]

and structural similarity measure (Sα, α = 0.5) [9] are also

adopted to evaluate saliency maps. Besides, we also draw

the precision-recall (PR) and F-measure curves.

4.3. Ablation Analysis

In this section, we carefully analyze the variants of our

model. We set a baseline which does not use the proposed

CRU and contains two separate branches for the two tasks.

We select two benchmark datasets (DUT-OMRON [34],

and DUTS-TEST [28]) and two metrics (Fω
β and Sα) for

ablation analysis.

The Number of CRUs. We find that only using one

CRU does not obviously improve the performance. This

may be because one CRU has limited effect on enlarg-

ing receptive field. Therefore, we test the proposed mod-

el with even stacking number (2, 4, 6, 8), and the results

are shown in Table 1, which exhibits that the model with
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Table 1: Comparisons of the proposed model with different

number of CRUs. Each variant is named as SCRNk, k =
2, 4, 6, 8. Specially, baseline (k = 0) means two separate

branches without using the CRU.

Model FPS
DUT-OMRON DUTS-TEST

Fω
β Sα Fω

β Sα

Baseline 125 0.667 0.810 0.752 0.861

SCRN2 78 0.699 0.827 0.786 0.879

SCRN4 52 0.720 0.837 0.803 0.885

SCRN6 41 0.716 0.832 0.807 0.885

SCRN8 34 0.714 0.831 0.807 0.887

Table 2: Comparisons of the proposed bidirectional model

with its two unidirectional variants.

Method Direction
DUT-OMRON DUTS-TEST

Fω
β Sα Fω

β Sα

Baseline - 0.667 0.810 0.752 0.861

SCRN4

S → E 0.688 0.819 0.773 0.868

S ← E 0.683 0.814 0.772 0.866

S ↔ E 0.720 0.837 0.803 0.885

two CRUs (SCRN2) obviously outperforms the baseline.

When the number of CRUs is bigger than 4, the perfor-

mance grows slowly in DUTS-TEST dataset and decreases

in DUT-OMRON dataset. This is because adding too many

CRUs lead to over-fitting due to introducing too many pa-

rameters. In conclusion, we consider both the performance

and efficiency synthetically, and select the version of four

CRUs (SCRN4) as the final model.

Bidirectional model VS Unidirectional variants. In the

proposed bidirectional model (masked as S ↔ E here),

messages are passed between the multi-level features of the

two tasks. We compare it with two unidirectional variants:

only using edge features to refine segmentation features

(S ← E), and only using segmentation features to refine

edge features (S → E). Similar to the proposed bidirec-

tional model, the two variants also have four unidirectional

refinement units. The results are shown in Table 2. We can

find that both the two unidirectional variants outperform the

baseline. Although the segmentation features have not been

directly refined by edge features in the direction S → E,

the gradient of the edge branch still propagates to the

segmentation branch, which leads to indirect refinement.

As for the other direction S ← E, its performance is worse

than the final bidirectional model. This is because that the

edge features have not been improved in this direction,

which leads to limited enhancement of the segmentation

features. The proposed bidirectional model significantly

outperforms the two unidirectional variants. This indicates

that the two proposed direction-specific integration opera-

Table 3: We test the proposed model with different integra-

tion operations in each direction. Cat means concatenation

operation, and Mul means multiplication operation.

Method S → E S ← E
DUT-OMRON DUTS-TEST

Fω
β Sα Fω

β Sα

SCRN4

Cat Cat 0.679 0.814 0.764 0.866

Mul Mul 0.708 0.834 0.790 0.881

Mul Cat 0.720 0.837 0.803 0.885

Table 4: The performances of different styles of CRUs and

the effect of the residual learning.

Model Residual Style
DUT-OMRON DUTS-TEST

Fω
β Sα Fω

β Sα

SCRN4

� PPS 0.699 0.827 0.785 0.876

� SPS 0.707 0.833 0.787 0.880

� SSPS 0.720 0.837 0.803 0.885

� SSPS 0.719 0.835 0.802 0.885

tions collaboratively work well.

The effect of the interrelations. Motivated by the logical

operations between binary segmentation and edge maps,

we use two different integrating strategies in different

directions: multiplication operation for the direction

S → E, and concatenation operation for the other direction

S ← E. Here we test the effect of these operations and

the results are shown in Table 3. It is obviously that using

multiplication operation in both directions is better than

using concatenation operation. This is because the edge

features are easier to be affected by segmentation features

owing to the fact that the segmentation features contain

much more information than the edge features.

The effect of different styles of CRUs. Table 4 shows

the performances of different styles of the CRUs. SPS

outperforms PPS because it encodes more information in

feature refinement. Furthermore, SSPS obtains the highest

performance for it neglecting parts of lower-level features

which contain more distractors than the higher-level fea-

tures. In addition, we test the effect of the residual learning.

It is found that residual learning improves the performance

while hardly increasing the computation overhead.

4.4. Comparison with State-of-the-arts

We compare the proposed approach with 10 FCN-based

SOD algorithms: Amulet [36], SRM [30], DSS [15], PA-

GR [37], RANet [4], R3Net [7], C2S-Net [20], DGRL [31],

BMPM [35] and PiCANet-R [22]. For fair comparison, we

use the saliency maps provided by the authors or running

the available source codes. Besides, some algorithms are

trained on MSRA-B or MSRA10K (DSS, Amulet, RANet,

R3Net). So we re-train the proposed model on the MSRA-B
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Table 5: The maximum F-measure (maxF), mean absolute error (MAE) and frame per second (FPS) of the proposed model

and 10 state-of-the-art algorithms. Top three scores are shown in red, green and blue.

Method FPS
ECSSD HKU-IS PASCAL-S DUT-OMRON DUTS-TEST THUR15K

maxF↑ MAE↓ maxF↑ MAE↓ maxF↑ MAE↓ maxF↑ MAE↓ maxF↑ MAE↓ maxF↑ MAE↓
DSS [15] 23 0.908 0.063 0.898 0.051 0.826 0.102 0.764 0.072 0.813 0.065 0.761 0.083

Amulet [36] 20 0.913 0.059 0.887 0.053 0.828 0.095 0.737 0.083 0.779 0.085 0.756 0.093

RANet [4] 45 0.918 0.059 0.913 0.045 0.834 0.104 0.786 0.062 0.831 0.060 0.772 0.075

C2S-Net [20] 30 0.910 0.054 0.896 0.048 0.846 0.081 0.757 0.071 0.811 0.062 0.775 0.083

R3Net [7] 29 0.929 0.051 0.910 0.047 0.837 0.101 0.793 0.073 0.828 0.067 0.781 0.078

SRM [30] 37 0.917 0.056 0.906 0.046 0.844 0.087 0.769 0.069 0.826 0.059 0.778 0.077

PAGR [37] - 0.927 0.061 0.918 0.048 0.851 0.092 0.771 0.071 0.855 0.056 0.796 0.070

BMPM [35] 28 0.928 0.044 0.920 0.038 0.862 0.074 0.775 0.063 0.850 0.049 0.779 0.079

DGRL [31] 6 0.925 0.043 0.914 0.037 0.853 0.074 0.779 0.063 0.834 0.051 0.779 0.077

PiCANet-R [22] 5 0.935 0.047 0.919 0.043 0.863 0.075 0.803 0.065 0.860 0.051 0.790 0.081

Ours 52 0.950 0.038 0.934 0.034 0.882 0.064 0.812 0.056 0.888 0.040 0.814 0.066
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Figure 4: Quantitative comparisons of the proposed model with 10 state-of-the-art algorithms. The first row shows the

weighted F-measure and structure similarity scores. The second and third rows are PR and F-measure curves, respectively.

dataset and present the results in supplementary material.

Table 5 shows the maxF and MAE scores of the proposed

model and 10 state-of-the-arts algorithms on six traditional

benchmark datasets. We can see that the proposed model

outperforms existing algorithms in all cases. In the first row

of Fig. 4, we present Fω
β (Y-axis) and Sα (X-axis) scores

of the proposed model and the compared algorithms. This

demonstrate that we generate more precise maps when e-

valuating them in different aspects. In the second and third

rows of Fig. 4, we present the precision-recall curves and F-

measure curves. And our curves are obviously higher than

other curves. Fig. 5 shows the visual comparisons, which

demonstrate that the proposed model can handle various

challenging cases: complex scene (rows 4, 5), low contrast

(rows 1, 6), small object (rows 2, 3), large object (row 1)

and multiple objects (rows 2, 4). More visual comparison

results can be found in the supplementary material.

Attributes-based performance on SOC. In the challeng-

ing SOC dataset [8], each salient image is accompanied

by attributes that reflect common challenges in real-world

scenes. These annotations are helpful to investigate the pros

and cons of salient object detection models. Table 6 shows

the structure similarity scores of the proposed model and 10
state-of-the-art algorithms. We can see that our model ranks
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Image GT Ours PiCANet-R DGRL BMPM PAGR SRM R3Net C2S-Net RANet Amulet DSS

Figure 5: Visual comparisons with the existing methods in some challenging cases: complex scene, low contrast, small object,

large object, multiple objects.

Table 6: Attributes-based performance on the challenging SOC dataset [8]. We report the average structure similarity score

over all datasets with that specific attribute as [8]. The average salient-object performance is presented in the last row. Top

three scores are shown in red, green and blue.

Attr DSS Amulet RANet C2S-Net R3Net SRM DGRL BMPM PiCANet-R Ours

AC 0.744 0.756 0.694 0.771 0.703 0.794 0.791 0.775 0.796 0.824

BO 0.587 0.653 0.475 0.703 0.451 0.691 0.728 0.675 0.728 0.709

CL 0.689 0.718 0.619 0.744 0.680 0.747 0.756 0.737 0.771 0.790

HO 0.753 0.764 0.692 0.772 0.715 0.794 0.800 0.784 0.805 0.827

MB 0.758 0.756 0.691 0.806 0.696 0.817 0.827 0.813 0.860 0.870

OC 0.703 0.714 0.616 0.745 0.643 0.734 0.748 0.744 0.763 0.779

OV 0.702 0.744 0.622 0.755 0.639 0.775 0.778 0.769 0.807 0.803

SC 0.752 0.748 0.697 0.760 0.703 0.774 0.779 0.783 0.784 0.817

SO 0.707 0.675 0.678 0.705 0.686 0.727 0.727 0.729 0.738 0.766

Avg 0.719 0.715 0.664 0.738 0.683 0.757 0.759 0.756 0.774 0.793

first among seven attributes of the nine attributes. Besides,

our model also ranks first in average. These results indicate

that the proposed model outperforms existing algorithms in

the majority of challenging cases. Although we obtain s-

maller scores than DGRL and PiCANet in two attributes,

our model runs nearly 10 times faster than them (Table 5).

5. Conclusion

In this paper, we propose a novel framework for salient

object detection, called Stacked Cross Refinement Network

(SCRN). Motivated by the logical interrelations between bi-

nary segmentation and edge maps, we propose a Cross Re-

finement Unit (CRU) in which two direction-specific inte-

gration operations are designed to improve the multi-level

features of the two tasks. Incorporating stacked CRUs with

the typical U-Net structures, the proposed model detects

salient objects accurately and quickly. Experiments show

that the proposed model significantly outperforms existing

state-of-the art algorithms on six benchmark datasets and

ranks first in majority of scenes of the SOC dataset.
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