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Abstract

We present a general method to estimate the fundamen-

tal matrix from a pair of images under perspective projec-

tion without the need for image point correspondences. Our

method is particularly well-suited for transmission imaging,

where state-of-the-art feature detection and matching ap-

proaches generally do not perform well. Estimation of the

fundamental matrix plays a central role in auto-calibration

methods for reflection imaging. Such methods are currently

not applicable to transmission imaging. Furthermore, our

method extends an existing technique proposed for reflec-

tion imaging which potentially avoids the outlier-prone fea-

ture matching step from an orthographic projection model

to a perspective model. Our method exploits the idea that

under a linear attenuation model line integrals along cor-

responding epipolar lines are equal if we compute their

derivatives in orthogonal direction to their common epipo-

lar plane. We use the fundamental matrix to parametrize

this equality. Our method estimates the matrix by for-

mulating a non-convex optimization problem, minimizing

an error in our measurement of this equality. We believe

this technique will enable the application of the large body

of work on image-based camera pose estimation to trans-

mission imaging leading to more accurate and more gen-

eral motion compensation and auto-calibration algorithms,

particularly in medical X-ray and Computed Tomography

imaging.

1. Introduction

Transmission imaging modalities are very popular in

technical, scientific and medical applications. They mea-

sure attenuation of mechanical or electromagnetic waves

instead of light reflected from surfaces. Examples include

X-ray imaging, speed-of-sound ultrasound imaging [31, 32]

and electron-microscopy. Fan et al. [10] illustrate the differ-

ences and similarities between transmission and reflection

imaging. Most importantly, they show that transmission im-

ages are continuous functions as opposed to the widely used

discontinuous models for reflection images. This is a direct

consequence of the image formation process which super-

imposes all objects of the three dimensional data along the

projection rays. While feature detection and matching tech-

niques suffer along occluding edges in reflection imaging,

transmission images are still harder to analyze because ob-

jects are always superimposed. Two-view reconstruction is

generally impossible in transmission imaging, however re-

construction of the 3D scene is routinely performed from

a continuous camera trajectory to disentangle the objects.

In X-ray imaging this is known as Computed Tomography

(CT). In contrast to reflection imaging the resulting scene

reconstructions are dense instead of mere surface models

and require considerably more than two images at the min-

imum.

Most research in these modalities concentrates around

solving the scene reconstruction problem while assuming

the scene structure is calibrated offline [17, 27, 9]. However,

in many scenarios this offline calibration falls short. E.g. in

medical imaging movement of the patient often needs to be

compensated [30]. Another difficult scenario are new gen-

erations of flexible X-ray systems on robotic arms which

can perform arbitrary scan trajectories and therefore cur-

rently require a high calibration effort [34] and cannot uti-

lize their full flexibility [22]. This estimation of the three-

dimensional configuration of the imaging system has been

studied extensively in computer vision. However, most cur-

rent techniques naturally assume an estimation of corre-

sponding points in images is generally possible. This works

well in reflection imaging when the visual appearance of

certain surface points is distinct and consistent across im-

ages. It is well-known that glossy and transparent sur-

faces pose problems to most algorithms. Matters are even

more complicated in transmission imaging for three rea-

sons. First, most systems do not distinguish between dif-

ferent energy spectra. Second, the resulting values only

reflect the accumulated attenuation from passing through
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the whole object or even multiple objects. A feature in a

2D projection image is usually not associated with a sin-

gle point in the 3D object. Third, the appearance of those

features varies completely between viewpoints as the view

rays intersect entirely different parts of the object or objects.

Therefore, both feature detection and feature matching tech-

niques mostly fail in transmission imaging [18].

2. Related Work

We aim towards recovering the relative geometry of cam-

eras based on transmission image data alone. We first

present related work on reflection imaging.

In their seminal paper Luong and Faugeras introduced

the fundamental matrix [24] F and algorithms to estimate

it. This matrix describes the relative geometry of a pair of

cameras with a minimal number of parameters. At its core

is the fundamental constraint of corresponding image points

xT
2 Fx1 , (1)

where x1 and x2 are projections of the same 3D point. It has

many applications in reconstruction of the 3D geometry of

a scene like eliminating false positive corresponding points,

speeding up the matching of points or reconstruction of the

scene. Luong and Faugeras present multiple algorithms to

estimate this matrix from point correspondences. However,

feature matching, particularly in wide-baseline stereo, is an

outlier-pone problem. Mostly this challenge is addressed by

using robust probabilistic consensus-based matching meth-

ods like the RANSAC algorithm.

A different strategy is to bypass the computation of cor-

responding points and estimate F directly without corre-

sponding points. Recently, Omid et al. [28] presented such

a method based on a deep neural network for reflection

imaging. The network is presented with a pair of images

and trained to output the corresponding fundamental Matrix

F. The downsides of such an implicit modelling approach

are the absence of any guarantees for the performance of the

algorithm on unseen data and the lack of interpretability of

the learned algorithm. These problems make it challenging

to deploy such an algorithm in safety critical applications.

An approach using classic vision methodology relies on

using contours of objects [33], [35], [19]. A disadvantage of

these methods is that they don’t take all the intensity levels

into account and rely on a binary segmentation instead.

Another approach was presented by Lehmann et al. [21].

In their work they propose to use a line-integral ortho-

graphic projection model for reflection imaging and use the

projection-slice (Fourier-slice) theorem to formulate a cost-

function for the parameters of the fundamental matrix. In

their subsequent work [20] this approach was simplified by

defining an intermediate function using the Radon trans-

form R
φi(s, θ) = R{qi(u, v)} , (2)

where qi(u, v) denotes an image with index i. The Radon

transform in 2D effectively represents the set of all possi-

ble line integrals over an image and is a continuous equiva-

lent of the Hough-transform [7]. Because under the ortho-

graphic projection model all epipolar lines are parallel they

find that

φi(s, θi) = φj(s+ d, θj) , (3)

for a pair θi and θj which denote angles of corresponding

epipolar lines and an offset d between these lines. This al-

lows estimating the fundamental matrix by minimizing a

cost-function of the difference between ρi and ρj with re-

spect to θ1, θ2 and d. In their work they use maximization of

the normalized cross-correlation as loss-function. They also

show how to interpret the line-integral projection model as

probabilistic model for reflection imaging. However, the

line-integral image is much more natural for transmission

imaging. The standard model for this is a linear attenuation

law

Ii(u, v) = I0(u, v)e
−

∫
∞

0
µ(βi+tα(u,v))dt (4)

where the line of integration is parametrized as βi + tα.

Here βi denotes the center of projection for an image in-

dexed by i and α(u, v) is the ray direction depending on

the projection coordinates u and v, while µ(βi + tα) de-

notes the spatial distribution of the attenuation values along

a line defined by βi and α. To densely reconstruct the linear

attenuation coefficient µ(βi + tα) we rewrite Eq. 4 as:

qi(u, v) = − ln
Ii(u, v)

I0(u, v)
=

∫ ∞

0

µ(βi + tα(u, v))dt . (5)

This shows that transmission imaging naturally follows the

line integral model proposed by Lehmann et al. without

probabilistic interpretation. Still, the orthographic projec-

tion model is not applicable for most such imaging systems.

The key problem for extending this method to perspective

projection is the fact that Eq. 3 does not hold under this

model. To extent the method a link between line integrals

of a perspective projection in two views is necessary.

In the CT community such a link is known. By observing

that line integrals over line integral images are equivalent

to plane integrals we can see that Eq. 3 are just two mea-

surements of the same plane-integral. Grangeat et al. [14]

showed that in perspective geometry derivatives of line in-

tegrals over epipolar lines in orthogonal direction to their

common epipolar plane are equivalent. This is known as

a consistency condition in the CT community. Debbeler et

al. [8] first used this to formulate such a consistency con-

dition to estimate calibration parameters of a CT system.

They also use a Radon transform similar to Eq. 3:

ρi(s, θ) = R{ζi(u, v)qi(u, v)} , (6)

where ζ = α(u,v)T ᾱi

‖α(u,v)‖‖ᾱi‖ denotes the cosine between the

central ray associated with this image: ᾱi and the vec-
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Figure 1: The intermediate function ∂
∂sρi(s, θ) for image

qi(u, v). We also show the coordinates of the epipolar lines

calculated by ξ(F, n) for different values of n.

Figure 2: The intermediate function ∂
∂sρj(s, θ) for image

qj(u, v). We also show the coordinates of the epipolar lines

calculated by ξ(F, n) for different values of n.
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Figure 3: Values of the intermediate functions shown in Fig. 1 and Fig. 2 along the path of epipolar lines defined by ξ(F, n)
denoted by the blue and orange lines. Element-wise difference between those two paths depicted in green. The proposed

optimization problem minimizes a metric over the green line.

tor connecting the center of projection with the image co-

ordinates u, v: α(u, v). Their intermediate function is

now formed by applying a partial derivative in s direction:
∂
∂sρi(s, θ). Examples of such intermediate functions on two

images are given in Fig. 1 and Fig. 2. However, correspond-

ing epipolar lines are no longer parallel, so in order to ex-

tend Eq. 3, coordinates of corresponding epipolar lines need

to be calculated. A visualization of those corresponding co-

ordinates can also be found as the sinusoid curve in Fig. 1

and Fig. 2. Aichert et al. [2] proposed to use the projec-

tion matrices Pi and Pj of images qi(u, v) and qj(u, v) to

define a function:

ξ(Pi,Pj , κ) = (s(i,κ), θ(i,κ), s(j,κ), θ(j,κ))
T , (7)

which outputs coordinates s(i,κ), θ(i,κ) and s(j,κ), θ(j,κ) of

corresponding epipolar lines in the intermediate function.

The parameter κ can be interpreted as a rotation angle of the

common epipolar plane around the baseline joining the two

centers of projection. This allows to formulate the condition

as:
∂

∂s
ρi(s(i,κ), θ(i,κ)) =

∂

∂s
ρj(s(j,κ), θ(j,κ)) , (8)

where the coordinates are determined by the function
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ξ(Pi,Pj , κ). In conclusion Eq. 8 generalizes Eq. 3 and is

already known for transmission imaging but new for reflec-

tion imaging.

Eq. 8 is now known as Grangeat consistency condition in

the CT community and together with a newer consistency

condition based on rectifiction they are known as epipolar

consistency conditions. The relation between those types of

epipolar consistency conditions have been shown by Lesaint

et al. [23]. An application of this to image-based tracking

of objects was presented by Aichert et al. [3]. The Grangeat

consistency condition was also used for motion compensa-

tion by Frysch et al. [12] and image-based calibration [2, 8].

However, in those applications a model of an idealized tra-

jectory was optimized instead of estimating the geometry

generally.

The condition has also been used to transfer reflection

imaging algorithms for estimation of symmetry planes to

transmission imaging by Preuhs et al. [29] and to compen-

sate for non-linear attenuation [36, 1].

3. Estimating the Fundamental Matrix without

Point Correspondences

To formulate estimation of the fundamental matrix be-

tween two images using Eq. 8 we define a new parametriza-

tion ξ(F, n) instead of ξ(Pi,Pj , κ). We propose to sam-

ple N points pn from the coordinates inside image qi(u, v).
The points can form an arbitrary sampling pattern on the

image. As no obvious sampling pattern can be derived with-

out assumptions about the relative geometry we simply use

a pattern spanning all edge pixels of the image. This will

guarantee a certain amount of well spread epipolar lines re-

gardless of the camera orientations. From the fundamental

matrix we extract the epipole ei as the right null space of F

by solving Fei = 0. A bundle of epipolar lines in image

qi(u, v) is now given as

l(i,κ) = ei × pn . (9)

We transfer this bundle of epipolar lines to the other image

qj(u, v) using the epipolar line transfer [16]

L = F[ei]× (10)

where [ei]× denotes forming a skew symmetric matrix. The

epipolar line transfer allows us to form

l(j,κ) = Ll(i,n) (11)

which is the corresponding line bundle in the second im-

age. Using this formulation of the intermediate function the

orientation of the corresponding lines matters. The function

φi(s, θ) is an even function denoting φi(s, θ) = φi(−s,−θ)
because of the Radon transform. However ∂

∂sρi(s, θ) is an

odd function denoting − ∂
∂sρi(s, θ) = ∂

∂sρi(−s,−θ) be-

cause of the derivative operator. In order to respect this an-

tisymmetry we calculate the orientation of all correspond-

ing lines and enforce that they point towards the same

half-space. The final step in this algorithm is the conver-

sion from corresponding lines l(i,n), l(j,n) to coordinates

(s(i,n), θ(i,n), s(j,n), θ(j,n))
T in the intermediate function.

We can represent this algorithm to calculate corresponding

epipolar lines as

ξ(F, n) = (s(i,n), θ(i,n), s(j,n), θ(j,n))
T (12)

parametrized using only the fundamental matrix.

Using this parametrization of epipolar lines we form a

cost function:

c(F, ρi, ρj) = d(vi,vj) (13)

where d is a distance measure between the vectors vi and

vj sampled at the N corresponding coordinates from the

intermediate function. Those corresponding vectors v can

be seen in Fig. 3 as pair of blue and orange lines. A valid

choice for d is the squared euclidean norm of the difference

‖vi − vj‖
2
2.

A potential issue with this cost function is of numeri-

cal nature. The costs from Eq. 13 scale with the numerical

values of the image, i.e. epipolar lines through empty re-

gions of the image have an associated cost of zero regard-

less of how well their geometry is represented. The prob-

lem is similar to missing corresponding points on a feature-

less surface. This can introduce a bias in this cost function

to favour solutions which produce many epipolar lines in

empty regions because those errors are smaller than the nu-

merical errors on the path of the correct solutions. To reduce

this problem we modify the cost function to incorporate a

weight function w(vi,vj) reducing the influence of empty

regions:

d̂(vi,vj) =
d(vi,vj)

w(vi,vj)
. (14)

We define the weight function as

w(vi,vj) =
N
∑

n

(vi,n + vj,n)
2

(vi,n + vj,n)2 + ǫ
. (15)

This function is inspired by the Geman-McClure cost func-

tion [13]. This function realizes a drop to zero for values

with an absolute value smaller than ǫ while continuously in-

creasing towards one for larger values. In effect this weight

increases costs if mostly small values are sampled from the

intermediate function remedying the numeric problem.

Another problem with this cost function is that it is in

general not symmetric because the sampling of points on the

different images might produce widely different samplings

of epipolar lines. This problem also appears in traditional
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methods to estimate fundamental matrices and a common

way to solve it is by symmetrizing the cost function as fol-

lows:

ĉ(F, ρi, ρj) = c(F, ρi, ρj) + c(FT , ρj , ρi) . (16)

Estimation of the fundamental matrix can now be posed

as an optimization problem:

min
F

{ĉ(F, ρi, ρj)} . (17)

This problem is in general a non-convex optimization prob-

lem because the intermediate functions ρi, ρj directly de-

pend on the data and therefore local minima and ambiguities

can exist. Because of the non-convex nature of the problem

initialization of F is important, which is a fundamental dif-

ference to algebraic methods based on matched points. A

way to do so is to calculate it from projection matrices if an

initial estimate of those is available as F = [e2]×P2P
+
1 ,

where P+
1 denotes the pseudo-inverse of P1 according to

Hartley and Zisserman [16]. We found the Simplex method

of Nelder and Mead [26] effective in solving our optimiza-

tion problem.

Our optimization problem does not impose the known

rank two condition on the fundamental matrix. Therefore,

we project our result to the manifold of rank two matrices

by factorizing it as F = UΣVT using the singular value

decomposition and setting the smallest singular value con-

tained in Σ to zero before restoring it.

4. Experiments

To validate our method we simulated an X-ray CT

dataset consisting of 18 homogeneous beads of 4 differ-

ent densities which were multiples of the density of water

and varying radii from 1mm to 3mm. The beads were dis-

tributed in a volume of 140mm3. From this volume we

acquired 512× 512 pixels resolved square line integral im-

ages with 2mm spacing from random centers of projection

on a 200mm sphere with a 400mm focal length. Figure 4

depicts this acquisition geometry graphically. While the

sphere is not a practical trajectory for CT imaging we in-

tend to validate the generality of our method using this setup

because this will imply it also works with more restricted

continuous trajectories. We are interested in the estimation

of relative geometry for each pair of images in any general

position.

From this dataset we sample 100 pairs of images ran-

domly and recover the fundamental matrix from this geom-

etry after corrupting the groundtruth geometry. Geometric

jitter from mechanical motion was simulated by adding a

random offset of the principal point of up to 20 pixels in

u and v direction separately to the principal point of a pair

of projection matrices. We initialized the fundamental ma-

trix from these corrupted projection matrices and recover

Figure 4: The acquisition geometry of the simulated dataset.

the groundtruth matrix using our proposed method and ref-

erence method using a classical algorithm. Note that while

our corruption model does not cover all parameters we still

verify that our algorithm returns all parameters of the fun-

damental matrix correctly.

We perform three experiments on this dataset. In the

first experiment we compare the proposed method against

a feature-matching-based reference method to show its ad-

vantages and verify its effectiveness. In a second experi-

ment we validate the effectiveness of our proposed method

to deal with the numeric effect favouring configurations

were the epipolar planes pass through empty parts of the

volume. We do this by performing an ablation study were

we compare setting our parameter ǫ to 0 compared to the

default choice of 1E−3 which we use in all other exper-

iments. Finally we compare the performance of different

distance measures d on our results. We chose to evaluate

different Lp norms with p equal to 3 and 3/2 in compar-

ison to the more standard choice of L2
2. The reason why

we chose these norms is that p = 3 punishes outliers more

compared to L2
2 while p = 3/2 punishes them less and can

therefore be more robust to outliers. We refrained from

using the popular p = 1 norm to stay within the class of

smooth optimization problems.

The reference method was implemented using the

OpenCV library [5]. As feature descriptors we used KAZE

features [11] and the fast approximate nearest neighbour

matching algorithm of Muja and Lowe [25] as well as

OpenCVs implementation of the fundamental matrix esti-
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Error L2-norm Error epipolar-error

proposed 5.45E-03 ± 2.54E-03 2.62E-02 ± 5.57E-03

opencv 1.05E-01 ± 2.02E-02 6.48E-01 ± 2.53E-02

jittered 2.11E-02 ± 1.20E-02 4.21E-02 ± 6.23E-03

Table 1: Results for the reference method and the proposed

method with the error of the initial geometry as reference.

The proposed method is able to estimate the geometry ac-

curately while the classical method performs very weak.

mation using the least median of squares algorithm. We

chose KAZE features over the widely used SIFT features

because there is no usage restriction on them.

For evaluation we use two quantitative measures in our

experiments. First we report the L2-norm (Frobenius-

norm) between the estimated fundamental matrix and the

groundtruth matrix calculated from the uncorrupted projec-

tion matrices. Second we report a relative error on the esti-

mated epipoles as used by Luong and Faugeras [24]. They

define this epipolar-error as

min

{

|x− x0|

min(|x|, |x0|)
, 1

}

(18)

where x denotes a dimension of an estimated epipole and

x0 the corresponding value of the groundtruth epipole. In

accordance to them, we calculate the mean of this error

over each of the two dimensions and each of the pairs

of epipoles. We report the mean and the standard error

SE = σ√
N

of these measures with N being the number of

random samples from the trajectory.

5. Results

We first present the results of the experiment comparing

the classical method to our proposed method. For refer-

ence we also added the error measures which result from

our simulation. The results are given in Tab. 1.

The proposed method performs best and is able to es-

timate the Fundamental matrix well. The results from the

reference method are very weak in all cases recovering a

completely wrong fundamental matrix. When inspecting a

sample of the images from our results in Fig. 5 we can con-

clude that this is caused by the complete failure of the fea-

ture matching step. This is well in line with previous results

from Klppel et al. [18]. The numeric results support this

very well with a low error in the Frobenius distance of the

estimated fundamental matrix to the groundtruth and with a

significantly reduced epipolar error measure.

The results of the ablation study evaluating the effec-

tiveness of weighting down very small contributions to the

cost-function are given in Tab. 2. The Frobenius distance is

improved drastically with the residual error roughly just a

third of the error without the downweighting, while also the

Error L2-norm Error epipolar-error

proposed 5.45E-03 ± 2.54E-03 2.62E-02 ± 5.57E-03

L2
2,ǫ=0 1.53E-02 ± 1.11E-02 2.83E-02 ± 6.38E-03

Table 2: Results of our ablation study about the effective-

ness of the weighting. The version with the active weighting

shows improved numeric results.

Error L2-norm Error epipolar-error

L3 1.39E-02 ± 9.95E-03 3.72E-02 ± 6.89E-03

L3/2 1.25E-02 ± 8.88E-03 2.94E-02 ± 5.57E-03

proposed 5.45E-03 ± 2.54E-03 2.62E-02 ± 5.57E-03

Table 3: Results for using different distances measures d
with our proposed method. The classical mean squared er-

ror metric performed better than the considered alternatives.

standard error is much lower. The error measure consider-

ing epipolar points shows a similar trend but a less drastic

numeric improvement.

For our third experiment comparing different choices of

distance measure d we present numeric results in Tab. 3.

The result measures agree again and are best in the case

of the simple mean squared error norm with a significant

drop in the Frobenius distance almost halving the error, sup-

ported by a decrease in standard error.

6. Discussion

Our experiments show that the feature-based approach

performs poorly numerically on our simulated dataset. The

reason for this becomes apparent when considering Fig. 5.

The matched points do not constitute true correspondences

in an overwhelming majority. This means there is no oppor-

tunity for a consensus-based algorithm to find a correct sub-

set. This result is general for arbitrary transmission images

and any choice of classical feature descriptor because pixel

values in transmission images convey different and much

less distinctive information. Even if corners or similar fea-

tures are available in the imaged objects, their appearance is

e.g. a sharp point of high attenuation in one image and a line

on a ramp of values under another configuration of the cam-

era. This variation can not be captured by any classical de-

scriptor. The feature-matching step of the reference method

does not make use of the initial estimate of the fundamen-

tal matrix which is used in our proposed method. However,

this is mostly for illustrative purposes because the feature

matching will still fail but result in reporting no point corre-

spondences at all if the initial guess is used to reject wrong

matches.

The experiments have also established that our up-

weighting method for small contributions to the cost func-

tion based on the Geman-McClure cost function is benefi-
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Figure 5: Extracted points using a descriptor and superimposed epipolar lines from different fundamental matrices. From left

to right source of fundamental matrix: Reference method, proposed method, groundtruth. The reference method is clearly

unable to deal with the featureless transmission imaging data. The proposed method matches the groundtruth well visually.

Note that because the points are no valid correspondences they do not lie on the epipolar lines produced by their matched

points in the other image for correct fundamental matrices.

cial for the considered object. For arbitrary objects we be-

lieve its advantage is even higher because larger areas with-

out attenuating material often exist in the images. The pa-

rameter ǫ should than be chosen based on a validation set

of independent images for applications. The experiments

on different distances yielded surprising results because we

expected the L3/2 norm to improve our results by weighting

down the contribution of outliers. Instead the mean squared

error norm performed best. We believe for certain applica-

tions to transmission imaging modalities other norms could

still outperform it.

The proposed method involves a non-convex optimiza-

tion problem because the objective depends on the object

data which is not restricted in any meaningful way. This

seems like a major downside at first sight when compared

to the classical algorithm. But despite this fact we found

that optimization is well posed if the imaged scene provides

information in terms of varying line integrals. This situation

is similar to rigid registration algorithms which also involve

non-convex optimization but are known to be solvable sta-

ble and repeatable for most objects. In contrast, the convex-

ity of the optimization problem of the classical algorithm is

only achieved because the matching points are determined

in advance and therefore the problem no longer depends on

the data. However, if one considers the complete algorithm,

the case where not enough corresponding points can be es-

tablished unambiguously is similar to an ambiguous non-

convex objective for our proposed algorithm. To sum this up

we first conjecture that the non-convex optimization prob-

lem will mostly be well posed for objects providing enough

information. Secone we found that the nature of that infor-

mation is different from the nature of information required

for good performance in the classical algorithm. Our exper-

iment can serve as a showcase for this.

Because different concrete transmission imaging modal-

ities will provide slightly different real world challenges

71078



our experiment was conducted on simulated data. Our ob-

ject was designed to highlight the benefits of our approach.

When applying our method to measured data we expect it

will be beneficial to take deviations of the linear attenuation

model into account. These non-linear effects will vary with

the transmission imaging modality at hand. E.g. speed-

of-sound ultrasound will show different effects than X-ray

imaging. However, while certainly affecting our method

we believe that it can handle those deviations well without

modifications, as the linear attenuation model is well tested

in practice by forming the basis of dense 3D reconstruction

methods in these applications.

While the fundamental matrix itself encodes the relative

geometry of two images it does not suffice to recover the

two projection matrices associated with the scene if the in-

ternal camera parameters are unknown. Therefore this work

represents the presentation of a technical method which en-

ables many concrete applications in the future. An immedi-

ate application is the improvement on patient-model-based

anatomical landmark estimation techniques in medical X-

ray images as presented by Bier et al. [4]. Our method could

be used to verify matching detections of anatomical land-

marks from their algorithm with a complementary source

of information using the optimal triangulation algorithm by

Hartley and Sturm [15]. Another immediate application is

the method of Carrasco and Mery [6] which uses epipo-

lar geometry to verify defects in aluminium cast wheels

by matching detections from multiple frames. Our method

could improve this because it draws information from the

whole geometry of the aluminium cast wheel instead of be-

ing based on the detected landmarks itself. Another appli-

cation is the estimation of the geometry of computed to-

mography scans with known intrinsic parameters like stiff

C-arm CT systems. In these cases essential matrices can be

computed from the fundamental matrices and decomposed

into the relative geometry.

7. Conclusions and Outlook

We have presented a new algorithm to estimate the fun-

damental matrix between two images without using point

correspondences. It extends a method previously proposed

for reflection imaging from an orthographic to a perspec-

tive projection model. However, we show that applying our

method to transmission imaging is more natural since it can

be interpreted as being based on a solid physical model of

the imaging process. In addition we showed that the advan-

tage of our method of not relying on corresponding points

is even more important in transmission imaging.

In a simulated experiment we verified the effectiveness

of all components of our algorithm and its advantage over

a classical reference method. We found our algorithm is

accurate and reliable based on a reasonable initial guess of

the geometry.

In future work it would be interesting to explore differ-

ent applications of using fundamental matrices in transmis-

sion imaging. Additionally it will be interesting to test our

method on different concrete modalities. We expect our al-

gorithm to work on all those modalities which can be mod-

elled by the linear attenuation law. Still they may permit

additional physical constraints to improve over our general

method. Additionally the method could be applied to reflec-

tion imaging as proposed by Lehmann et al. [21] in scenar-

ios where feature matching is complicated.

We believe the most promising kind of future work based

on our method is the development of general autocalibration

methods for transmission imaging from a minimal num-

ber of images. Right now most work in that direction op-

erates in very constrained settings like assuming a certain

trajectory of the imaging system. In the future we think

more flexible acquisition techniques for transmission imag-

ing like robotic CT scanners would benefit greatly from

fully image-based algorithms to recover the 3D geometry

for subsequent scene reconstruction similar to the available

algorithms for reflection imaging. This would enable them

to acquire datasets on flexible trajectories which are defined

on the fly to ideally adapt to the objects at hand. Currently

this is very challenging because it requires extremely ac-

curate odometry from the robot system. For this we want

to explore in future work how to adapt autocalibration and

structure from motion methods for reflection imaging to

transmission imaging building on this work.

Disclaimer

The concepts and information presented in this paper are

based on research and are not commercially available.
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