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Abstract

For matching pedestrians across disjoint camera views

in surveillance, person re-identification (Re-ID) has made

great progress in supervised learning. However, it is in-

feasible to label data in a number of new scenes when ex-

tending a Re-ID system. Thus, studying unsupervised learn-

ing for Re-ID is important for saving labelling cost. Yet,

cross-camera scene variation is a key challenge for unsu-

pervised Re-ID, such as illumination, background and view-

point variations, which cause domain shift in the feature

space and result in inconsistent pairwise similarity distri-

butions that degrade matching performance. To alleviate

the effect of cross-camera scene variation, we propose a

Camera-Aware Similarity Consistency Loss to learn con-

sistent pairwise similarity distributions for intra-camera

matching and cross-camera matching. To avoid learning

ineffective knowledge in consistency learning, we preserve

the prior common knowledge of intra-camera matching in

the pretrained model as reliable guiding information, which

does not suffer from cross-camera scene variation as cross-

camera matching. To learn similarity consistency more ef-

fectively, we further develop a coarse-to-fine consistency

learning scheme to learn consistency globally and locally in

two steps. Experiments show that our method outperformed

the state-of-the-art unsupervised Re-ID methods.

1. Introduction

In recent years, person re-identification (Re-ID) has

drawn much attention in surveillance applications. Many

works focus on supervised learning [14, 45, 18, 6, 16, 1, 29]

and have made great progress. However, in practise, man-

ually labelling data for training is costly when developing

Re-ID system for a large number of new scenes. To re-

duce labelling amount and exploit unlabelled data in a new
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Figure 1. Illustration of the camera-aware similarity inconsisten-

cy problem. We match samples in two cameras (denoted by cam

1 and cam 2) on the DukeMTMC dataset [48] using a ResNet-50

model [12] pretrained on the MSMT17 dataset [34]. The pairwise

similarities are computed between each pair of samples in intra-

camera matching or cross-camera matching and the distributions

are shown on the left. Top-8 matchings retrieved by cosine simi-

larity are shown on the right with the correct matchings indicated

by green bounding boxes. The cross-camera scene variation leads

to domain shift in the feature space and results in inconsistent pair-

wise similarity distributions that degrade matching performance.

scene, some previous works attempt to study unsupervised

and transfer learning for Re-ID [26, 13, 40, 32, 8, 34, 7, 49],

in which some recent advanced methods [40, 34, 7, 49]

focus on scene variation between cameras. Cross-camera

scene variation is a key challenge for unsupervised Re-ID
1, since illumination, background and viewpoint vary from

camera to camera and cause domain shift in feature space.

To show the effect of cross-camera scene variation, we

visualize pairwise similarity distributions and some match-

ing examples in Figure 1. We match samples in two cameras

on the DukeMTMC dataset [48]. The pairwise similarities

are computed between each pair of samples in intra-camera

matching or cross-camera matching by a ResNet-50 model

1In this paper, unsupervised person re-identification is studied in the

unsupervised domain adaptation setting, which learns a model for the tar-

get domain given labelled source data and unlabelled target data.
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[12] pretrained on the MSMT17 dataset [34]. As shown in

the distribution figure, the two pairwise similarity distribu-

tions are inconsistent that the average pairwise similarity of

cross-camera matching is smaller than that of intra-camera

matching, because the pairwise similarity is negatively re-

lated to the degree of scene variations of the camera pair,

such as illumination, background and viewpoint variation-

s. Matching based on pairwise similarities of inconsistent

distributions leads to failure of retrieving the correct cross-

camera sample in the top ranking list, as shown on the right

of Figure 1. We call it the camera-aware similarity incon-

sistency problem, which is caused by cross-camera scene

variation, a serious problem for unsupervised Re-ID.

To alleviate the effect of cross-camera scene variation,

we solve the camera-aware similarity inconsistency prob-

lem by learning consistent pairwise similarity distribution-

s for intra-camera and cross-camera matching. To avoid

learning ineffective knowledge in consistency learning, we

exploit the prior common knowledge of Re-ID (e.g., pre-

trained model) as guiding information for regularization.

We preserve the prior common knowledge of intra-camera

matching to guide learning cross-camera matching, since

intra-camera matching does not suffer from cross-camera

scene variation as cross-camera matching and thus is rela-

tively more reliable. To achieve this, we propose a Camera-

Aware Similarity Consistency Loss, which jointly learns

intra-/cross-camera similarity consistency and preserves the

common knowledge in intra-camera pairwise similarities.

To learn similarity consistency more effectively, we

model pairwise similarities not only in the global feature

space (i.e., all sample pairs) but also in the local neigh-

bourhood of the feature space (i.e., the sample pairs of

top-ranked nearest neighbours), since retrieving correct top-

ranked samples for Re-ID relies on the nearest neighbours.

Hence, we further develop a coarse-to-fine consistency

learning scheme to learn consistency globally and locally.

Compared with advanced unsupervised Re-ID method-

s [40, 34, 7, 49] that handle cross-camera scene variation

by camera-to-camera alignment, we explore the relation of

pairwise similarity between intra-camera and cross-camera

matching, so that cross-camera matching can benefit from

the relatively reliable knowledge in intra-camera matching.

In summary, the contributions of this paper are: (1) We

propose a Camera-Aware Similarity Consistency Loss to al-

leviate cross-camera scene variation for unsupervised Re-

ID, which explores the relation of pairwise similarity be-

tween intra-camera and cross-camera matching; (2) We fur-

ther develop a coarse-to-fine consistency learning scheme

to learn consistency more effectively with our loss.

2. Related Work

Supervised Person Re-Identification. Person re-

identification has witnessed a fast growing development re-

cently, from feature design [10, 9, 20, 18, 22, 47, 38] to

distance metric learning [35, 10, 27, 14, 45, 23, 25, 17, 38,

21, 24, 18, 6, 46, 39, 41, 33, 3] and end-to-end deep learn-

ing [16, 1, 36, 37, 31, 19, 42, 43, 48, 29]. With abundant

labelled data, the supervised models achieve high perfor-

mance, but heavy labelling cost hinders the scalability.

Unsupervised Person Re-Identification. Recently, reduc-

ing labelling cost for person re-identification has drawn

more attention, since it is infeasible to label a large number

of identities for each new scene. Most works study unsuper-

vised learning [26, 13, 40, 32, 8, 34, 7, 4, 50, 49, 15] to learn

from unlabelled data for Re-ID. Among the advanced unsu-

pervised methods, most of them rely on source data of other

scenes for transfer learning or learning prior knowledge of

Re-ID. [40] and [8] use source data for pretraining and learn

from unlabelled target data by clustering and finetuning.

[34, 7, 4, 50, 49] learn to transfer knowledge by image-to-

image transformation from source images to target images.

[32] learns to transfer knowledge from attribute labels. [15]

learns from associating tracklets in videos across cameras.

These methods exploit unlabelled data in different ways

and most of them alleviate cross-camera scene variation ex-

plicitly or implicitly. They handle cross-camera scene vari-

ation by camera-to-camera alignment either at feature level

[40] or at image level [34, 7, 4, 50, 49]. Our method also

focus on alleviating cross-camera scene variation, which is

significant for unsupervised Re-ID. Rather than camera-to-

camera alignment, we further explore the relation of pair-

wise similarity between intra-camera matching and cross-

camera matching, which is ignored in existing methods. We

aim to learn consistent pairwise similarity distributions for

intra-camera and cross-camera matching with the guidance

of prior common knowledge of intra-camera matching.

Domain Adaptation. For alignment between cameras for

alleviating the effect of cross-camera scene variation, do-

main adaptation techniques are closely related. For exam-

ple, MMD [11], CORAL [28] and ADDA [30] are represen-

tative domain adaptation methods. MMD [11] minimizes

the difference between the means of two domains. CORAL

[28] minimizes the difference between the covariance ma-

trices of two domains. ADDA [30] aligns two domains

by adversarial learning. They are for domain alignment in

the feature space, while our method learns consistency of

pairwise similarity distributions of intra-camera matching

and cross-camera matching in the similarity space and our

method can benefit from the relation of pairwise similarity

between intra-camera and cross-camera matching.

3. Camera-Aware Similarity Consistency

To study unsupervised Re-ID, we first formulate this

problem as follows. In a new scene with Ncam cameras, a

set of unlabelled pedestrian images {Ic,i} can be obtained,
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in which Ic,i is the i-th person image in camera c. We aim to

learn a model H from the unlabelled data {Ic,i} to compute

the similarities between samples for retrieval.

3.1. Similarity Inconsistency Problem

As mentioned in Section 1, cross-camera scene variation

is a serious problem for unsupervised Re-ID and it causes

domain shift in the feature space and inconsistent pairwise

similarity distributions. For visualization, we randomly se-

lect three cameras in the DukeMTMC [48] dataset denoted

by cam1, cam2, cam3 to analyse the pairwise similarity dis-

tributions for all camera pairs. We apply a ResNet-50 [12]

model pretrained on the MSMT17 [34] dataset for comput-

ing similarities. The pairwise similarity distributions are

shown in the first distribution figure in Figure 2.

As shown in the first distribution figure, the three dis-

tributions of cross-camera matching are similar and so are

those of intra-camera matching. The average pairwise simi-

larity of cross-camera matching is smaller than that of intra-

camera matching as pairwise similarity is negatively related

to the degree of cross-camera scene variation. Inconsistency

of pairwise similarity distributions caused by cross-camera

scene variation degrades matching performance for unsu-

pervised Re-ID, as shown in Figure 1 in Section 1. We call

this the camera-aware similarity inconsistency problem.

To alleviate cross-camera scene variation, we propose

camera-aware similarity consistency learning, which aims

at learning consistent distributions of intra-camera similari-

ty and cross-camera similarity, as shown in Figure 2.

3.2. Similarity Consistency Learning

3.2.1 Intra-/Cross-Camera Similarity Consistency

To address the camera-aware similarity inconsistency prob-

lem, we aim to minimize the difference between pairwise

similarity distributions of intra-camera matching and cross-

camera matching. Let H( · ;Θ1) denote a learnable feature

extractor parameterized by Θ1 and xp,i = H(Ip,i;Θ1) ∈
R

d denote the feature of image Ip,i. In our case, the

feature xp,i is normalized by ℓ2-norm, so that the inner

product of two features x
⊤

p,ixp,j is cosine similarity. Let

Xp = [xp,1,xp,2, ...,xp,Np
] ∈ R

d×Np denote the feature

matrix extracted by model H( · ;Θ1) during training.

To learn consistent pairwise similarity distributions, we

compute the pairwise similarities for intra-camera matching

and cross-camera matching. For camera p, the intra-camera

similarity matrix is X
⊤
p Xp, in which the element x⊤

p,ixp,j

in the i-th row and the j-th column is the similarity between

samples Ip,i and Ip,j . Likewise, for two cameras p and q,

the cross-camera similarity matrix is X⊤
p Xq .

Then, to minimize the difference between pairwise sim-

ilarity distributions of intra-camera matching and cross-

camera matching, we minimize the difference of the mean-

Cross-camera
matching

Intra-camera
matching

Similarity
consistency 

learning

Direct transfer
to unseen scenes
without adaptation

Adaptation by
camera-aware similarity 

consistency learning

Similarity 
preserving

Figure 2. Illustration of camera-aware similarity consistency learn-

ing. The key idea is learning consistent pairwise similarity dis-

tributions for intra-camera and cross-camera matching with the

relatively reliable common knowledge of intra-camera matching

preserved as guidance. We show some pairwise similarity distri-

butions of different camera pairs in three cameras in DukeMTMC

[48] (denoted by cam 1, cam2 and cam3). The first distribution

figure shows the case of directly applying a ResNet-50 model [12]

(pretrained on MSMT17 [34]) and the second distribution figure

shows the case after camera-aware similarity consistency learning.

The pairwise similarity distributions of cross-camera matching be-

comes consistent with intra-camera matching after learning.

s and standard deviations of all matrix elements between

intra-camera similarity matrix X
⊤
p Xp and cross-camera

similarity matrix X
⊤
p Xq as follow:

min
Θ1

Lcon =
∑

p 6=q

(mean(X⊤
p Xp)−mean(X⊤

p Xq))
2

+ (std(X⊤
p Xp)− std(X⊤

p Xq))
2
,

(1)

where mean(·) and std(·) denote the functions of comput-

ing mean and standard deviation for all elements in the input

matrix, respectively. We call Lcon the intra-/cross-camera

similarity consistency loss.

3.2.2 Intra-Camera Similarity Preservation

To avoid learning ineffective knowledge by similarity con-

sistency learning, we exploit prior knowledge of Re-ID

as guiding information for regularization, which can be

learned by labelled source data in other scenes. To ob-

tain prior common knowledge of Re-ID, we pretrain the

model H on the currently largest Re-ID benchmark dataset

MSMT17 [34]. Let Θpre denote the fixed pretrained pa-

rameters of H . To benefit from the common knowledge,

the parameters Θ1 of model H are initialized by Θpre.

The knowledge of Re-ID is embedded in the pairwise

similarities between features. To extract the common

knowledge of Re-ID for a new scene of camera p, we extract
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the feature fp,i = H(Ip,i;Θpre) ∈ R
d for image Ip,i by the

pretrained model, which is fixed during training for com-

puting pairwise similarity. Let Fp = [fp,1, fp,2, ..., fp,Np
] ∈

R
d×Np denote the feature matrix of images {Ip,i}. To ex-

ploit reliable knowledge as guiding information, we choose

to preserve the common knowledge of intra-camera match-

ing, since there is no cross-camera scene variation when

matching samples in the same camera, and thus it is rela-

tively more reliable as compared to cross-camera matching

that suffers from cross-camera scene variation.

To preserve the common knowledge of intra-camera

matching, the pairwise similarities should be preserved

as those of the pretrained model. For camera p, we

minimize the distance between the intra-camera similari-

ty matrix X
⊤
p Xp of the model H( · ;Θ1) and the intra-

camera similarity matrix F
⊤
p Fp of the fixed pretrained mod-

el H( · ;Θpre) as follow:

min
Θ1

Lpre =

Ncam
∑

p=1

dist(X⊤
p Xp,F

⊤
p Fp), (2)

where dist is a distance metric for matrices. We call Lpre

the intra-camera similarity preserving loss.

In our case of mini-batch learning, the feature dimension

d is larger than the batch size Np. Generally, rank(Xp) =
rank(Fp) = Np can be satisfied and the similarity matrices

X
⊤
p Xp and F

⊤
p Fp have full rank, so that they are symmet-

ric positive definite (SPD) matrices, which are intrinsically

lying on a Riemannian manifold instead of a vector space,

so we measure the distance using a Log-Euclidean Rieman-

nian framework [2]. The intra-camera similarity preserving

loss Lpre is reformulated by

min
Θ1

Lpre =

Ncam
∑

p=1

∥

∥

∥
log(X⊤

p Xp)− log(F⊤
p Fp)

∥

∥

∥

2

F
, (3)

where log(A) is the matrix logarithm of A. For any SPD

matrix A, the logarithm of it is

log(A) = Udiag(log(ǫ1), log(ǫ2), ..., log(ǫN ))U⊤, (4)

where U is the orthonormal matrix of eigenvectors and ǫi
is the eigenvalue, which are obtained from the eigendecom-

position A = Udiag(ǫ1, ǫ2, ..., ǫN )U⊤.

3.2.3 Camera-Aware Similarity Consistency Loss

To analyse joint learning of Lcon and Lpre, we first analyse

the relation between them. In the intra-/cross-camera simi-

larity consistency loss Lcon, the intra-camera similarity ma-

trix X
⊤
p Xp and the cross-camera similarity matrix X

⊤
p Xq

are used to learn consistent pairwise similarity distributions.

In the intra-camera similarity preserving loss Lpre, X⊤
p Xp

preserves the common knowledge of the pretrained mod-

el H( · ;Θpre). When Lcon and Lpre are jointly learned,

the intra-camera similarity matrix X
⊤
p Xp plays a role as

a bridge between cross-camera matching and the reliable

common knowledge of intra-camera matching in the pre-

trained model. Thus, Lpre provides prior common knowl-

edge for regularizing consistency learning in Lcon.

The objective function of camera-aware consistency

learning is
min
Θ1

L = Lpre + λLcon, (5)

where λ is a trade-off parameter. We call L the Camera-

Aware Similarity Consistency Loss.

Analysis. We analyse the dependence of Lpre and Lcon.

When the intra-/cross-camera similarity consistency loss

Lcon is used individually, without preserving reliable com-

mon knowledge of intra-camera matching of the pretrained

model as regularization, the incorrect knowledge of cross-

camera matching hinders effective consistency learning.

When the intra-camera similarity preservation loss Lpre is

used individually, preserving the knowledge that already

learned by the pretrained model cannot bring improvement.

Thus, Lcon and Lpre should be jointly learned.

To visualize the effect of our Camera-Aware Similarity

Consistency Loss, we show the pairwise similarity distribu-

tions of different camera pairs after camera-aware similarity

consistency learning in the second distribution figure in Fig-

ure 2. Compared to the distributions of direct transfer in the

first distribution figure, the pairwise similarity distributions

of all camera pairs become more consistent and the distri-

butions of intra-camera matching are preserved.

4. Coarse-to-Fine Consistency Learning

In the last section, we introduce the Camera-Aware Sim-

ilarity Consistency Loss, which learns consistent pairwise

similarity distributions of intra-camera matching and cross-

camera matching. To learn similarity consistency more ef-

fectively with the loss, we model pairwise similarities using

not only all sample pairs in the global feature space but al-

so sample pairs of top-ranked nearest samples in the local

neighbourhood of the feature space, since retrieving correct

top-ranked samples for Re-ID relies on the nearest neigh-

bours. Learning similarity consistency in the global feature

space can be regarded as learning coarse consistency. Then,

based on coarse consistency, we aim to learn finer consis-

tency in the local neighbourhood of the feature space.

We develop a coarse-to-fine consistency learning scheme

as shown in Figure 3, which takes two steps:

(1) Coarse consistency learning in the global feature space;

(2) Fine consistency learning in the local neighbourhood of

the feature space.

Step 1: Coarse Consistency Learning. To learn coarse

consistency, we model pairwise similarities in the global

feature space, that is, all sample pairs are used. For mini-

batch learning, we use samples of two randomly sampled

cameras p and q in each batch and the samples Ip,i, Iq,j
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Figure 3. Illustration of the coarse-to-fine consistency learning scheme in Section 4. Given unlabelled data of Ncam cameras for learning,

the feature extractor model H is trained in two steps. In coarse consistency learning (step 1), the model H is initialized by pretrained

parameters Θpre, and then the Camera-Aware Similarity Consistency Loss L in Eq. (5) is optimized in the global feature space. In

fine consistency learning (step 2), the model H is initialized by the parameters Θ1 learned in step 1, and then the step 2 Camera-Aware

Similarity Consistency Loss L2 in Eq. (8) is optimized to further learn similarity consistency in local neighbourhood of the feature space.

The scheme aims at learning consistent pairwise similarity distributions globally and locally from coarse to fine (best viewed in colour).

are randomly sampled from all samples. Then the Camera-

Aware Similarity Consistency Loss (Eq. (5)) is applied to

learn the model H( · ;Θ1) for step 1.

Step 2: Fine Consistency Learning. Fine consistency

learning is based on coarse consistency learning. To learn

the model H( · ;Θ2) parameterized by Θ2 for step 2, we

first initialize H( · ;Θ2) by the parameters Θ1 learned in

step 1. Then, we further model pairwise similarities in the

local neighbourhood in the feature space, that is, the sample

pairs of top-ranked nearest samples are used.

For mini-batch learning, we use samples of two random-

ly sampled cameras p and q. For camera c ∈ {p, q}, Xc is

the feature matrix extracted by model H( · ;Θ2) of step 2

and let Fc(s1) denote the fixed feature matrix extracted by

the model H( · ;Θ1) trained in step 1.

When forming a batch for computing intra-/cross-

camera similarity consistency loss, we first randomly sam-

ple one sample Ip,r of camera p. Then, we search for the

top-K nearest samples for Ip,r in both camera p and cam-

era q to extract feature matrices X
(K)
p,(r),X

(K)
q,(r) ∈ R

d×K .

The cosine similarities for searching nearest neighbours are

computed by fixed feature matrices Fp(s1) and Fq(s1).

The step 2 intra-/cross-camera similarity consistency

loss Lcon2 is

min
Θ2

Lcon2 =
∑

r,p 6=q

(mean(X
(K)⊤

p,(r)
X

(K)

p,(r)
) − mean(X

(K)⊤

p,(r)
X

(K)

q,(r)
))

2

+ (std(X
(K)⊤

p,(r)
X

(K)

p,(r)
) − std(X

(K)⊤

p,(r)
X

(K)

q,(r)
))

2
,

(6)

where mean(·) and std(·) are defined as in Eq. (1). The

terms mean(X
(K)⊤
p,(r) X

(K)
p,(r)) and std(X

(K)⊤
p,(r) X

(K)
p,(r)) are re-

garded as constants in optimization, since we expect to keep

the learned reliable knowledge of intra-camera matching as

much as possible in this finetuning process.

When forming Xc and Fc(s1) of camera c ∈ {p, q} in a

batch for computing intra-camera similarity preserving loss,

the samples are randomly sampled. The step 2 intra-camera

similarity preserving loss Lpre2 is

min
Θ2

Lpre2 =
∑

c∈{p,q}

∥

∥

∥
log(X⊤

c Xc)− log(F⊤
c(s1)Fc(s1))

∥

∥

∥

2

F
, (7)

where log(·) is defined as in Eq. (3).

The step 2 Camera-Aware Similarity Consistency Loss

L2 for fine consistency learning is

min
Θ2

L2 = Lpre2 + λ2Lcon2, (8)

where λ2 is a trade-off parameter.

In testing stage, cosine distance between features ex-

tracted by model H( · ;Θ2) trained by the coarse-to-fine

consistency learning scheme is used for retrieval.

5. Experiments

We evaluated on two large person re-identification

benchmark datasets Market-1501 [44] and DukeMTMC

[48]. We compared our method with the state-of-the-art un-

supervised person re-identification methods and further e-

valuated the key components and parameters in our method.

Experiment Settings and Datasets. The experiments were

conducted on Market-1501 [44] and DukeMTMC [48] in
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the unsupervised setting. Market-1501 [44] contains 32,217

images of 1,501 identities in 6 cameras. DukeMTMC-

reID [48] consists of 36,411 images of 1,812 identities in

8 cameras. We followed the standard train/test split of

Market-1501 [44] and DukeMTMC [48]. In training, we

first pretrained our model on MSMT17 [34] to learn com-

mon knowledge of Re-ID. Then, we trained our model on

the training set of Market-1501 or DukeMTMC without us-

ing identity labels. The performance metrics, cumulative

matching characteristic (CMC) and mean Average Precision

(mAP), were applied following the standard evaluation pro-

tocols in [44] and [48].

Implementation Details. For the feature extractor H , we

adopted a ResNet-50 [12] model trained by the strategy of

PCB [29]. We initialized the feature extractor H by pre-

training on the training set of MSMT17 [34]. The input

images were resized to 384 × 128. Our model was trained

in two steps by coarse-to-fine consistency learning scheme

(Section 4). In the coarse consistency learning step, we set

λ = 10.0 (the weight of Lcon in Eq. (5)). In the fine consis-

tency learning step, we set λ2 = 1.0 (the weight of Lcon2 in

Eq. (8)) and set K = 16 (the number of top-ranked samples

in Eq. (6)). For mini-batch learning, we used batch size

of 64. In each batch, we randomly sampled two cameras

and then sampled 32 samples for each camera, of which the

sampling method is introduced in Section 4. When com-

puting the terms Lpre in Eq. (3) and Lpre2 in Eq. (7), they

were divided by batch size to normalize the scales. For opti-

mization, we used SGD optimizer [5] with momentum 0.9.

We used 15 epochs for both coarse consistency learning and

fine consistency learning. The learning rate was 0.1 in the

first 10 epochs and was reduced to 0.01 in the last 5 epochs.

5.1. Comparison to Related Unsupervised Models

We compared with unsupervised Re-ID methods includ-

ing unsupervised features LOMO [18], BOW [44] and un-

supervised learning models UMDL [26], PTGAN [34],

PUL [34], CAMEL [40], SPGAN [7], TJ-AIDL [32] and

HHL [49]. The experiment results are shown in Table 1.

We also evaluated using Market-1501 [44] or DukeMTMC

[48] for pretraining and reported the results in Table 2.

Our method outperformed all compared unsupervised

Re-ID methods. Among the competitive compared meth-

ods, CAMEL [40], PTGAN [34], SPGAN [7], HHL [49]

also aim at alleviating the effect of cross-camera scene vari-

ation mentioned in Section 1. Compared to these method-

s that focus on camera-to-camera alignment, our method

further explore the relation of pairwise similarity between

intra-camera matching and cross-camera matching, so that

cross-camera matching can benefit from the reliable prior

common knowledge in intra-camera matching of the pre-

trained model, which is ignored in existing methods.

Table 1. Comparison with the state-of-the-art unsupervised Re-ID

methods. Our model is pretrained using MSMT17 [34] as source

dataset. “R-k” denotes rank-k accuracy (%). “mAP” denotes

mean average precision (%). “-” denotes not reported.

Methods
Market-1501 DukeMTMC

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

LOMO [18] 27.2 41.6 49.1 8.0 12.3 21.3 26.6 4.8

BOW [44] 35.8 52.4 60.3 14.8 17.1 28.8 34.9 8.3

UMDL [26] 34.5 52.6 59.6 12.4 18.5 31.4 37.6 7.3

PTGAN [34] 45.5 60.7 66.7 20.5 30.0 43.4 48.5 16.4

PUL [8] 51.5 70.1 76.8 22.8 41.1 56.6 63.0 22.3

CAMEL [40] 54.5 - - 26.3 - - - -

SPGAN [7] 57.7 75.8 82.4 26.7 46.4 62.3 68.0 26.2

TJ-AIDL [32] 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0

HHL [49] 62.2 78.8 84.0 31.4 46.9 61.0 66.7 27.2

Ours 65.4 80.6 86.2 35.5 59.3 73.2 77.8 37.8

Table 2. Comparison with unsupervised Re-ID methods using

Market-1501 [44] or DukeMTMC [48] as source dataset for pre-

training. The notations are the same as those in Table 1.
Source dataset DukeMTMC Market-1501

Target dataset Market-1501 DukeMTMC

Methods R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

PUL [8] 51.5 70.1 76.8 22.8 41.1 56.6 63.0 22.3

TJ-AIDL [32] 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0

HHL [49] 62.2 78.8 84.0 31.4 46.9 61.0 66.7 27.2

Ours 64.7 80.2 85.6 35.6 51.5 66.7 71.7 30.5

Table 3. Component-wise evaluation of our method. “Pretrained

model” is the baseline. “Lpre (Eq. (3))” and “Lcon (Eq. (1))” are

the two terms in our Camera-Aware Similarity Consistency Loss L

(Eq. (5)). “Lpre (w/o log)” denotes using Euclidean metric instead

of Log-Euclidean metric in Lpre. “Lpre + Lcon (step 1)” denotes

our model trained by coarse consistency learning in step 1. “Full

model (step 1 & 2)” denotes the full version of our method with

two steps. The other notations are the same as those in Table 1.

Methods
Market-1501 DukeMTMC

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

Pretrained model 51.5 67.2 73.7 24.9 47.6 64.2 70.4 30.6

Lpre (Eq. (3)) 51.2 66.9 73.4 25.1 47.9 63.8 69.9 31.0

Lcon (Eq. (1)) 54.4 72.3 78.7 23.6 40.6 57.1 63.7 18.9

Lpre (w/o log) + Lcon 59.2 75.4 81.4 31.4 55.4 70.9 76.2 36.2

Lpre + Lcon (step 1) 61.4 78.0 83.8 32.1 56.6 71.8 76.9 35.8

Full model (step 1 & 2) 65.4 80.6 86.2 35.5 59.3 73.2 77.8 37.8

5.2. Further Evaluations

In this section, we further evaluate and analyse the com-

ponents and parameters of our method.

Evaluation of Key Components. We verified the effective-

ness of key components in our method, including the terms

Lcon and Lpre and two steps in coarse-to-fine consistency

learning. The component-wise evaluations are as follows.

The pretrained model was regarded as the baseline mod-

el. In coarse-to-fine consistency learning in step 1, we ap-

plied the two terms in our Camera-Aware Similarity Con-

sistency Loss L (Eq. (5)) individually, i.e., Lpre (Eq. (3))

and Lcon (Eq. (1)), to show that they rely on each other.

Then, we applied L by combining Lpre and Lcon (denoted

by “Lpre + Lcon (step 1)”), i.e., coarse consistency learning
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Figure 4. Effect of parameters λ, λ2 and K. Parameter λ is the weight of intra-/cross-camera similarity consistency loss Lcon in L in Eq.

(5) in coarse consistency learning in step 1. Parameter λ2 is the weight of intra-/cross-camera similarity consistency loss Lcon2 in L2 in

Eq. (8) in fine consistency learning in step 2. Parameter K is the number of top-ranked samples for computing Lcon2 in Eq. (6).

in step 1. To show the effectiveness of the Log-Euclidean

metric in Lpre, we also compared with the case of using Eu-

clidean metric (denoted by “Lpre (w/o log) + Lcon”). Based

on the model of step 1, we further applied fine consistency

learning in step 2, which is the full version of our model

(denoted by “Full model (step 1 & 2)”). The experiment

results are shown in Table 3.

It can be observed that, using Lpre or Lcon individually

cannot bring improvement and the performance was even

worse for Lcon on DukeMTMC [48]. As analysed in Sec-

tion 3.2.3, Lcon is the leading role for consistency learning;

while Lpre provides prior common knowledge as guiding

information for regularizing consistency learning in Lcon to

avoid learning ineffective knowledge. Thus, they rely on

each other. When Lpre and Lcon are jointly learned, “Lpre

+ Lcon (step 1)” achieved the best performance in step 1.

“Lpre + Lcon (step 1)” is better than “Lpre (w/o log)

+ Lcon” in most cases, since Log-Euclidean metric in Lpre

can better preserve similarity than Euclidean metric because

of the symmetric positive definite (SPD) property of intra-

camera similarity matrices as explained in Section 3.2.3.

With fine consistency learning in step 2 in “Full mod-

el (step 1 & 2)”, the performance was further improved as

compared to “Lpre + Lcon (step 1)”, which shows the effec-

tiveness of our coarse-to-fine consistency learning scheme.

Similarity Consistency Learning v.s. Feature Distribu-

tion Alignment. We propose to alleviate the effect of cross-

camera scene variation by camera-aware similarity consis-

tency learning. The cross-camera scene variation problem

can also be regarded as feature distribution misalignmen-

t problem, thus domain adaptation methods for distribution

alignment are closely related to this problem. We compared

with two representative methods MMD [11] and CORAL

[28]. When applied to Re-ID, MMD [11] minimizes the

differences between the means of different cameras and

CORAL minimizes the differences between the covariance

matrices of different cameras. We also compared with the

case of replacing our intra-/cross-camera similarity consis-

tency loss Lcon in L with MMD or CORAL to show the

Table 4. Comparison with domain adaptation methods MMD [11]

and CORAL [28] for feature distribution alignment. “Pretrained

model” is the baseline. The other notations are as those in Table 3.

Methods
Market-1501 DukeMTMC

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

Pretrained model 51.5 67.2 73.7 24.9 47.6 64.2 70.4 30.6

MMD [11] 28.1 46.9 55.5 8.3 30.2 46.8 53.9 12.2

CORAL [28] 23.7 39.3 47.3 8.1 14.0 26.4 32.8 7.2

Lpre (Eq. (3)) + MMD 58.7 75.2 81.2 30.4 55.1 70.8 76.1 35.6

Lpre (Eq. (3)) + CORAL 58.5 75.4 81.7 29.7 54.6 70.8 76.0 34.8

Lpre + Lcon (step 1) 61.4 78.0 83.8 32.1 56.6 71.8 76.9 35.8

Full model (step 1 & 2) 65.4 80.6 86.2 35.5 59.3 73.2 77.8 37.8

advantage of similarity consistency learning against feature

distribution alignment. The results are reported in Table 4.

The results of MMD [11] and CORAL [28] are even

much worse than the baseline pretrained model, because

simply minimizing the differences between feature distribu-

tions without constraint degrades the common knowledge

of Re-ID in the pretrained model and thus cannot avoid

learning ineffective knowledge. When our intra-camera

similarity preserving loss Lpre was applied with MMD

and CORAL, feature distribution alignment with preserved

common knowledge of intra-camera matching can bring im-

provement. This indicates that the common knowledge pre-

served in intra-camera similarity is reliable and significant.

Both our “Lpre + Lcon (step 1)” and “Full model (step

1 & 2)” outperformed “Lpre (Eq. (3)) + MMD” and “Lpre

(Eq. (3)) + CORAL”, which shows the advantage of our

camera-aware similarity consistency learning and coarse-

to-fine consistency learning scheme. Compared with MMD

and CORAL that align distribution in the feature space, our

similarity consistency learning aligns the pairwise similari-

ty distributions of intra-camera matching and cross-camera

matching in the similarity space, which can benefit from

the common knowledge preserved in similarities of intra-

camera matching and thus is more robust. Moreover, MMD

and CORAL cannot model samples in local neighbourhood

in the feature space as our full model trained by the coarse-

to-fine consistency learning scheme.

Parameter Evaluation. There are mainly three key param-

eters in our method, which are the weight λ of Lcon in L
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Figure 5. Some matching examples of direct transfer (applying the pretrained model), coarse consistency learning (step 1) and fine consis-

tency learning (step 2) in testing on DukeMTMC [48] are shown. The correct matchings are indicated by green bounding boxes with ticks.

In the matching results of direct transfer, incorrect samples in cameras with very similar background as compared to the query image are

retrieved because of inconsistent pairwise similarity distributions of different camera pairs caused by cross-camera scene variation. Our

method can improve matching results by coarse-to-fine consistency learning in two steps.

in Eq. (5), the weight λ2 of Lcon2 in L2 in Eq. (8) and the

number of top-ranked samples K in Lcon2 in Eq. (6). We

evaluated and analysed these parameters on Market-1501

[44] and DukeMTMC [48] as follows.

- Effect of Parameter λ. Parameter λ is the weight of

Lcon in Eq. (5) controlling the effect of intra-/cross-camera

similarity consistency learning, which is used in coarse con-

sistency learning in step 1. We varied λ from 0.0 to 100.0
and show the testing rank-1 accuracies of step 1 in Figure

4(a). With λ increasing in a wide range from 0.0 to 10.0, the

improvement was increasingly significant. When λ was too

large, Lcon dominated L, so that the regularization of Lpre

was weakened and cannot provide guiding information.

- Effect of Parameter λ2. Parameter λ2 is the weight

of Lcon2 in Eq. (8) controlling the effect of intra-/cross-

camera similarity consistency learning in the local neigh-

bourhood of the feature space for fine consistency learning

in step 2. As a step of further improving the model based

on coarse consistency learning, we set λ2 for fine consis-

tency learning smaller than λ as the strategy of finetuning a

model. We varied λ2 from 0.0 to 10.0 and show the testing

rank-1 accuracies of step 2 in Figure 4(b). The performance

was improved when λ2 was from 0.01 to 1.0.

- Effect of Parameter K. K is the number of top-ranked

samples for computing the intra-/cross-camera similarity

consistency loss Lcon2 in Eq. (6) for fine consistency learn-

ing in step 2. We varied K from 4 to 32 and show the test-

ing rank-1 accuracies in Figure 4(c). It can be observed that

fine consistency learning is rather not sensitive to K and the

performance variation is lower than 2% when K ∈ [4, 32].

Matching Examples. To have better visual understanding,

we show some matching examples of direct transfer (ap-

plying the pretrained model), coarse consistency learning

(step 1) and fine consistency learning (step 2) in testing on

DukeMTMC [48] in Figure 5. The correct matchings are

indicated by green bounding boxes with ticks.

In the failed cases of direct transfer, the pedestrian ap-

pearance and background of the retrieved gallery images

are very similar to the query image, but they are incorrect

matchings from the same or similar camera of the query im-

age, while the correct matchings suffer from cross-camera

scene variation and the pairwise similarity distributions are

inconsistent for different camera pairs as illustrated in the

camera-aware similarity inconsistency problem in Section

3.1. Our proposed method can alleviate this problem and

improve the matching results by coarse-to-fine consistency

learning in two steps.

6. Conclusion

In this paper, we study unsupervised person re-

identification and focus on alleviating the effect of cross-

camera scene variation (e.g., illumination, background and

viewpoint), which is serious for unsupervised Re-ID. Cross-

camera scene variation causes domain shift in the feature

space and leads to inconsistent pairwise similarity distri-

butions for different camera pairs and thus degrades the

matching performance. We call it the camera-aware sim-

ilarity inconsistency problem. To solve this problem, we

propose a Camera-Aware Similarity Consistency Loss. D-

ifferent from existing Re-ID methods that deal with cross-

camera scene variation problem by camera-to-camera align-

ment, we further explore the relation of pairwise similari-

ty between intra-camera matching and cross-camera match-

ing. We can improve cross-camera matching by learning

consistent pairwise similarity distributions for intra-camera

and cross-camera matching with the guidance of the p-

reserved reliable common knowledge of Re-ID in intra-

camera matching. For more effective consistency learn-

ing, we further develop a coarse-to-fine consistency learn-

ing scheme to learn consistency globally and locally in two

steps. The experiments show that our method outperformed

the state-of-the-art unsupervised Re-ID methods.
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