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Abstract

Deep neural networks (DNNs) have been widely ap-

plied in various applications. However, DNNs are found

to be vulnerable to adversarial examples. While several de-

fense and detection approaches are proposed for static im-

age classification, many security-critical tasks use videos

as their input and require efficient processing. In this paper,

we propose an efficient and effective method AdvIT to de-

tect adversarial frames within videos against different types

of attacks based on temporal consistency property of videos.

In particular, we apply optical flow estimation to the target

and previous frames to generate pseudo frames and eval-

uate the consistency of the learner output between these

pseudo frames and target. High inconsistency indicates that

the target frame is adversarial. We conduct extensive exper-

iments on various learning tasks including video semantic

segmentation, human pose estimation, object detection, and

action recognition, and demonstrate that we can achieve

above 95% adversarial frame detection rate. To consider

adaptive attackers, we show that even if an adversary has

access to the detector and performs a strong adaptive attack

based on the state of the art expectation of transformation

method, the detection rate stays almost the same. We also

tested the transferability among different optical flow esti-

mators and show that it is hard for attackers to attack one

and transfer the perturbation to others. In addition, as ef-

ficiency is important in video analysis, we show that AdvIT

can achieve real-time detection.

1. Introduction

Deep neural networks (DNNs) have been widely studied

and have shown impressive performance in many tasks [15,

30, 31]. However, recent studies have shown that DNNs are

vulnerable to adversarial examples [5, 6, 9, 17, 28, 35, 40–

43] which are carefully crafted input instances targeted at

leading machine learning models to produce attacker con-

trolled errors in the output. This raises a number of security

concerns in real-world machine learning based applications

∗This work was performed when Chaowei Xiao was at IBM

such as self-driving cars and surveillance [5, 6, 14, 28, 32].

While currently most research on adversarial examples

focuses on static images, DNNs on videos is a particularly

interesting and important domain, as attacks against many

applications have the potential to cause serious physical and

financial damage. For example, one application of DNNs to

video is in autonomous vehicles; DNNs are used to identify

other cars, road markings, street signs, and pedestrians. An

adversarial attack forcing a network to classify a stop sign

as a speed limit sign could easily cause a crash. Recently

Wei et.al [38] proposed an adversarial attack targeting on

action recognition task in videos which again emphasizes

the vulnerabilities of learners for videos.

Several defense or detection methods have been pro-

posed on static images but most of them are defeated by

adaptive attacks [4, 8, 22, 23]. As a result, directly applying

existing defenses on static images to videos is not robust nor

efficient considering the high requirements for video pro-

cessing. While general defense approach is hard, leverag-

ing special properties of data source (e.g. videos) and en-

hancing model robustness is possible. In this paper, we pro-

pose AdvIT : the first adversarial frame identifier for videos

based on temporal consistency. In particular, we allow the

attacker to have white-box access to the target DNNs and

add adversarial perturbation to one or more frames. Here

we consider two types of attacks: independent frame attack

which adds adversarial perturbation to selected frames inde-

pendently (e.g. Houdini and DAG [10, 44]); and temporal

continuity attack which generates perturbation considering

the continuity among video frames (e.g. sparse and univer-

sal attack [38]). Our temporal consistency-based detection

framework AdvIT is shown in Fig. 1. Given a target frame

within a video, we first estimate the optical flows between

the target Xt and its previous frames (Xt−1, · · · ,Xt−k).

We then fuzz the estimated optical flows with small ran-

domness α ∼ N (0, σ2) and transform the previous frames

as “pseudo frames” and check the consistency between the

outputs of learning tasks based on the pseudo frames and the

original target. We find that the frame transformation de-

scribed above preserves the temporal consistency of learn-
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ing results if the target frame is benign, while weakens the

pseudo frames’ adversarial behaviour if the target frame is

adversarial. This process is independent with the fact that

whether the previous frames are adversarial or not. There-

fore, we can leverage the prediction results of the pseudo

frame as a reference and check its consistency to detect if

the target frame is adversarial.

To demonstrate the effectiveness of AdvIT , we test our

approach on four major video based tasks including seman-

tics segmentation, human pose estimation, object detection

and action recognition. Different state of the art attack ap-

proaches including Houdini, DAG, Sparse adversarial per-

turbation [10, 38, 44] are evaluated. We show that our ap-

proach can detect adversarial frames with above 95% de-

tection rate. We also show that because of the large sam-

ple space of randomness added to the optical flow, even at-

tacks that are aware of our detector would be unfeasible. As

shown in the experimental section, our detection pipeline

remains robust even under the proposed strategic adaptive

attacks. We perform transferability analysis for different

optical flow estimators and demonstrate that it is hard to

transfer perturbation generated against one estimator to an-

other. In addition, we analyze the performance of optical

flow estimator and conclude that our approach does not re-

quire an accurate estimator to achieve high detection rate.

Our detection approach has several advantages com-

pared to existing approaches: 1) we do not require time-

consuming retraining of machine learning models as most

of existing defenses [23, 36]; 2) our detector does not com-

promise the performance of the learning tasks; 3) due to the

randomness injected, it is hard to perform adaptive attacks

against the detection method; 4) we do not require the op-

tical flow estimation to be differentiable, which ensures its

wide application;

Contributions (1) We propose to leverage the temporal

consistency in videos and and randomness to develop an

efficient and effective approach AdvIT that detects adver-

sarial frames with above 95% detection rate. To the best of

our knowledge, this is the first work to apply optical flow

to quantitatively estimate the consistency of learning tasks

on videos and use it to detect adversarial behaviours. (2)

We conduct extensive experiments and analyses to identify

adversarial frames within videos against different state-of-

the-art attacks on video learning tasks including semantic

segmentation, human pose estimation, object detection, and

action recognition. We show that AdvIT outperform poten-

tial baselines significantly. (3) We propose strong adaptive

attacks against our detection method and show that it is ro-

bust against the proposed attacks which assume adversaries

are aware of the detection mechanism. 4) We evaluate the

transferability among different optical flow estimators and

show that adversarial attacks rarely transfer among them,

which motivate us to embed a non-differential optical flow

estimator into our detection system.

Figure 1: Pipeline of the proposed temporal consistency

based adversarial frame identifier: AdvIT .

2. Related work

In this section we will provide brief introduction of cur-

rent adversarial attacks on videos, as well as potential de-

fense approaches against adversarial examples.

Learning for videos. Deep neural networks have been suc-

cessfully applied to video in a number of supervised com-

puter vision tasks including: Semantic segmentation, ob-

ject detection and human pose estimation. Fully convolu-

tion networks [21] propose an end-to-end model that first

down-samples the feature map and then up-sample to gener-

ate a pixel-wise class score map for semantic segmentation.

[45] improves this pipeline by introducing dilated convolu-

tion that increases the receptive field size without decreas-

ing its resolution. Object detection has been accomplished

using R-CNN models that adopt a proposal and prediction

pipeline [16, 31] for object detection and semantic segmen-

tation. YOLO [29, 30] models only make predictions on

a fixed set of bounding boxes restricted by the grid of fea-

ture map and a pre-defined set of anchors, but this limitation

allows it to achieves real-time performance. Stacked Hour-

glass Networks [25] achieve state of the art performance on

the task of single person humans pose estimation through

using a repeated top-down and bottom-up model and cap-

turing information at all scales.

Adversarial attacks. Adversarial examples have been

heavily explored in classification task [5, 6, 9, 17, 28, 35,

40, 42, 43]. DAG [44] and Houdini [10] have both gener-

ated imperceptible changes to inputs to create attacker con-

trolled outputs against segmentation and object detection

tasks. DAG [44] proposes an iterative gradient based attack

methods to attack all pixels until most of the pixels have

been identified as target classes for semantic segmentation

while it attacks all proposed bounding boxes until they are
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misclassified as target classes. Houdini [10] proposes a op-

timization based attack algorithm by introducing a surro-

gate loss function. Adversarial attacks have recently been

extended into the domain of video data. Sparse adversarial

perturbation [38] demonstrates a method to generate uni-

versal adversarial perturbations against action recognition

model for videos. The method also achieves temporal spar-

sity by imposing a temporal mask upon the perturbation.

Defenses against adversarial examples. Various detection

and defense methods have also been explored against ad-

versarial examples in image classification, though they have

not considered or tested video inputs. Adversarial training

[17] and its variations [23, 36] have generally been more

successful, but usually come at the cost of accuracy and in-

creased training time [37]. Recently, Athalye et al. [4] suc-

cessfully generated adversarial examples in the presence of

detection and defense strategies. Xiao et al. [39] proposed

a method to detect adversarial examples on semantic seg-

mentation using spatial information. However, these meth-

ods all focus on static image behaviour and is not directly

applicable to object detection and human pose estimation.

Currently no defense or detection methods have been stud-

ied that can be applied across video-based tasks, such as

human pose estimation and object detection task.

3. Adversarial frame identifier via temporal

consistency: AdvIT

In this section, we first formally define the problem.

Then, we provide an overview of the proposed approach

advIT, and discuss each step in detail.

Formally, we define the problem as follows: Let

X1, . . . ,Xt be the sequence of image frames of a (stream-

ing) video, and Xt is the target frame. Let g be a learner

with output g(Xt) = Yt. In this context, the attacker can

inject small perturbation (i.e., Xi ← Xi + ǫi) to one or

more frames to achieve g(Xt) = Y
∗ where Y

∗ is the ad-

versarial target depending on the learning task. Our goal

is to determine whether the target frame Xt is adversar-

ial without any other knowledge except for the previous k

frames Xt−k, . . . ,Xt−1, and it is not clear whether the pre-

vious k frame are benign or adversarial.

Threat Model In this work we mainly focus on two

types of frame based adversarial attacks: independent frame

attack and temporal continuity attack, both of which aim to

add perturbation to one or more frames and therefore mis-

lead the target learner. We believe such frame based at-

tack could lead to severe consequences given the fact that

frame based approaches are the most effective and com-

monly used ones in videos [7, 30]. In particular, indepen-

dent frame attack includes Houdini [10] and DAG [44] at-

tacks for video segmentation, object detection and human

pose estimation tasks; and temporal continuity attack in-

cludes Sparse attack [38] on action recognition and Univer-

sal perturbation [24] on the previous three tasks. To avoid

trivial detection, an adversary needs to constraint the mag-

nitude of perturbation. Without loss of generality, we use

l2 to bound the added perturbation. Some video attack ex-

amples for the considered four learning tasks are shown in

Fig 2 and Fig 3.

Figure 2: Benign and adversarial frames generated on

Cityscapes and Davis Challenge 17 dataset for video seg-

mentation and human pose estimation respectively.

Figure 3: Benign and adversarial frames generated on MPII

and UCF-101 for video object detection and action recogni-

tion respectively.

Overview of Method Our detection algorithm is based

on temporal consistency of videos. Since the next frame in

the video is the continuation of the objects and the scene af-

ter their small movements, they can be mostly reconstructed

from the current frame if we can compute such movements.

Due to this continuity, we should have consistent learning

outputs from neighbor frames [19]. However, this may not

be true when the next frame contains adversarial perturba-

tion which may interrupt such property.

We call the reconstructed frame as a “pseudo frame”,

and can validate the learning output temporal consistency

by comparing the output of the to-be-verified target frame

and the pseudo frame. Specifically, we observe the follow-

ing properties regarding the validation of the temporal con-

sistency with the pseudo frame. First, since adversarial per-

turbation is very specific to the frame, a newly reconstructed

pseudo frame is much less affected by the adversarial per-

turbation. Its output is very close to that of a benign frame.

Second, adversarial perturbation in the target frame breaks

the output temporal continuity compared to the output of

the pseudo frame. Thus, if the target frame is adversarial,

we can observe that the temporal consistency of the output

does not hold.

Based on this observation, we propose the adversar-

ial frame detection framework that tests temporal consis-

tency of the outputs as shown in Fig 1. First, we gener-

ate pseudo frames based on each of the k previous frames

(Xt−k · · ·Xt−1) by estimating optical flow (OF ) from each
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to the target frame Xt, and adding certain random trans-

formation α ∼ N (0, σ2). Then, we run the learner (e.g.,

segmenter) on the pseudo frames and the target frame to

get prediction results. Finally, we compare their results to

test if the temporal consistency is satisfied. Note that our

method is independent of the adversarial behaviour of the

previous frames: they can either be adversarial or benign.

The bottom-right box in Fig. 1 shows the four scenarios.

Next we will introduce the two components of the proposed

method in details: (1) Pseudo frame generation; (2) tempo-

ral consistency based test.

3.1. Pseudo Frame Generation

We combine two types of transformations to generate

the pseudo frames: optical flow and random transformation.

First, optical flow is a transformation caused by movements

of the viewer or the objects in the scene. This technique is

able to reconstruct subsequent frames and is the basis of a

number of video codecs, such as MPEG-2 [27]. Machine

learning models have also successfully been trained to gen-

erate the vector field V when trained on videos [12, 19].

In particular, optical flow has been applied to estimate the

instantaneous 2D velocity of visible surface points from

time-varying image signal. Traditional optical flow estima-

tion methods usually involve solving optimization problems

based on assumptions of consistency, smoothness of inten-

sity, and gradients [20].

An optical flow estimator is a function F which gener-

ates a vector field V indicating the direction and distance

to move pixels within an image. Deep-learning-based op-

tical flow estimation models have been widely studied on

different video tasks. Dosovitskiy et.al [12] firstly applied

deep neural network to estimate the optical flow. Here we

leverage the DNNs based optical flow [19] to characterize

the continuity among video frames. Given two temporally

close frames, we can quantify the motion using an optical

flow estimation algorithm. By applying the optical flow to

the first input frame, we can reconstruct the second one.
Formally, let Xs and Xt be a pair of temporally close

frames in a video. An optical flow between the two frames
is a vector field OF = (∆u,∆v) that describes the dis-
placement of pixels between the frames and we denote an

image generated by applying flow as X̂s→t. The goal of an
optical flow algorithm is to minimize the error of the gen-

erated image X̂s→t and the actual frame Xt. We obtain

X̂s→t by sampling pixel intensities from Xs; the pixel in

X̂s→t at location (i, j) corresponds to the pixel at location
(u, v) = (i + ∆u(i, j), j + ∆v(i, j)) in image Xs. As
(∆u,∆v) can be fractional numbers and (u, v) does not
necessarily lie on the integer coordinate grid, the pixel in-
tensity can be sampled via bilinear sampling.

X̂s→t(i, j) =
∑

(i
′
,j

′
)∈N(u,v)

Xs(i
′
, j

′
)(1 − |u − i

′
|)(1 − |v − j

′
|) (1)

where N(u, v) stands for the indices of the 4-pixel neigh-

bors at location (u, v) (top-left, top-right, bottom-left,

bottom-right). X·(i, j) represents the pixel value at loca-

tion (i, j).
To further combat the creation of adversarial perturba-

tion, we add randomness α ∼ N (0, σ2) to the flow field

(∆u,∆v) to generate the pseudo frames. This random-

ness can also help make adaptive attacks harder, where an

adversary has full knowledge about the detection.

Algorithm 1: Temporal Consistency Based Test

input: target frame in a videoXt;

previous K frames of Xt: Xt−k, . . . , Xt−1;

optical flow estimation model flow;

machine learning model g;

consistency evaluation function f ;

output: Continuity metric c;

Initialization : cs←[],

w ← x.width, h← x.height,Yt ← g(Xt);
1 for s← t− 1 to t− k do

2 (∆u,∆v)← flow(Xs,Xt);
/* add randomness to optimal flow */;

3 (∆ũ,∆ṽ)← (∆u,∆v) +α;

/* generate pseudo frame XT−k */;

4 X̂s→t ← warp((∆ũ,∆ṽ),Xs);

5 Ŷs→t ← g(X̂s→t);
/* measure consistency information */;

6 cs
+
← f(Ŷs→t,Yt);

7 end

8 c←Mean(cs);
Return: c

(a) Benign frame (b) Heatmap of a benign frame

(c) ICCV (d) Stripe (e) Remapping

Figure 4: Heatmap of per-pixel cross-entropy. (a) and (b)

show a benign frame and the corresponding per-pixel cross

entropy between the prediction of its pseudo frames and it-

self. The rest show similar per-pixel cross entropy for ad-

versarial frames with different targets. The labels indicate

their adversarial targets.

3.2. Temporal Consistency Based Test

To quantitatively demonstrate the difference of tempo-

ral consistency between adversarial and benign cases, we
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Figure 5: Examples of consistency measurement based on

AdvIT for various video tasks. The first column indicates

previous Frames. The second column indicates the current

frame and corresponding prediction result. The last column

indicates a sampled pseudo frame and corresponding pre-

diction. The consistency metric C shows quantitative re-

sults for different learning tasks. Note that higher C for seg-

mentation and object detection means higher consistency,

while lower C indicates more consistent for Human pose

estimation since it is based on L2 distance.

first use semantic segmentation as an example here to illus-

trate our findings. Suppose given k + 1 consecutive frames

from video, Xt−k, . . . ,Xt−1,Xt, we estimate the OF be-

tween each of the previous k frames Xs and Xt, where

s = t−k, ..., t−1. Next, we add randomness α to each OF

to reconstruct pseudo frame X̂s→t from Xs. These pseudo

frames and Xt are then sent as input to learning model g.

We normalize the output of g by the softmax function so

that the prediction of every pixel is a vector indicating the

probability of the pixel belonging to every class. The pre-

diction results of the learning models are denoted by Ŷ
d
s→t

and Y
d
t respectively. We compute the average for the pre-

diction vectors of k pseudo frames, S = 1
k

∑t−1
s=t−k Ŷ

d
s→t,

and we use S(i, j)[m] to indicate the averaged probabil-

ity of pixel (i, j) being predicted to be class m in pseudo

frames. Based on the k pseudo frames, we calculate the

cross entropy E between S and Yt as

E =
∑

m

−Y d
t [m] ◦ logS[m]

where ◦ denotes Hadamard product. We visualize the cross

entropy E in Fig. 4: Fig. 4c to Fig. 4e show the heatmaps of

cross entropy when Xt is adversarial examples with differ-

ent attack targets, while Fig. 4b shows the heatmap of cross

entropy when Xt is benign. It is clear that for the benign in-

stance, the prediction results for most pixels are consistent

except for small regions around boundaries of the objects;

while for the adversarial targets, most of the pixels show in-

consistent prediction results. We also observe that whether

Xt−k, . . . ,Xt−1 are benign or adversarial has little impact

on the prediction consistency for Xt.

Based on such observation, we proposed leveraging the

temporal consistency information to distinguish adversar-

ial frames in videos and provide the following detailed al-

gorithm. Without loss of generality, we assume Xt is a

current frame and our goal is to detect whether the current

frame Xt is adversarial. Given an optical flow model, we

denote the optical flow between previous frame Xs and

Xt by OF = (∆u,∆v)s→t. Randomness α is added

to the optical flow (∆u,∆v)s→t to get new optical flow

(∆ũ,∆ṽ)s→t where (∆ũ,∆ṽ)s→t = (u,v)s→t +αu,v .

After obtaining (∆ũ,∆ṽ)s→t for s = t − k, ..., t − 1,

we generate the pseudo frames X̂s→t. We then calcu-

late the consistency metric c between Yt = g(Xt) and

Ys→t = g(X̂s→t) respectively with a scalar consistency

function f to determine whether Xt is an adversarial frame

or not, where c = 1
k

∑t−1
s=t−k f(Ys→t,Yt). The algorithm

of this temporal continuity based method is shown in Algo-

rithm 1, where warp is achieved via bilinear sampling as

defined in Eq. 1.

We adopt different consistency measurement function f

for various learning tasks: (1) Segmentation: Pixel-wise ac-

curacy1. (2) Human Pose Estimation: Average L2 distance

over all key joints. Note that, high distance indicates low

consistency. (3) Object Detection: mIoU between bound-

ing boxes of pseudo frames and the current frame. (4) Ac-

tion Recognition: the average of forward and backward KL

divergence between the two categorical distributions. The

detailed algorithm to calculate the mIoU is shown in sup-

plementary.

Fig. 5 shows the examples of our detection method. We

can observe that the inconsistency between the target frame

and corresponding pseudo frames is high for an adversar-

ial frame and low for benign, and this conclusion holds for

various learning tasks on video.

4. Experimental Results

In this section, we present experimental results on detect-

ing adversarial frames with AdvIT against different attacks

for four learning tasks on videos, including video semantic

segmentation, human pose estimation, object detection, and

action recognition. We show that our adversarial frame de-

tection method is robust even under a strong adaptive attack

1Pixel-wise accuracy and mIoU provide similar results and the former

is much more computationally efficient.
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where the adversary has perfect knowledge of the learning

model and detection mechanism.

4.1. Implementation Details

Semantic segmentation For semantic segmentation task,

we use CityScapes dataset which consists of high-resolution

(1024x2048) outdoor videos captured from a moving car.

Attacks against the CityScapes dataset pose a realistic threat

to recognition models in real-world applications, in partic-

ular autonomous driving. We adopt the state-of-the-art Di-

lated Residual Network [45] model with DRN-D-22 archi-

tecture which is trained on the CityScapes dataset. The

mean Intersection Over Union (mIoU) of this model on

pristine data is 66.7. We demonstrate our results on video

clips from the same dataset, each consisting of 100 high-

resolution frames shot at a frame rate of 17Hz. We eval-

uate over three different adversarial targets: “Remapping”,

“Stripe”, and “ICCV 2019”. The details of these targets are

shown in supplementary materials. We generate adversarial

frames based on two state-of-the-art attack methods: Hou-

dini [10] and DAG [44]. Each attack was run with a max-

imum perturbation of l2 = 0.03 with input frames scaled

from [0, 1] until 98% pixel-wise accuracy of the target was

achieved. We select σ = 0.002 for detection.

Human Pose Estimation In human pose estimation task,

we attack the Stacked Hourglass Network model [25]

trained on MPII human pose dataset [3]. The two-stack

model we use is pretrained on the MPII dataset [3] and

achieved a mean PCHk score of 86.95 on the MPII vali-

dation dataset at the threshold of 0.5. We attacked 3 clips of

video data from the MPII human pose estimation dataset

and YouTube [2] using the Houdini algorithm which is

the current the-state-of-art. The attack targets we choose

are “Transpose” and “Shuffle”. “Transpose” means trans-

posing coordinates of benign image predictions. “Shuffle”

means shuffling the joints of the pose predictions. We select

σ = 0.02 during detection.

Object Detection We use YOLOv3 [30] as our target

model for the object detection task. We select two video

clips randomly from DAVIS Challenge 17 dataset [1] to per-

form attacks on. We select two targets for simplicity: “All”

and “Person”. “All” means removing all of the bounding

boxes in the images while “Person” means removing only

the bounding boxes of persons in images. Such attacks po-

tentially show that every image taken in the real surveillance

system can be attacked to the scene without any object or

without any person which brings severe security concerns

for current surveillance systems based on object detection

algorithms. We use DAG algorithm which is the current

the-state-of-the-art algorithm, to attack the YOLOv3. We

run the attack with a maximum perturbation of 0.03 with

input frames scaled from [0, 1] until we achieve 100% re-

moval of the target objects. We select σ = 0.002 during

detection.

Action Recognition This task and the corresponding attack

method Sparse takes the video temporal continuity into ac-

count. The target model makes action predictions based

on a whole clip of a video instead of processing individual

frame, i.e.
Y = F (X1, X2, . . . , XN )

We use the CNN+RNN model used in [38] as video action

recognition model and also apply the state of the art attack

Sparse to generate adversarial video clips. The model is

trained on the UCF-101 dataset [33] to predict the action

from 101 classes, and uses a Inception V2 model [34] to ex-

tract features from each frame. Given a recognition model

Fθ, several of video clips {C1,C2, . . . ,CN} and their cor-

responding adversarial target labels {y1, y2, . . . , yN}, the

attack optimizes the following objective:

argmin
E

λ||M ·E||p +
1

N

N∑

i=1

l(1y∗

i
,Fθ(Ci +M ·E))

where E is a universal adversarial perturbation and M is

a predefined temporal mask to enforce sparsity. l(·) repre-

sents the classification loss. The attack aims to generate a

universal perturbation for all N clips, and in our experiment

the recognition model mis-classified 13245 videos out of

13320 samples. We use AdvIT to detect adversarial video

clips instead of adversarial frames for this task.

Task
Attack
Method Target

Defense
Method

Detection (k)

1 3 5

Semantic
Segmentation Houdini Stripe

Replacement 50% 50% 50%

JPEG 100% - -

AdvIT 100% 100% 100%

Human
Pose

Estimation
Houdini Shuffle

Replacement 50% 50% 50%

JPEG 98% - -

AdvIT 100% 100% 100%

Object

Detection
DAG Person

Replacement 50% 50% 50%

JPEG 60% - -

AdvIT 98% 99% 100%

Table 1: Comparison of detection results (AUC) against different

attacks for AdvIT and baseline methods.

4.2. Temporal Consistency Based Detection

Here we evaluate the detection performance of AdvIT on

different video tasks comparing with other baseline meth-

ods. Following Algorithm 1, given a frame, we first gen-

erate pseudo frames for its previous k frames and then cal-

culate the consistency metric between the frame and these

pseudo frames. Based on the distribution of consistency

metric C, we identify the adversarial frames if C is low,

and vice versa.

We evaluate AdvIT against two types of frame based

adversarial attacks: independent frame attack and temporal

continuity attack respectively. For both scenarios, we report

the Area Under Curve (AUC) of Receiver Operation Char-

acteristic Curve (ROC) of AdvIT and baselines.
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Detecting independent frame attack Independent frame

attack includes Houdini [10] and DAG [44] on three video

tasks: semantic segmentation, human pose estimate and ob-

ject detection. Since each frame is independent for attack-

ers, the attacker can decide whether to attack the previous

frame so the the previous frames can be either adversar-

ial or benign. Our method aims to identify whether cur-

rent frame is adversarial, regardless the status of previous

frames. Therefore, we test our method and report the re-

sults under various conditions: previous frames are purely

benign, adversarial, or mixture. The result is shown in

Tab. 1 and other result is shown in supplementary materi-

als. Note that as this is the first work to detect adversarial

frames within a video, there is no existing detection meth-

ods dedicated to video to compare with. To demonstrate the

effectiveness of AdvIT , we, instead, compared our method

with two baselines: a traditional static image based method,

JPEG compression [11, 13, 18] shown as JPEG and Re-

placement in Tab. 1. JPEG compresses the current frame

to generate a “pseudo frame” and then calculates the consis-

tency metric between the current and “pseudo frame”. Re-

placement directly leverages the temporal continuity by re-

placing the current frame with previous frames to generate

“pseudo frames”. It then calculates the continuity metrics

between current frame and the “pseudo frame”. We evaluate

the performance by aggregating previous k frames, where

k ∈ {1, 3, 5}. Note that JPEG only considers current frame

so it only applies for k = 1.

From Tab. 1. We also observed that even JPEG achieves

high detection rate on Semantic segmentation and Human

pose estimation, it is less robust than AdvIT and performs

worse on object detection. It indicated that the perturba-

tion on object detection might be subtle against compres-

sion. Compared with the baseline methods, AdvIT shows

promising detection performance (almost 100%) against in-

dependent frame attacks on various learning tasks under dif-

ferent scenarios. (More detection results against different

attack targets are omitted in supplementary.)

To further illustrate the effectiveness of AdvIT , we show

AdvIT on the two extreme cases: previous frames are ad-

versarial or benign. We observe that AdvIT achieve al-

most 100% success rate for identifying adversarial frames

all kinds of settings without requiring knowledge about

whether previous frames are adversarial. The complete re-

sults are deferred to the supplementary.

Detecting temporal continuity attack Considering at-

tacks that also take temporal continuity of videos into ac-

count, we evaluate the effectiveness of AdvIT on tempo-

ral continuity attack, Sparse attack [38] on video action

recognition and universal perturbation for the previous three

tasks. For universal perturbation, we generate universal

perturbation for 5 frames within videos. We extend the

DAG and Houdini methods to generate universal perturba-

tion. Tab. 2 shows the detection results of AdvIT against

such attacks. We observe that AdvIT can defend against

the universal perturbation with 100% detection rate on dif-

ferent video tasks, which implies that universal perturba-

tion can not transfer to pseudo frames. Though Sparse at-

tack [38] aims to generate sparse and continuous pertur-

bation for videos, AdvIT can still achieve high detection

rate by leveraging both temporal consistency and random-

ness. Note that the detection rate increases slightly with the

growth of k, but there is no need to carefully tune k since

k = 1 already achieves detection rate above 95%. In addi-

tion, to analyze the effectiveness of AdvIT against the ad-

versarial attack with different strength, we conduct exper-

iment by limiting the perturbation magnitude to 2, 16, 32

pixels (in range of [0,255]). The detailed results are shown

in supplementary materials. It shows that the detection rate

will decrease a bit with the magnitude increasing. But with

ensemble of previous k frames, it is still effective.

Task
Attack
Method Target

Detection (k)

1 3 5

Semantic Segmentation

Universal

Strip 100% 100% 100%

Human Pose Estimation shuffle 100% 100% 100%

Object Detection all 100% 100% 100%

Action Recognition Sparse - 95% 96% 97%

Table 2: Detection results (AUC) against temporal continu-

ity attack

4.3. Analysis of Adaptive Attacks

Given a detection method, it is important to evaluate it

against a strong adaptive attacker who is aware of the detec-

tion mechanism. Thus, we conduct experiments to simulate

the strong adaptive attacker we can think of to evaluate the

robustness of AdvIT , assuming the attacker has complete

access to our fully differentiable models. First, the attacker

generates a perturbation that considers both the current and

generated pseudo frames. Implementation details of adap-

tive attack will be included in supplementary material. Such

attack will fail since during detection as we add random-

ness α to make the optical flow estimation harder. Thus,

we allow the attacker to use the state of the art adaptive at-

tack estimation method expectation of transformation to ap-

proximate potential randomness [4]. We follow the setting

in [4], and randomly select 30 possible α in each iteration

to optimize the perturbation. We select l2 = 0.03 as the

upper bound of the adversarial perturbation (pixel values

are in range [0,1]), as perturbation larger than that would

produce noticeable visual changes to human. The detection

results against such adaptive attacks among different video

tasks are shown in Tab. 3 as “Detection Adap“. We observe

that AdvIT can still achieve above 95% detection rate. We

hypothesize that it is because (a) the high dimension of spa-

tial randomness introduces large search space; (b) indirect
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changes to the pseudo frames during attack are not sufficient

to manipulate the prediction of both the pseudo frames and

target one.

Task Target
Previous
Frames

Detection Adap (k)

Detection Trans (k)

(non-differential flow)

1 3 5 1 3 5

Semantic
Segmentation

ICCV
Benign 100% 100% 100% 100% 100% 100%

Adversarial 95% 97% 100% 100% 100% 100%

Remapping
Benign 100% 100% 100 % 100% 100% 100%

Adversarial 96% 96% 98% 100 % 100% 100%

Human
pose

estimation

Shuffle
Benign 96% 97% 97% 100% 100% 100%

Adversarial 94% 97% 100% 100% 100% 100%

Transpose
Benign 98% 99% 100 % 100% 100% 100%

Adversarial 95% 95% 100 % 100 % 100% 100%

object

detection

All
Benign 99% 100% 100% 100% 100% 100%

Adversarial 99% 100% 100% 100% 100% 100%

Person
Benign 98% 99% 100 % 100% 100% 100%

Adversarial 95% 96% 97% 100 % 100% 100%

Table 3: Detection results (AUC) of adaptive attacks and trans-

ferability analysis.

Transferbility analysis In addition to the randomness for

optical flow estimation process, in this section we try to an-

alyze the transferability of the perturbation between differ-

ent flow estimator. For instance, we allow the defender to

use a non-differentiable flow estimator, while the attacker

uses a differentiable one for the sake of attack convenience.

We substitute a non-differential flow estimator proposed

by [20] in Algorithm 1 and evaluate its performance against

an adversary who can approximate flow using a differ-

ential flow estimator FlowNet [12]. Such transferability

based detection results are shown in Tab. 3 “Detection Trans

(non-differentiable flow)". We can see that the transferabil-

ity based adversarial perturbation generated for differential

flow estimator does not transfer to non-differential flow es-

timator and the detection results are 100% across all k.

Optical Flow Estimator Next we will evaluate the impact

of optical flow estimator on AdvIT . We calculate the ac-

curacy of the applied flow estimator for different learning

tasks, and the accuracy is around 1% in different scenar-

ios after adding randomness α (detailed results are omit-

ted to supplementary). This observation indicates that the

high detection performance of AdvIT does not rely on very

accurate optical flow estimator, which makes the proposed

detection widely applicable.

Run-time Analysis For video based tasks, the frame pro-

cess efficiency is important. Here we show that our ad-

versarial detection approach AdvIT processes the videos

with minimal overhead, compared with the source frame

rate. Theoretically, our approach runs the model inference

k times more; while running the model is the major cost,

and k is a small constant, we have the same time complex-

ity as the original learner’s inference. Empirically, we mea-

sure the additional running time for different tasks using

an Nvidia 1080Ti GPU. We present the run-time results of

model inference, detection, and overhead (subtraction of the

two) in Tab. 4. For human pose estimation and object de-

tection, AdvIT has low overhead, 0.03 and 0.05 seconds

respectively, yielding less than two frames of delay. The

overhead for segmentation is higher at 0.4s, while the cost

to run segmentation on the original input images is much

larger, 2.58s on average, and our overhead is only 15.5%.

When run in parallel with other real-time action recognition

models [26, 30] and flow estimators, our detection pipeline

can also achieve close to real-time performance.

Task Inference Detection Overhead

Segmentation 2.58± 0.29 2.98± 0.27 0.4

Human Pose Estimation 0.02± 0.01 0.05± 0.01 0.03

Object Detection 0.04± 0.01 0.09± 0.01 0.05

Action Recognition 0.50± 0.01 0.52± 0.01 0.02

Table 4: Detection overhead of AdvIT (in seconds).

5. Discussion and Conclusion

We have present an effective and efficient adversarial

frame detection method AdvIT for various video based

tasks. We have used the state of the art learners, and chal-

lenged our detector with the best-known attacks. Further,

we have done our best to identify scenarios where an ad-

versary is aware of the detector and may seek to use infor-

mation about the detector to circumvent it. Even with this

strong adaptive adversary we are able to detect nearly all

adversarial frames (above 95%). More sophisticated future

attacks, which rely on different assumptions than those laid

out here may be able to create adversarial frames while fool-

ing our detector, which will be interesting future directions.

Given the sequential nature of video, this work indicates

that developing new attacks is likely to be more difficult in

the video domain than in static image analysis.

Our experiments rely on video tasks where video is taken

from continuous sequence. An video that contains “jump

cuts" would likely introduce a small number of false posi-

tive frames into our detector, as these cuts would be unpre-

dictable by the optical flow algorithm. However, continuous

video is consistent with our applications (particularly au-

tonomous driving and surveillance systems), and is unlikely

to contain such cuts. It is also possible that we could detect

such cuts, as the difference between the pseudo frames and

the current frames would still be large, which needs further

studies.

It should be noted that the goal of our work is to detects

adversarial frames, but is not aimed at remediating or repair-

ing them. Future work could include using pseudo frames

as surrogates for suspicious frames or using pseudo frames

along with detected adversarial frames to reform attacks.
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