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Abstract

Most convolutional network (CNN)-based inpainting

methods adopt standard convolution to indistinguishably

treat valid pixels and holes, making them limited in han-

dling irregular holes and more likely to generate inpaint-

ing results with color discrepancy and blurriness. Partial

convolution has been suggested to address this issue, but it

adopts handcrafted feature re-normalization, and only con-

siders forward mask-updating. In this paper, we present

a learnable attention map module for learning feature re-

normalization and mask-updating in an end-to-end manner,

which is effective in adapting to irregular holes and prop-

agation of convolution layers. Furthermore, learnable re-

verse attention maps are introduced to allow the decoder

of U-Net to concentrate on filling in irregular holes in-

stead of reconstructing both holes and known regions, re-

sulting in our learnable bidirectional attention maps. Qual-

itative and quantitative experiments show that our method

performs favorably against state-of-the-arts in generating

sharper, more coherent and visually plausible inpainting

results. The source code and pre-trained models will be

available at: https://github.com/Vious/LBAM_

inpainting/.

1. Introduction

Image inpainting [3], aiming at filling in holes of an im-

age, is a representative low level vision task with many real-

world applications such as distracting object removal, oc-

cluded region completion, etc. However, there may exist

multiple potential solutions for the given holes in an image,

i.e., the holes can be filled with any plausible hypotheses co-

herent with the surrounding known regions. And the holes

can be of complex and irregular patterns, further increas-

ing the difficulty of image inpainting. Traditional exemplar-

based methods [2, 18, 32], e.g., PatchMatch [2], gradually

fill in holes by searching and copying similar patches from

†This work was done when Chaohao Xie was a research intern at Baidu
∗Corresponding author

known regions. Albeit exemplar-based methods are effec-

tive in hallucinating detailed textures, they are still limited

in capturing high-level semantics, and may fail to generate

complex and non-repetitive structures (see Fig. 1(c)).

Recently, considerable progress has been made in apply-

ing deep convolutional networks (CNNs) to image inpaint-

ing [10, 20]. Benefited from the powerful representation

ability and large scale training, CNN-based methods are ef-

fective in hallucinating semantically plausible result. And

adversarial loss [8] has also been deployed to improve the

perceptual quality and naturalness of the result. Nonethe-

less, most existing CNN-based methods usually adopt stan-

dard convolution which indistinguishably treats valid pix-

els and holes. Thus, they are limited in handling irregu-

lar holes and more likely to generate inpainting results with

color discrepancy and blurriness. As a remedy, several post-

processing techniques [10, 34] have been introduced but are

still inadequate in resolving the artifacts (see Fig. 1(d)).

CNN-based methods have also been combined with

exemplar-based one to explicitly incorporate the mask of

holes for better structure recovery and detail enhance-

ment [26, 33, 36]. In these methods, the mask is utilized to

guide the propagation of the encoder features from known

regions to the holes. However, the copying and enhanc-

ing operation heavily increases the computational cost and

is only deployed at one encoding and decoding layers. As

a result, they are better at filling in rectangular holes, and

perform poorly on handling irregular holes (see Fig. 1(e)).

For better handling irregular holes and suppress-

ing color discrepancy and blurriness, partial convolution

(PConv) [17] has been suggested. In each PConv layer,

mask convolution is used to make the output conditioned

only on the unmasked input, and feature re-normalization

is introduced for scaling the convolution output. A mask-

updating rule is further presented to update a mask for the

next layer, making PConv very effective in handling irreg-

ular holes. Nonetheless, PConv adopts hard 0-1 mask and

handcrafted feature re-normalization by absolutely trusting

all filling-in intermediate features. Moreover, PConv con-
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(a) Original (b) Input (c) PM [2] (d) GL [10] (e) CA [36] (f) PConv [17] (g) Ours

Figure 1. Qualitative comparison of inpainting results by PatchMatch (PM) [2], Global&Local (GL) [10], Context Attention (CA) [36],

and Partial Convolution (PConv) [17], and Ours.

siders only forward mask-updating and simply employs all-

one mask for decoder features.

In this paper, we take a step forward and present the

modules of learnable bidirectional attention maps for the

re-normalization of features on both encoder and decoder

of the U-Net [22] architecture. To begin with, we revisit

PConv without bias, and show that the mask convolution

can be safely avoided and the feature re-normalization can

be interpreted as a re-normalization guided by hard 0-1

mask. To overcome the limitations of hard 0-1 mask and

handcrafted mask-updating, we present a learnable atten-

tion map module for learning feature re-normalization and

mask-updating. Benefited from the end-to-end training, the

learnable attention map is effective in adapting to irregular

holes and propagation of convolution layers.

Furthermore, PConv simply uses all-one mask on the de-

coder features, making the decoder should hallucinate both

holes and known regions. Note that the encoder features of

known region will be concatenated, it is natural that the de-

coder is only required to focus on the inpainting of holes.

Therefore, we further introduce learnable reverse attention

maps to allow the decoder of U-Net concentrate only on fill-

ing in holes, resulting in our learnable bidirectional atten-

tion maps. In contrast to PConv, the deployment of learn-

able bidirectional attention maps empirically is beneficial to

network training, making it feasible to include adversarial

loss for improving visual quality of the result.

Qualitative and quantitative experiments are conducted

on the Paris SteetView [6] and Places [40] datasets to eval-

uate our proposed method. The results show that our pro-

posed method performs favorably against state-of-the-arts

in generating sharper, more coherent and visually plausible

inpainting results. From Fig. 1(f)(g), our method is more

effective in hallucinating clean semantic structure and real-

istic textures in comparison to PConv. To sum up, the main

contribution of this work is three-fold,
• A learnable attention map module is presented for im-

age inpainting. In contrast to PConv, the learnable at-

tention maps are more effective in adapting to arbitrary

irregular holes and propagation of convolution layers.

• Forward and reverse attention maps are incorporated to

constitute our learnable bidirectional attention maps,

further benefiting the visual quality of the result.

• Experiments on two datasets and real-world object

removal show that our method performs favorably

against state-of-the-arts in hallucinating shaper, more

coherent and visually plausible results.

2. Related Work

In this section, we present a brief survey on the rele-

vant work, especially the propagation process adopted in

exemplar-based methods as well as the network architec-

tures of CNN-based inpainting methods.

2.1. Exemplar­based Inpainting

Most exemplar-based inpainting methods search and

paste from the known regions to gradually fill in the holes

from the exterior to the interior [2, 4, 18, 32], and their re-

sults highly depend on the propagation process. In gen-

eral, better inpainting result can be attained by first filling

in structures and then other missing regions. To guide the

patch processing order, patch priority [15, 29] measure has

been introduced as the product of confidence term and data

term. While the confidence term is generally defined as the

ratio of known pixels in the input patch, several forms of

data terms have been proposed. In particular, Criminisi et

al. [4] suggested a gradient-based data term for filling in

linear structure with higher priority. Xu and Sun [32] as-

sumed that structural patches are sparsely distributed in an

image, and presented a sparsity-based data term. Le Meur et

al. [18] adopted the eigenvalue discrepancy of structure ten-

sor [5] as an indicator of structural patch.

2.2. Deep CNN­based Inpainting

Early CNN-based methods [14, 21, 30] are suggested

for handling images with small and thin holes. In the past

few years, deep CNNs have received upsurging interest and

exhibited promising performance for filling in large holes.
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Figure 2. Interplay models between mask and intermediate feature for PConv and our learnable bidirectional attention maps. Here, the

white holes in M
in denotes missing region with value 0, and the black area denotes the known region with value 1.

Phatak et al. [20] adopted an encoder-decoder network (i.e.,

context-encoder), and incorporated reconstruction and ad-

versarial losses for better recovering semantic structures.

Iizuka et al. [10] combined both global and local discrim-

inators for reproducing both semantically plausible struc-

tures and locally realistic details. Wang et al. [28] sug-

gested a generative multi-column CNN incorporating with

confidence-driven reconstruction loss and implicit diversi-

fied MRF (ID-MRF) term.

Multi-stage methods have also been investigated to ease

the difficulty of training deep inpainting networks. Zhang et

al. [37] presented a progressive generative networks (PGN)

for filling in holes with multiple phases, while LSTM is de-

ployed to exploit the dependencies across phases. Nazeri

et al. [19] proposed a two-stage model EdgeConnect first

predicting salient edges and then generating inpainting re-

sult guided by edges. Instead, Xiong et al. [31] presented

foreground-aware inpainting, which involves three stages,

i.e., contour detection, contour completion and image com-

pletion, for the disentanglement of structure inference and

content hallucination.

In order to combine exemplar-based and CNN-based

methods, Yang et al. [34] suggested multi-scale neural patch

synthesis (MNPS) to refine the result of context-encoder

via joint optimization with the holistic content and local

texture constraints. Other two-stage feed-forward models,

e.g., contextual attention [26] and patch-swap [36], are fur-

ther developed to overcome the high computational cost of

MNPS while explicitly exploiting image features of known

regions. Concurrently, Yan et al. [33] modified the U-Net to

form an one-stage network, i.e., Shift-Net, to utilize the shift

of encoder feature from known regions for better repro-

ducing plausible semantics and detailed contents. Most re-

cently, Zheng et al. [39] introduced an enhanced short+long

term attention layer, and presented a probabilistic frame-

work with two parallel paths for pluralistic inpainting.

Most existing CNN-based inpainting methods are usu-

ally not well suited for handling irregular holes. To address

this issue, Liu et al. [17] proposed a partial convolution

(PConv) layer involving three steps, i.e., mask convolution,

feature re-normalization, and mask-updating. Yu et al. [35]

provided gated convolution which learns channel-wise soft

mask by considering both corrupted images, masks and user

sketches. However, PConv adopts handcrafted feature re-

normalization and only considers forward mask-updating,

making it still limited in handling color discrepancy and

blurriness (see Fig. 1(d)).

3. Proposed Method

In this section, we first revisit PConv, and then present

our learnable bidirectional attention maps. Subsequently,

the network architecture and learning objective of our

method are also provided.

3.1. Revisiting Partial Convolution

A PConv [17] layer generally involves three steps, i.e.,

(i) mask convolution, (ii) feature re-normalization, and (iii)

mask-updating. Denote by F
in the input feature map and

M the corresponding hard 0-1 mask. We further let W be

the convolution filter and b be its bias. To begin with, we

introduce the convolved mask M
c = M ⊗ k 1

9

, where ⊗

denotes the convolution operator, k 1

9

denotes a 3 × 3 con-

volution filter with each element 1

9
. The process of PConv

can be formulated as,

(i) F
conv = W

T (Fin ⊙M), (1)

(ii) F
out =

{

F
conv ⊙ fA(M

c) + b, if Mc > 0

0, otherwise
(2)

(iii) M
′ = fM (Mc) (3)

where A = fA(M
c) denotes the attention map, and M

′ =
fM (Mc) denotes the updated mask. We further define the

activation functions for attention map and updated mask as,

fA(M
c) =

{

1
Mc , if Mc > 0

0, otherwise
(4)

fM (Mc) =

{

1, if Mc > 0

0, otherwise
(5)

From Eqns. (1)∼(5) and Fig. 2(a), PConv can also be

explained as a special interplay model between mask and
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Figure 3. The network architecture of our model. The circle with triangle inside denotes operation form of Eqn.( 12), gA and gM represent

activation functions of Eqn.( 9) and mask updating function of Eqn.( 8).

convolution feature map. However, PConv adopts the hand-

crafted convolution filter k 1

9

as well as handcrafted ac-

tivation functions fA(M
c) and fM (Mc), thereby giving

some leeway for further improvements. Moreover, the non-

differential property of fM (Mc) also increases the diffi-

culty of end-to-end learning. To our best knowledge, it

remains a difficult issue to incorporate adversarial loss to

train a U-Net with PConv. Furthermore, PConv only con-

siders the mask and its updating for encoder features. As

for decoder features, it simply adopts all-one mask, making

PConv limited in filling holes.

3.2. Learnable Attention Maps

The convolution layer without bias has been widely

adopted in U-Net for image-to-image translation [11] and

image inpainting [33]. When the bias is removed, it can

be readily seen from Eqn. (2) that the convolution features

in updated holes are zeros. Thus, the mask convolution in

Eqn. (1) is equivalently rewritten as standard convolution,

(i) F
conv = W

T
F

in
. (6)

Then, the feature re-normalization in Eqn. (2) can be inter-

preted as the element-wise product of convolution feature

and attention map,

(ii) F
out = F

conv ⊙ fA(M
c). (7)

Even though, the handcrafted convolution filter k 1

9

is fixed

and not adapted to the mask. The activation function for

updated mask absolutely trusts the inpainting result in the

region M
c > 0, but it is more sensible to assign higher

confidence to the region with higher Mc.

To overcome the above limitations, we suggest learnable

attention map which generalizes PConv without bias from

three aspects. First, to make the mask adaptive to irregu-

lar holes and propagation along with layers, we substitute

k 1

9

with layer-wise and learnable convolution filters kM.

Second, instead of hard 0-1 mask-updating, we modify the

activation function for updated mask as,

gM (Mc) = (ReLU(Mc))α , (8)

where α ≥ 0 is a hyperparameter and we set α = 0.8.

One can see that gM (Mc) degenerates into fM (Mc) when

α = 0. Third, we introduce an asymmetric Gaussian-

shaped form as the activation function for attention map,

gA(M
c)=

{

a exp
(

−γl(M
c − µ)2

)

, if Mc<µ

1+(a−1) exp
(

−γr(M
c−µ)2

)

, else
(9)

where a, µ, γl, and γr are the learnable parameters, we ini-

tialize them as a = 1.1, µ = 2.0, γl = 1.0, γr = 1.0 and

learn them in an end-to-end manner.

To sum up, the learnable attention map adopt Eqn. (6) in

Step (i), and the next two steps are formulated as,

(ii) F
out = F

conv ⊙ gA(M
c), (10)

(iii) M
′ = gM (Mc). (11)

Fig. 2(b) illustrates the interplay model of learnable atten-

tion map. In contrast to PConv, our learnable attention map

is more flexible and can be end-to-end trained, making it

effective in adapting to irregular holes and propagation of

convolution layers.

3.3. Learnable Bidirectional Attention Maps

When incorporating PConv with U-Net for inpainting,

the method [17] only updates the masks along with the con-

volution layers for encoder features. However, all-one mask

is generally adopted for decoder features. As a result, the

(L − l)-th layer of decoder feature in both known regions

and holes should be hallucinated using both (l+1)-th layer

of encoder feature and (L−l−1)-th layer of decoder feature.

Actually, the l-th layer of encoder feature will be concate-

nated with the (L − l)-th layer of decoder feature, and we

can only focus on the generation of the (L − l)-th layer of

decoder feature in the holes.
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Original Input PM [2] GL [10] CA [36] PConv [17] Ours

Figure 4. Qualitative comparison on Paris StreetView dataset. Comparison with PatchMatch (PM) [2], Global&Local(GL) [10], Context

Attention(CA) [36], PConv [17] and Ours.

We further introduce learnable reverse attention maps to the

decoder features. Denote by M
c
e the convolved mask for

encoder feature F
in
e . Let Mc

d = Md ⊗ kMd
be the con-

volved mask for decoder feature F
in
d . The first two steps of

learnable reverse attention map can be formulated as,

(i&ii) F
out
d =(WT

e F
in
e )⊙gA(M

c
e)+(W

T
d F

in
d )⊙gA(M

c
d). (12)

where We and Wd are the convolution filters. And we de-

fine gA(M
c
d) as the reverse attention map. Then, the mask

M
c
d is updated and deployed to the former decoder layer,

(iii) M
′
d = gM (Mc

d). (13)

Fig. 2(c) illustrates the interplay model of reverse attention

map. In contrast to forward attention maps, both encoder

feature (mask) and decoder feature (mask) are considered.

Moreover, the updated mask in reverse attention map is ap-

plied to the former decoder layer, while that in forward at-

tention map is applied to the next encoder layer.

By incorporating forward and reverse attention maps

with U-Net, Fig. 3 shows the full learnable bidirectional at-

tention maps. Given an input image Iin with irregular holes,

we use Min to denote the binary mask, where ones indicate

the valid pixels and zeros indicate the pixels in holes. From

Fig. 3, the forward attention maps take M
in as the input

mask for the re-normalization of the first layer of encoder

feature, and gradually update and apply the mask to next

encoder layer. In contrast, the reverse attention maps take

1 − M
in as the input for the re-normalization of the last

(i.e., L-th) layer of decoder feature, and gradually update

and apply the mask to former decoder layer. Benefited from

the end-to-end learning, our learnable bidirectional atten-

tion maps (LBAM) are more effective in handling irregular

holes. The introduction of reverse attention maps allows the

decoder concentrate only on filling in irregular holes, which

is also helpful to inpainting performance. Our LBAM is

also beneficial to network training, making it feasible to ex-

ploit adversarial loss for improving visual quality.

3.4. Model Architecture

We modify the U-Net architecture [11] of 14 layers by

removing the bottleneck layer and incorporating with bidi-

rectional attention maps (see Fig. 3). In particular, forward

attention layers are applied to the first six layers of encoder,

while reverse attention layers are adopted to the last six lay-

ers of decoder. For all the U-Net layers and the forward and

reverse attention layers, we use convolution filters with the

kernel size of 4× 4, stride 2 and padding 1, and no bias pa-

rameters are used. In the U-Net backbone, batch normaliza-

tion and leaky ReLU nonlinearity are used to the features af-

ter re-normalization, and tanh nonlinearity is deployed right

after convolution for the last layer. Fig. 3 also provides the

size of feature map for each layer, and more details of the

network architecture are given in the suppl.

3.5. Loss Functions

For better recovery of texture details and semantics, we

incorporate pixel reconstruction loss, perceptual loss [12],

style loss [7] and adversarial loss [8] to train our LBAM.

Pixel Reconstruction Loss. Denote by Iin the input im-

age with holes, Min the binary mask region, and Igt the

ground-truth image. The output of our LBAM can be de-

fined as Iout = Φ(Iin,Min; Θ), where Θ denotes the

model parameters to be learned. We adopt the ℓ1-norm error

of the output image as the pixel reconstruction loss,

Lℓ1 = ‖ I
out − I

gt ‖1. (14)
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Original Input PM [2] GL [10] CA [36] PConv [17] Ours

Figure 5. Qualitative comparison on Places dataset. Comparison with PatchMatch (PM) [2], Global&Local(GL) [10], Context Atten-

tion(CA) [36], PConv [17] and Ours.

Perceptual Loss. The ℓ1-norm loss is limited in capturing

high-level semantics and is not consistent with the human

perception of image quality. To alleviate this issue, we in-

troduce the perceptual loss Lperc defined on the VGG-16

network [25] pre-trained on ImageNet [23],

Lperc =
1

N

∑N

i=1
‖ Pi(Igt)− Pi(Iout) ‖2 (15)

where Pi(·) is the feature maps of the i-th pooling layer.

In our implementation, we use pool-1, pool-2, and pool-3

layers of the pre-trained VGG-16.

Style Loss. For better recovery of detailed textures, we fur-

ther adopt the style loss defined on the feature maps from

the pooling layers of VGG-16. Analogous to [17], we con-

struct a Gram matrix from each layer of feature map. Sup-

pose that the size of feature map Pi(I) is Hi × Wi × Ci.

The style loss can then be defined as,

Lstyle =
1

N

∑N

i=1

1

Ci × Ci

×

‖ Pi(Igt)(Pi(Igt))T − Pi(Iout)(Pi(Iout))T ‖2
(16)

Adversarial Loss. Adversarial loss [8] has been widely

adopted in image generation [24, 27, 38] and low level vi-

sion [16] for improving the visual quality of generated im-

ages. In order to improve the training stability of GAN, Ar-

jovsky et al. [1] exploit the Wasserstein distance for measur-

ing the distribution discrepancy between generated and real

images, and Gulrajani et al. [9] further introduce gradient

penalty for enforcing the Lipschitz constraint in discrimi-

nator. Following [9], we formulate the adversarial loss as,

Ladv = min
Θ

max
D

EIgt∼pdata(I
gt)D(Igt)

− EIout∼pdata(I
out)D(Iout)

+ λEÎ∼p
Î
((‖ ∇ÎD(Î) ‖)2 − 1)2

(17)

where D(·) represents the discriminator. Î is sampled from

Igt and Iout by linear interpolation with a randomly se-

lected factor, λ is set to 10 in our experiments. We empiri-

cally find that it is difficult to train the PConv model when

including adversarial loss. Fortunately, the incorporation of

learnable attention maps is helpful to ease the training, mak-

ing it feasible to learn LBAM with adversarial loss. Please

refer to the suppl. for the network architecture of the 7-layer

discriminator used in our implementation.

Model Objective Taking the above loss functions into ac-

count, the model objective of our LBAM can be formed as,

L = λ1Lℓ1 + λ2Ladv + λ3Lperc + λ4Lstyle (18)

where λ1, λ2, λ3, and λ4 are the tradeoff parameters. In

our implementation, we empirically set λ1 = 1, λ2 = 0.1,

λ3 = 0.05 and λ4 = 120.

4. Experiments

Experiments are conducted for evaluating our LBAM

on two datasets, i.e., Paris StreetView [6] and Places

(Places365-standard) [40], which have been extensively

adopted in image inpainting literature [20, 33, 34, 36]. For

Paris StreetView, we use its original splits, 14, 900 images

for training, and 100 images for testing. In our experiments,

100 images are randomly selected and removed from the

training set to form our validation set. As for Places, we ran-

domly select 10 categories from the 365 categories, and use

all the 5, 000 images per category from the original training

set to form our training set of 50, 000 images. Moreover,

we divide the original validation set from each category of

1, 000 images into two equal non-overlapped sets of 500
images respectively for validation and testing. Our LBAM

takes ∼ 70 ms for processing a 256× 256 image, 5× faster
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Original Input CA [36] PConv [17] Ours

Figure 6. Results on real-world images. From left to right are: original image, input with objects masked (white area), Context Attention

(CA) [36], PConv [17], and Ours.

than Context Attention [36] (∼ 400ms) and ∼ 3× faster

than Global&Local(GL) [10] (∼ 200ms).

In our experiments, all the images are resized where the

minimal height or width is 350, and then randomly cropped

to the size of 256×256. Data augmentation such as flipping

is adopted during training. We generate 18, 000 masks with

random shape, and 12, 000 masks from [17] for training and

testing. Our model is optimized using the ADAM algo-

rithm [13] with initial learning rate of 1e − 4 and β = 0.5.

The training procedure ends after 500 epochs, and the mini-

batch size is 48. All the experiments are conducted on a PC

equipped with 4 parallel NVIDIA GTX 1080Ti GPUs.

4.1. Comparison with State­of­the­arts

Our LBAM is compared with four state-of-the-art meth-

ods, i.e., Global&Local [10], PatchMatch [2], Context At-

tention [36], and PConv [17].

Evaluation on Paris StreetView and Places. Fig. 4 and

Fig. 5 show the results by our LBAM and the competing

methods. Global&Local [10] is limited in handling irregu-

lar holes, producing many matchless and meaningless tex-

tures. PatchMatch [2] performs poorly for recovering com-

plex structures, and the results are not consistent with sur-

rounding context. For some complex and irregular holes,

context attention [36] still generates blurry results and may

produce unwanted artifacts. PConv [17] is effective in han-

dling irregular holes, but over-smoothing results are still in-

evitable in some regions. In contrast, our LBAM performs

well generating visually more plausible results with fine-

detailed, and realistic textures.

Quantitative Evaluation. We also compare our LBAM

quantitatively with the competing methods on Places [40]

with mask ratio (0.1, 0.2], (0.2, 0.3], (0.3, 0.4] and

(0.4, 0.5]. From Table 1, our LBAM performs favorably

in terms PSNR, SSIM, and mean ℓ1 loss, especially when

the mask ratio is higher than 0.3.

Table 1. Quantitative comparison on Places. Results of PConv*

are taken from [17].

Mask GL [10] PM [2] CA [36] PConv* [17] Ours

P
S

N
R

(0.1-0.2] 23.36 26.67 26.27 28.32 28.51

(0.2, 0.3] 20.53 24.21 23.56 25.25 25.59

(0.3, 0.4] 19.37 21.95 21.20 22.89 23.31

(0.4, 0.5] 17.86 20.02 19.95 21.38 21.66

S
S

IM

(0.1-0.2] 0.828 0.876 0.881 0.870 0.872

(0.2, 0.3] 0.744 0.763 0.769 0.779 0.785

(0.3, 0.4] 0.643 0.657 0.667 0.689 0.708

(0.4, 0.5] 0.545 0.572 0.563 0.595 0.602

M
ea

n
l 1

(%
)

(0.1-0.2] 2.45 1.43 2.05 1.09 1.12

(0.2, 0.3] 4.01 2.38 3.74 1.88 1.93

(0.3, 0.4] 5.86 3.59 5.65 2.84 2.55

(0.4, 0.5] 7.92 5.22 7.43 3.85 3.67

Object Removal from Real-world Images. Using the

model trained on Places, we further evaluate LBAM on the

real world object removal task. Fig. 6 shows the results

by our LBAM, context attention [36] and PConv [17]. We

mask the object area either with contour shape or with rect-

angular bounding box. In contrast to the competing meth-

ods, our LBAM can produce realistic and coherent contents

by both global semantics and local textures.

User Study. Besides, user study is conducted on Paris

StreetView and Places for subjective visual quality evalu-

ation. We randomly select 30 images from the test set cov-

ering with different irregular holes, and the inpainting re-

sults are generated by PatchMatch [2], Global&Local [10],

Context Attention [36], PConv [17] and ours. We invited 33
volunteers to vote for the most visually plausible inpainting

result, which is assessed by the criteria including coherency

with the surrounding context, semantic structure and fine
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(a) (b) (c) (d) (e) (f) (g)

Figure 7. Visualization of features from the first encoder layer and 13-th decoder layer. (a) Input, (b)(c) Ours(unlearned), (d)(e)

Ours(forward), (f)(g) Ours(full).

(a) (b) (c) (d) (e) (f) (g)

Figure 8. Visualization of updated masks after activation function gA(·) for forward and reverse attention maps. (a) Input, (b)(c)(d) forward

masks from the first three (1,2,3) layers, (e)(f)(g) reverse masks from the last three (11, 12, 13) layers.

(a) Input (b) Ours(unlearned) (c) Ours(forward) (d) Ours(full)

Figure 9. Visual quality comparison of the effect on the learnable

bidirectional attention maps.

details. For each test image, the 5 inpainting results are

randomly arranged and presented to user along with the in-

put image. Our LBAM has 63.2% chance to win out as

the most favorable result, largely surpassing PConv [17]

(15.2%), PatchMatch [2] (11.1%), Context Attention [36]

(6.33%) and Global&Local [10] (4.17%).

4.2. Ablation Studies

Ablation studies are conducted to compare the perfor-

mance of several LBAM variants on Paris StreetView, i.e.,

(i) Ours(full): the full LBAM model, (ii) Ours(unlearned):

the LBAM model where all the elements in mask con-

volution filters are set as 1

16
because the filter size is

4 × 4, and we adopt the activation functions defined in

Eqn. (4) and Eqn. (5), (iii) Ours(forward): the LBAM

model without reverse attention map, (iv) Ours(w/o Ladv):

the LBAM model without (w/o) adversarial loss, (v)

Ours(Sigmoid/LReLU/ReLU/3× 3): the LBAM model us-

ing Sigmoid/LeakyReLU/ReLU as activation functions or

3× 3 filter for mask updating.

Fig. 7 shows the visualization of features from the first

encoder layer and 13-th decoder layer by Ours(unlearned),

Ours(forward), and Ours(full). For Ours(unlearned), blur-

riness and artifacts can be observed from Fig. 9(b).

Ours(forward) is beneficial to reduce the artifacts and noise,

but the decoder hallucinates both holes and known regions

and produces some blurry effects (see Fig. 9(c)). In con-

trast, Ours(full) is effective in generating semantic structure

and detailed textures (see Fig. 9(d)), and the decoder fo-

cus mainly on hallucinating holes (see Fig. 7(g)). Table 2

gives the quantitative results of the LBAM variants on Paris

StreetView, and the performance gain of Ours(full) can be

explained by (1) learnable attention maps, (2) reverse atten-

tion maps, and (3) proper activation functions.

Table 2. Ablation studies (PSNR/SSIM) on Paris StreetView.
Method (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5]

Ours(unlearned) 26.95/0.853 24.39/0.763 22.54/0.677 21.20/0.583

Ours(forward) 27.80/0.869 25.13/0.775 23.04/0.688 21.76/0.598

Ours(Sigmoid) 26.93/0.857 24.15/0.768 22.24/0.683 20.32/0.582

Ours(LReLU) 26.61/0.852 23.59/0.762 20.63/0.667 18.38/0.562

Ours(ReLU) 27.62/0.864 25.16/0.776 22.96/0.685 21.48/0.596

Ours(3x3) 28.74/0.886 26.10/0.793 24.03/0.703 22.43/0.617

Ours(w/o Ladv) 29.19/0.903 26.55/0.817 24.46/0.729 22.70/0.626

Ours(full) 28.73/0.889 26.16/0.795 24.26/0.716 22.62/0.621

Mask Updating. Fig. 8 shows the visualization of updated

masks from different layers. From the first to third layers,

the masks of encoder are gradually updated to reduce the

size of holes. Analogously, from the 13-th to 11-th layers,

the masks of decoder are gradually updated to reduce the

size of known region.

Effect of Adversarial Loss. Table 2 also gives the quan-

titative result w/o Ladv . Albeit Ours(w/o Ladv) improves

PSNR and SSIM, the use of Ladv generally benefits the vi-

sual quality of the inpainting results. The qualitative results

are given in the suppl.

5. Conclusion

This paper proposed a learnable bidirectional attention

maps (LBAM) for image inpainting. With the introduc-

tion of learnable attention maps, our LBAM is effective in

adapting to irregular holes and propagation of convolution

layers. Furthermore, reverse attention maps are presented

to allow the decoder of U-Net concentrate only on filling

in holes. Experiments shows that our LBAM performs fa-

vorably against state-of-the-arts in generating sharper, more

coherent and fine-detailed results.
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