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Abstract

Recent efforts have shown promising results for person

re-identification by designing part-based architectures to

allow a neural network to learn discriminative represen-

tations from semantically coherent parts. Some efforts use

soft attention to reallocate distant outliers to their most sim-

ilar parts, while others adjust part granularity to incorpo-

rate more distant positions for learning the relationships.

Others seek to generalize part-based methods by introduc-

ing a dropout mechanism on consecutive regions of the fea-

ture map to enhance distant region relationships. How-

ever, only few prior efforts model the distant or non-local

positions of the feature map directly for the person re-ID

task. In this paper, we propose a novel attention mecha-

nism to directly model long-range relationships via second-

order feature statistics. When combined with a general-

ized DropBlock module, our method performs equally to or

better than state-of-the-art results for mainstream person

re-identification datasets, including Market1501, CUHK03,

and DukeMTMC-reID.

1. Introduction

Person re-identification (re-ID) is an essential compo-

nent of intelligent surveillance systems, which draws in-

creasing interest from the computer vision community. It

is challenging to associate multiple images captured by

cameras with non-overlapping viewpoints with the same

person-of-interest. Specifically, this task is challenging

due to the dramatic variations with respect to illumina-

tion, occlusion, resolution, human pose, view angle, cloth-

ing, and background. The person re-ID research commu-

nity has proposed various effective hand-crafted features

[2, 20, 26, 28, 24, 6, 21, 25] to address these challenges.

Methods based on deep convolutional networks have also

been introduced to learn discriminative features and rep-

resentations that are robust to these variations, thereby

pushing multiple re-ID benchmarks to a whole new level.

Among these methods, several efforts [30, 35, 39, 49] learn

Figure 1. Illustration of second-order non-local attention for per-

son re-identification. We show images from two views of one per-

son and illustration of the attention map. Our second-order non-

local attention map allows the model to learn to encode non-local

part-to-part correlations (marked in orange).

detailed features from local parts of a person’s image, while

others extract useful global features [34, 52, 3, 5].

Recently, part-based models [35, 39, 49] have made great

progress towards learning effective part-informed represen-

tations for person re-ID, achieving very promising results.

By partitioning the backbone network’s feature map hori-

zontally into multiple parts, the deep neural networks can

concentrate on learning more fine-grained salient features

in each individual local part. The aggregation of these fea-

tures from all parts provides discriminative cues for each

identity as a whole. However, these models, on one hand,

suffer from one common drawback: they require relatively

well-aligned body parts for the same person in order to learn

salient part features. On the other hand, strict uniform par-

titioning of the feature map breaks within-part consistency.

Several recent efforts proposed different remedies to com-

pensate for the side effects of part partitioning, which are

described below.

When related image areas fall into other parts, Part-based
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Convolutional Baseline (PCB) [35] addresses the misalign-

ment by rearranging the part partition by enforcing part con-

sistency using soft attention. Although this treatment allows

for a more robust part partition, the initial rigid uniform par-

tition of the feature map still greatly limits the representa-

tion learning capability of a deep learning model. As ob-

served by the authors of PCB [35], when the number of

parts increases, the accuracy does not increase monotoni-

cally. When the part number increases, it breaks the part

coherence, making it difficult for the deep neural network

to capture meaningful information from the parts, thereby

harming the performance. PCB also ignores global feature

learning, which captures the most salient features to repre-

sent different identities [39], losing the opportunity to con-

sider the feature map as a semantic part (distinguished from

unrelated background).

Multiple Granularity Network (MGN) [39] improves

PCB by adding a global branch to treat the whole feature

map as a semantic coherent part and handles misalignment

by adding more partitions with different granularities. The

enlarged region allows the model to encode relationships

between the features of more distant image areas.

Pyramid Network (Pyramid-Net) [49] tackles part mis-

alignment by designing a pyramidal partition scheme. This

scheme is similar to MGN, where the major difference is

that for each of MGN’s granularity, the Pyramid-Net adds

one bridging part with one basic part from its adjacent parts,

except for the top and bottom image areas. With this ap-

proach, some basic parts can be included in several differ-

ent branches to help form coherent semantically related re-

gions, while providing possibly richer information to the

deep neural network.

The batch feature erasing (BFE) technique proposed in

[5] offers another way to force a deep network to learn

within and between parts information. Using a batch fea-

ture erasing block in the feature erasing branch, the model

training procedure implicitly asks the model to learn more

robust part-level feature representations and relationships.

Besides using the batch feature erasing block, using Drop-

Block [10] is also a possibility.

Most of the above mentioned methods aim to enable a

deep learning model to encode local and global, within part

and between parts information from the raw image. The

question then becomes: could we have a model design

that enables the deep learning model to learn local and

non-local information and relationships in a less hand-

crafted and more data-driven way?

In this paper, we present our perspective of incorporating

non-local operations with second-order statistics in Con-

volutional Neural Networks (CNN) as the first attempt to

model feature map correlations directly for the person re-

ID problem, and propose a Second-order Non-local Atten-

tion (SONA) as an effective yet efficient module for per-

son re-ID. By modeling the correlations of the positions in

the feature map using non-local operations, the proposed

module can integrate the local information captured by con-

volution operations into long range dependency modeling

[40, 46, 38]. This idea is explained in Figure 1. This prop-

erty is appealing, since we establish a correlation between

salient features captured by local convolution operations.

Recent works have shown that deep convolutional networks

equipped with high-order statistics can improve classifica-

tion performance [15], and Global Second-order Pooling

(GSoP) methods are used to represent the image [22, 16].

However, all these methods produce very high dimensional

representations for the following fully connected layers, and

they cannot be easily used as a building block like other

first order (average/max) pooling methods. We overcome

this drawback by employing the covariance matrix result-

ing from the non-local position-wise operations and use the

matrix as an attention map.

The main contributions of our work can be summarized

as follows:

• To overcome the well-aligned body parts limitations

and to generalize part-based models, we propose a

novel SONA module to model feature maps second-

order correlations as an attention map directly that not

only captures non-local (also local) correlations, but

also the detailed salient features for person re-ID.

• To maximize the flexibility of the DropBlock mech-

anism and to encourage SONA to capture more dis-

tant and varied feature map correlations, we generalize

DropBlock by allowing variable drop block sizes.

• In order to provide a large spatial view for the SONA

module to capture more detailed spatial correlations

and for the generalized version of DropBlock to fur-

ther capture flexible spatial correlations, we modify the

original ResNet50 using dilated convolutions.

• Our version of DropBlock and the use of the dilated

convolutions complement the proposed SONA module

to obtain state-of-the-art performance for person re-ID.

2. Second-order Non-local Attention Network

In this section, we describe our proposed SONA Net-

work (SONA-Net). The network consists of (1) a backbone

architecture similar to what was used in BFE [5]; (2) the

proposed second-order non-local attention module; and (3)

a generalized version of a DropBlock module, which we re-

fer to as DropBlock+ (DB+). The non-local attention is ca-

pable of explicitly encoding non-local location-to-location

feature level relationships. DropBlock+ plays a role in en-

couraging the non-local module to learn more useful long

distant relationships.
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Figure 2. The overall architecture of the proposed SONA-Net for the person re-ID task. The orange colored flow serves as global supervision

for the blue colored feature maps region DropBlock+ branch. The SONA module can be injected after shallow stages of ResNet50. During

testing, the feature embedding concatenated from both global branch and DropBlock+ is used for the final matching distance computation.

2.1. Network Architecture

Figure 2 shows the overall network architecture, which

includes a backbone network, a global branch (orange col-

ored arrows) and a local branch (blue colored arrows),

which shares a similar general architecture with BFE [5].

For the backbone network, we use ResNet50 [11] as the

building foundation for feature map extraction. We further

modify the original ResNet50 by adjusting the stages and

removing the original fully connected layers for multi-loss

training, similar to prior work [35, 20, 5]. In order to pro-

vide a large spatial view for the SONA module to capture

more detailed spatial correlations and for the DropBlock+ to

drop, we modified the original ResNet50 stage 3 and stage

4 with some dilated convolutions [45], and get a larger fea-

ture map with size: 48 × 16 × 2048 given the input size:

384 × 128 × 3. Notice that our modified stage 3 and stage

4 share the same spatial size with the original stage 2 of

ResNet50, but with doubled number of output channels.

This is particularly useful for tasks requiring localization

information, such as body parts. Since each spatial position

of a set of feature maps corresponds to a feature vector, and

this position only provides a coarse location, while the fea-

ture vector encode more finer localization information. By

keeping the same spatial size, the same position on feature

map of different stages encode richer localization informa-

tion when doubling the number of channels.

The global branch consists of a global average pool-

ing (GAP) layer to produce a 2048 dimensional vector and

a feature reduction module containing a 1×1 convolution

layer, a batch normalization layer, and a ReLU layer to re-

duce the dimension to 512 providing a compact global fea-

ture representation for both the triplet loss and cross entropy

loss.

The local branch contains a ResNet bottleneck

block [11], which consists of a sequence of convolution and

batch normalization layers, with a ReLU layer at the end.

The feature map produced by the backbone network feeds

directly into the bottleneck layer. The DropBlock+ layer

modifies the DropBlock [10] layer to allow a variable size

for both height and width of the drop block area. We apply

the mask computed by the DropBlock+ module to the fea-

ture map produced by the bottleneck block. We use global

max pooling (GMP) on the masked feature map to obtain

the 2048 dimensional max vector and a similar reduction

module follows the GMP layer to further reduce the dimen-

sion to 1024 for both the triplet loss and cross entropy loss.

The feature vectors from the global and local branches are

concatenated as the final feature embedding for the person

re-ID task. As an important component of the network ar-

chitecture, the SONA module is applied to the early stages

of the backbone network to model the second-order statis-

tical dependency. With the enhancement introduced by the

SONA, the network is able to learn richer and more robust

person identity related features.

In our work, we adopt batch hard triplet loss [12] and

label-smoothed cross-entropy loss [36, 42] together to train

both the global branch and local branch, respectively.
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2.2. Second­order Non­local Attention Module

The overview of the SONA module is displayed in Fig-

ure 2.

Let x ∈ R
h×w×c denote the input feature map for the

SONA module, where c is the number of channels, h and

w are spatial height and width of the tensor. We collapse

the spatial dimension into a single dimension which yields

a tensor x with size hw by c.
We use a 1×1 convolution followed by a batch

normalization layer and a Leaky Rectified Linear Unit

(LeakyReLU) that forms a function called θ to reduce the

number of channels c to c/r of the input x. We use a 1×1

convolution that forms g which serves a similar role to func-

tion θ. This leads to θ(x) with shape hw × c
r and g(x) with

shape hw × c
r . In our experiments, we set the reduction fac-

tor r to 2. The covariance matrix is computed using θ(x) as

Σ = θ(x)Īθ(x)
T

(1)

where Ī = 1

c/r (I −
1

c/r1), which follows the practice

in [15]. Similar to [38], we adopt 1√
c/r

as the scaling factor

for the covariance matrix before applying softmax, which

yields

z = softmax(
Σ

√

c/r
)g(x) (2)

Finally, we use a simple learnable transformation p, a 1×1

convolution in our case, to restore the channel dimension of

the attended tensor from c/r to c, and we define the second-

order non-local attention module as:

SONA(x) = x+ p(z) (3)

With proper reshaping, we have SONA(x) with shape

h× w × c as the input to the following ResNet50 stages

as shown in Figure 2.

We use an example to illustrate the effects of the pro-

posed second-order non-local attention for encoding im-

age location-to-location, human body part-to-part relation-

ships. Given a pedestrian image I , assume that around im-

age area I(p, q), there is a noticeable signal (e.g., a area

with high contrast), and around image area I(p′, q′), there

is another noticeable signal. After the first two/three stages

of the ResNet computation, as part of the SONA module in-

put tensor x, these two signals appear as features x(p, q, :)
and x(p′, q′, :). The correlations between these two sig-

nals/features are then captured by computing the covari-

ance matrix as attention for the feature tensor x. Using

this mechanism, we explicitly tell the deep network that:

(1) There are correlations between features from these two

locations. (2) More attention should be spent on these loca-

tions (and their relationship) for the following computations

in the deeper layers. (3) The latter layer in the deep learning
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Figure 3. Examples of non-local covariant attention heatmaps with

different viewpoints. The green points in each heatmap are the ref-

erence points and the red points are the top related points. We can

see that when the reference points (green) are located within the

body region, their highly related red points are also in the body

region capturing salient features such as logos on the shoes or

watches. The background reference points are more related to

background points.

Dataset Market1501
CUHK03

DukeMTMC-reID
labeled detected

identities 1501 1467 1812

images 32668 14096 14097 36411

cameras 6 2 8

train IDs 751 767 702

test IDs 750 700 1110

train images 12936 7368 7365 16522

query images 3368 1400 2228

gallery images 19732 5328 5332 17661

Table 1. Statistics of the three evaluated re-ID datasets.

model will learn under which circumstances such correla-

tion is related (or not related) to the identity information of

the person shown in the image.

We also visualize the effects in Figure 3 using different

camera view images from multiple persons and the attention

weights from the training process.

3. Experimentation

To evaluate the effectiveness of the proposed method in

the person re-ID task, we perform a number of experiments

using three public person re-ID datasets: Market1501 [50],

CUHK03 [17, 53], and DukeMTMC-reID [51] and com-
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pare our results with state-of-the-art methods. To inves-

tigate the effectiveness of each component and the design

choices, we also perform ablation studies on the CUHK03

dataset with the new protocol [53]. Table 1 shows the statis-

tics of each dataset.

3.1. Datasets

The Market1501 dataset contains 1,501 identities col-

lected by 5 high resolution cameras and 1 low resolution

camera, where different camera viewpoints may capture the

same identities. A total of 32,668 pedestrian images were

produced by the Deformable Part Model (DPM) pedestrian

detector. Following prior work [35, 39, 49], we split the

dataset into training set with 12,936 images of 751 identi-

ties and testing set of 3,368 query images and 15,913 gallery

images of 750 identities. Note that the original testing set

contains 19,732 images, including 3,819 junk images (file

names beginning with “-1”). We ignore these junk images

when matching as instructed by the dataset’s website 1.

The CUHK03 dataset contains manually labeled 14,096

images and DPM detected 14,097 images of a total of 1,467

identities captured by two camera views. We follow a new

protocol [53] that is similar to Market1501’s setting, which

splits all identities into non-overlapping 767 identities for

training and 700 identities for testing. The labeled dataset

contains 7,368 training images, 5,328 gallery, and 1,400

query images for testing, while the detected dataset contains

7,365 images for training, 5,332 gallery, and 1,400 query

images for testing.

The DukeMTMC-reID dataset [51] is a subset of the

DukeMTMC dataset [29]. It contains 1,404 identities cap-

tured by more than two cameras. While 408 identities only

appear in one camera, they are treated as distractor identi-

ties. We follow a Market1501-like new protocol [51], which

splits the 1,404 identities into 702 identities with 16,522 im-

ages for training, and the other 702 identities along with

those 408 distractor identities are used for testing. The test-

ing set contains 17,661 gallery images and 2,228 query im-

ages.

3.2. Implementation

To capture more detailed information from each image,

we resize all images to a resolution of 384×128, similar to

PCB. For training, we also apply the following data aug-

mentation to the images: horizontal flip, normalization, and

cutout [8]. For testing we apply horizontal flip and normal-

ization, and use the average of original feature and flipped

feature for generating the final feature embedding. We use

ResNet-50 [8], initialized with the pre-trained weights on

ImageNet [7], as our backbone network with the modifica-

tions described above. In our variable size DropBlock layer,

we set γ to 0.1, block height to 5, and block width to 8. We

1http://www.liangzheng.org/Project/project reid.html

randomly sample 32 identities, each with 4 images for the

mini-batch in every training iteration. We choose Adam op-

timizer [14] with a warm-up strategy. The initial learning

rate is set to 1e-4 and increases by 1e-4 every 5 epochs for

the first 50 epochs. After the warm-up, the learning rate

keeps at 1e-3, then decays to 1e-4 at epoch 200, and fur-

ther decays to 1e-5 at epoch 300 until a total of 400 epochs.

The whole training procedure takes about 2.5 hours using

4 GTX1080Ti GPUs based on the PyTorch framework [27].

All our experimental results are reported using the same set-

tings across all datasets.

3.3. Comparison with State­of­the­art

To evaluate the person re-ID performance of the pro-

posed method and to compare the results with the state-of-

the-art methods, we use cumulative matching characteris-

tics (CMC) at Rank-1, Rank-5, Rank-10, and the mean av-

erage precision (mAP) as our evaluation metrics.

We compare our proposed method (SONA-Net)

with recent state-of-the-art methods using Market1501,

DukeMTMC-reID, and CUHK03. For CUHK03, we adopt

the new protocol [53] similar to other methods to simplify

the evaluation procedure. All reported results do not apply

any re-ranking [53] or multi-query fusion [50] techniques.

Note that most previous efforts only report the results of a

single run; however, due to the randomness of the training

procedure of deep neural networks, the trained model and

the corresponding test performance might vary. Therefore,

in order to evaluate the effectiveness of the proposed

approach more fairly, we run each of our experiment

configurations four times and report both the mean and

standard deviation values for all four evaluation metrics.

We compare our result’s mean value against the existing

state-of-the-art results, and mark the better result using

a bold font. We use “*” to denote the methods that rely

on auxiliary information. The compared methods can be

divided into two categories according to feature types: non

part-based features and part-based features. We also list the

results for our model variations: SONA2-Net, SONA3-Net

and SONA2+3-Net, indicating the SONA module is applied

after ResNet50 stage 2, stage 3, or both stage 2 and 3,

and all variations share the same backbone network and

DropBlock+ module.

Market1501. Table 2 shows the detailed comparisons

for Market1501. For this dataset, we categorize the com-

pared methods into two groups based on the feature types,

i.e., methods that explore global or local features and meth-

ods that take advantage of part information. The results

show that part-based methods generally outperform meth-

ods based on global features. By integrating both global

features with batch erasing local features, BFE shows com-

petitive results compared to most part-based methods. Our

approach has a similar network architecture as BFE, but
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Method mAP Rank-1 Rank-5 Rank-10

SOMAnet [1] 47.9 73.9 - -

SVDNet [34] 62.1 82.3 92.3 95.2

PAN [52] 63.4 82.8 - -

Transfer [9] 65.5 83.7 - -

DML [47] 68.8 87.7 - -

Triplet Loss [12] 69.1 84.9 94.2 -

DuATM [32] 76.62 91.42 97.09 98.96

Deep-CRF [3] 81.6 93.5 97.7 -

BFE256+512 [5] 82.8 93.5 - -

BFE [5] 85.0 94.4 - -

MultiRegion [37] 41.2 66.4 85.0 90.2

HydraPlus [23] - 76.9 91.3 94.5

PAR [48] 63.4 81.0 92.0 94.7

PDC* [33] 63.4 84.4 92.7 94.9

MultiLoss [18] 64.4 83.9 - -

PartLoss [44] 69.3 88.2 - -

MultiScale [4] 73.1 88.9 - -

GLAD* [41] 73.9 89.9 - -

PCB [35] 77.4 92.3 97.2 98.2

PCB+RPP [35] 81.6 93.8 97.5 98.5

MGN [39] 86.9 95.7 - -

Local-CNN* [43] 87.4 95.9 - -

Pyramid-Net [49] 88.2 95.7 98.4 99.0

SONA2-Net µ 88.67 95.68 98.42 99.03

SONA2-Net σ ±0.08 ±0.18 ±0.08 ±0.04

SONA3-Net µ 88.63 95.53 98.48 99.15

SONA3-Net σ ±0.08 ±0.08 ±0.11 ±0.05

SONA2+3-Net µ 88.83 95.58 98.50 99.18

SONA2+3-Net σ ±0.04 ±0.15 ±0.07 ±0.13

Table 2. Comparison of our proposed method with state-of-the-art

methods for the Market-1501 dataset. µ and σ represents mean

and standard deviation of performance, respectively.

BFE lacks the mechanism of modeling the information in

different positions of the feature map and our model variant

SONA2+3-Net has improved the performance by 3.8% and

1.1% for mAP and Rank-1 metrics, respectively. One ad-

vantage of BFE (motivating our approach) is its simplicity,

while part-based methods employ complex branch settings

or training procedures to coordinate the learning process of

different parts. With BFE’s simpler network architecture,

the performance of the proposed approach is comparable

to or noticeably better than the state-of-the-art part-based

models, such as a newly developed Pyramid-Net.

DukeMTMC-reID. For this dataset, Table 3 shows that

the proposed approach achieves slightly better or compara-

ble results compared to state-of-the-art baseline methods,

such as Pyramid-Net and MGN. Similar to the compari-

son with Market1501, our model variants outperform both

BFE and BFE256+512, and all our model variants achieve al-

most the same performance. Further, the performance of the

Method mAP Rank-1 Rank-5 Rank-10

SVDNet [34] 56.8 76.7 86.4 89.9

AOS [13] 62.1 79.2 - -

HA-CNN [19] 63.8 80.5 - -

GSRW [31] 66.4 80.7 88.5 90.8

DuATM [32] 64.58 81.82 90.17 95.38

Local-CNN* [43] 66.04 82.23 - -

PCB+RPP [35] 69.2 83.3 90.5 92.5

Deep-CRF [3] 69.5 84.9 92.3 -

BFE256+512 [5] 71.5 86.8 - -

BFE [5] 75.8 88.7 - -

MGN [39] 78.4 88.7 - -

Pyramid-Net [49] 79.0 89.0 94.7 96.3

SONA2-Net µ 78.05 89.25 95.23 96.50

SONA2-Net σ ±0.38 ±0.32 ±0.41 ±0.31

SONA3-Net µ 78.18 89.55 95.13 96.50

SONA3-Net σ ±0.29 ±0.38 ±0.15 ±0.22

SONA2+3-Net µ 78.28 89.38 95.35 96.55

SONA2+3-Net σ ±0.11 ±0.36 ±0.15 ±0.11

Table 3. Comparison of the proposed method with state-of-the-art

methods for the DukeMTMC-reID dataset.

proposed method is not as sensitive to hyper-parameter set-

tings as that of the BFE variants, e.g., BFE and BFE256+512

achieve 71.5% vs. 75.8% for mAP and 86.8% vs. 88.7% for

Rank-1 respectively.

CUHK03. This dataset is one of the most challenging

person re-ID datasets due to the adoption of the new proto-

col with two types of person bounding boxes as described

above. We can see from Table 4 that our proposed approach

for the CUHK03 Labeled dataset outperforms all state-of-

the-art models. Similar to the previous comparisons with

BFE and its variant on the Market1501 dataset, our pro-

posed SONA2-Net model variant outperforms BFE256+512

with 8.03% at mAP and 6.45% at Rank-1, respectively.

Our method achieves noticeably better performance than

state-of-the-art results w.r.t. mAP, Rank-1, Rank-5, and is

only slightly worse than Pyramind-Net in Rank-10. Our

SONA2+3-Net model variant exceeds BFE256+512 6.47%

and 5.50% at metrics mAP and Rank-1.

So far, we discussed the experimental results with each

dataset separately. We can also make the following general

observations from these experiments:

1. Although we observe that for each dataset there exists

a best setting, the performances of the different settings

are very close to each other. In particular, even if we

fix one setting randomly (or use the setting of SONA2-

Net, which has the fewest parameters), we can still out-

perform the baselines for most metrics. The stability

of the second-order non-local attention module in dif-

ferent settings makes it flexible and easy to be applied
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Method
Labeled Detected

mAP Rank-1 mAP Rank-1

PAN [52] 35.0 36.9 34 36.3

SVDNet [34] 37.8 40.9 37.3 41.5

HA-CNN [19] 41.0 44.4 38.6 41.7

Local-CNN* [43] 53.83 58.69 51.55 56.76

PCB+RPP [35] - - 57.5 63.7

MGN [39] 67.4 68.0 66.0 68.0

BFE [5] 70.9 75.0 67.9 72.1

BFE256+512 [5] 71.2 75.4 70.8 74.4

Pyramid-Net [49] 76.9 78.9 74.8 78.9

SONA2-Net µ 79.23 81.85 76.35 79.10

SONA2-Net σ ±0.78 ±0.84 ±0.68 ±0.56

SONA3-Net µ 79.18 81.05 76.38 78.90

SONA3-Net σ ±0.19 ±0.36 ±0.88 ±0.80

SONA2+3-Net µ 79.23 81.40 77.27 79.90

SONA2+3-Net σ ±0.23 ±0.80 ±0.43 ±0.67

Table 4. Comparison of our proposed method with state-of-the-art

methods for the CUHK03 dataset using the new protocol [53]. For

the labeled set, the results of model variation SONA2-Net at Rank-

5 and Rank-10 are 92.55% (±0.56) and 95.58% (±0.61) respec-

tively, compared to Pyramid-Net’s [49] 91.0% and 94.4%. For

the detected dataset, the results of model variant SONA2+3-Net

are 91.00%(±0.37) and 94.48% (±0.13), compared to Pyramid-

Net’s [49] 90.7% and 94.5%, respectively.

to another different network architecture without the

need for additional hyper-parameter tuning.

2. Our approach achieves consistent improvements for

the four datasets. Nevertheless, we find that we obtain

most improvement for CUHK03 (2.33%), while we

see the smallest improvement for Market1501 (0.63%)

at mAP compared with the closest known model. This

is understandable, because the different characteristics

of the datasets, such as the used bounding box de-

tection algorithm and misalignment of different parts

rooted in the model design. Most previous approaches

also have a larger performance variance on different

datasets, e.g., MGN performs much worse with the

CUHK03 Labeled dataset than with the Market1501

dataset (11.83% and 1.93% worse than the proposed

approach for mAP , respectively), which is probably

due to its part-based mechanism being sensitive to the

accuracy of the bounding box detection and accurate

part alignment. Pyramid-Net mitigates this problem by

sharing a common basic part between adjacent parts.

3.4. Ablation Studies

To further investigate each component’s contribution to

the whole network, we perform ablation studies by deliber-

ately removing certain modules and comparing the results

for all four metrics. The overall settings remain exactly the

same, while only the module under investigation is added

or removed from the whole network. Specifically, in Ta-

ble 5, the Baseline network is the network with backbone,

global branch, and local branch. Note that the Baseline net-

work is also an improved architecture based on BFE as dis-

cussed in Section 2.1. The DropBlock+ represents the vari-

ant with both Baseline network and the DropBlock+ mod-

ule. The SONA-Net variants contain both Baseline network

and DropBlock+ module. As shown in Table 5, we observe

that:

1. The Baseline network has a simple two branch ar-

chitecture, but it is very effective, indicating that our

architecture modification to BFE is useful. On the

CUHK03 Labeled dataset, it even slightly outperforms

the Pyramid-Net. When adding DropBlock+ to the

Baseline network, it can improve the Baseline network

in general. For other datasets, our Baseline network

achieves comparable results to Pyramid-Net; only the

mAP on DukeMTMC-reID is worse than Pyramid-

Net.

2. When the proposed second-order non-local atten-

tion module is added in addition to the Drop-

Block + module, the overall deep network can fur-

ther achieve noticeably better results than the state-of-

the-art Pyramid-Net. However, different datasets have

their own characteristics, and the SONA module works

slightly different on those datasets. But in general, all

three SONA model variants achieve similar results.

3. We further conduct experiments to see if the proposed

second-order non-local model works in deeper posi-

tions of the DNNs. Specifically, we place the SONA

module right after Stage-4 on the global branch and

found that the performance drops greatly, e.g., 75.8%

at mAP, and 78.9% at Rank-1 on CUHK03 Labeled

dataset. We also observe a similar behavior for plac-

ing the SONA after Stage-4 on the local branch and on

both branches. This indicates that the proposed SONA

module, although it shows stability when placed in dif-

ferent earlier stages, is not appropriate for placement in

later stages. This is because the purpose of the second-

order non-local attention module is to capture the non-

local correlation in early stages, which contains more

fine-grained information.

4. SONA, whenever it is applied to a model, always leads

to a significant performance gain. DropBlock+ as a

generalized version of DropBlock further enhances the

flexibility of our proposed model. When applied to-

gether with SONA, we show that DropBlock+ yields

slightly better results than BFE. Overall, DropBlock,

BFE, and DropBlock+ serve very similar purposes as
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Models
CUHK03 Labeled CUHK03 Detected DukeMTMC-reID Market-1501

mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

MGN [39] 67.4 68.0 - - 66.0 68.0 - - 78.4 88.7 - - 86.9 95.7 - -

BFE [5] 70.9 75.0 - - 67.9 72.1 - - 75.8 88.7 - - 85.0 94.4 - -

BFE256+512 [5] 71.2 75.4 - - 70.8 74.4 - - 71.5 86.8 - - 82.8 93.5 - -

Pyramid-Net [49] 76.9 78.9 91.0 94.4 74.8 78.9 90.7 94.5 79.0 89.0 94.7 96.3 88.2 95.7 98.4 99.0

BL µ 77.05 79.70 91.52 94.98 74.00 76.70 89.45 93.45 76.2 88.00 94.60 96.20 87.50 95.18 98.28 99.03

BL σ ±0.22 ±0.44 ±0.33 ±0.19 ±0.30 ±0.30 ±0.25 ±0.55 ±0.30 ±0.60 ±0.10 ±0.10 ±0.16 ±0.19 ±0.04 ±0.04

BL+DB µ 77.02 79.13 90.90 94.88 74.50 77.25 89.38 93.03 76.93 88.28 94.65 96.15 87.60 95.43 98.25 99.03

BL+DB σ ±0.28 ±0.42 ±0.21 ±0.15 ±0.37 ±0.57 ±0.27 ±0.30 ±0.24 ±0.23 ±0.11 ±0.18 ±0.07 ±0.15 ±0.15 ±0.04

BL+DB+
µ 77.45 79.10 91.60 94.78 74.30 76.93 89.50 93.20 76.95 88.60 94.88 96.25 87.68 95.18 98.32 99.0

BL+DB+
σ ±0.54 ±0.78 ±0.31 ±0.29 ±0.25 ±0.50 ±0.25 ±0.16 ±0.15 ±0.39 ±0.18 ±0.15 ±0.16 ±0.15 ±0.08 ±0.07

BL+BFE µ 77.20 79.83 91.03 94.90 74.85 77.48 89.95 93.48 76.85 88.15 94.6 95.98 87.73 95.30 98.35 99.00

BL+BFE σ ±0.12 ±0.47 ±0.08 ±0.14 ±0.44 ±0.58 ±0.09 ±0.26 ±0.34 ±0.50 ±0.32 ±0.11 ±0.04 ±0.29 ±0.11 ±0.10

BL+SONA2
µ 78.48 80.78 92.03 95.50 76.20 78.93 90.40 94.48 78.18 89.55 95.05 96.45 88.50 95.58 98.32 99.00

BL+SONA2
σ ±0.33 ±0.13 ±0.29 ±0.41 ±0.32 ±0.41 ±0.36 ±0.50 ±0.15 ±0.32 ±0.32 ±0.21 ±0.12 ±0.19 ±0.08 ±0.12

BL+BFE+SONA2
µ 79.15 81.68 92.25 95.38 76.00 78.83 90.23 94.10 77.98 88.90 95.05 96.25 88.63 95.60 98.30 99.00

BL+BFE+SONA2
σ ±0.11 ±0.35 ±0.09 ±0.11 ±0.43 ±0.66 ±0.18 ±0.21 ±0.04 ±0.16 ±0.11 ±0.11 ±0.04 ±0.39 ±0.16 ±0.07

SONA2-Net µ 79.23 81.85 92.55 95.58 76.35 79.10 90.25 94.03 78.05 89.25 95.23 96.50 88.67 95.68 98.42 99.03

SONA2-Net σ ±0.78 ±0.84 ±0.56 ±0.61 ±0.68 ±0.56 ±0.53 ±0.55 ±0.38 ±0.32 ±0.41 ±0.31 ±0.08 ±0.18 ±0.08 ±0.04

SONA3-Net µ 79.18 81.05 92.10 95.45 76.38 78.90 90.68 94.35 78.18 89.55 95.13 96.50 88.63 95.53 98.48 99.15

SONA3-Net σ ±0.19 ±0.36 ±0.33 ±0.45 ±0.88 ±0.80 ±0.53 ±0.45 ±0.29 ±0.38 ±0.15 ±0.22 ±0.08 ±0.08 ±0.11 ±0.05

SONA2+3-Net µ 79.23 81.40 92.35 95.57 77.27 79.90 91.00 94.48 78.28 89.38 95.35 96.55 88.83 95.58 98.50 99.18

SONA2+3-Net σ ±0.23 ±0.80 ±0.09 ±0.04 ±0.43 ±0.67 ±0.37 ±0.13 ±0.11 ±0.36 ±0.15 ±0.11 ±0.04 ±0.15 ±0.07 ±0.13

Table 5. Comparison of the proposed model and its variants with MGN, BFEs, and Pyramid-Net. “BL” represents the Baseline network

with backbone, global branch, and local branch. “DB” represents the original DropBlock module, and “DB+” represents the DropBlock+

module. The “SONA{2,3,2+3}-Net” represents the network with all components (BL, DB+, and SONA injection variants).

regularization. We show in the experiments that they

do not yield major performance improvements to the

overall system. The major performance gain is from

the use of our proposed SONA.

5. In addition to the improvement of the test perfor-

mance, we also find that the training losses are also af-

fected by different modules. Initially, while the Base-

line network is not affected by other modules, it pro-

duces relatively small loss. However, when we add

the DropBlock+ to the Baseline network, the average

loss increases by 0.45%. This is as expected, because

DropBlock+ is essentially a regularization method pre-

venting the network from overfitting. We further add

the SONA module after the second stage and the third

stage and the average losses are then 0.02% and 0.06%

lower than the Baseline loss. This behavior indicates

that the SONA module helps the training.

Overall, we demonstrate the effectiveness of our pro-

posed second-order non-local attention for encoding non-

local body part relations for person re-ID tasks.

3.5. Inference Time Cost

We measure the single image inference time (with ten

runs) using one Nvidia Titan Xp and Market1501. The time

cost for one forward pass on the model with the SONA2

module is 8.44 ms ±0.09 ms, and 7.89 ms ±0.16 ms with-

out the SONA2 module. The results show that the overhead

caused by our SONA module is negligible.

4. Conclusions

In this paper, we present a new perspective of modeling

feature map correlations using second-order statistics and

design an attention module based on this correlation for per-

son re-identification. By design, our model is able to cap-

ture the correlations between salient features from any spa-

tial locations of the feature map in the early stages. There-

fore, it does not rely on special part partition schemes or

arrangements to handle part misalignment issues. It pro-

vides a more general, automatic, and advanced data model-

ing scheme for the deep neural network to learn more dis-

criminative and robust representations in the person re-ID

task. With the help of the proposed attention module, our

model pushes the state-of-the-art further and achieves bet-

ter results on three popular person re-ID datasets. Specifi-

cally, on the CUHK03 dataset, our model outperforms the

currently best model by a noticeable margin under the new

protocol. Note that we ran four experiments for the same

network configuration and reported the mean and standard

deviations for all four evaluation metrics in addition to the

single-query and re-ranking free evaluation protocol.
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