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Abstract

Recent progress has been made on developing a unified

framework for joint text detection and recognition in natu-

ral images, but existing joint models were mostly built on

two-stage frameworks by involving ROI pooling, which can

degrade the performance on recognition tasks. In this work,

we propose convolutional character networks (”CharNet”),

which is a one-stage model that can process two tasks simul-

taneously in one pass. CharNet directly outputs bounding

boxes of words and characters, with corresponding char-

acter labels. We utilize a character as basic element, al-

lowing us to overcome the main difficulty of existing ap-

proaches that attempted to optimize text detection jointly

with a RNN-based recognition branch. In addition, we

develop an iterative character detection approach able to

transform the ability of character detection learned from

synthetic data to real-world images. These technical im-

provements result in a simple, compact, yet powerful one-

stage model that works reliably on multi-orientation and

curved text. We evaluate CharNet on three standard bench-

marks, where it consistently outperforms the state-of-the-

art approaches [26, 25] by a large margin, e.g., with im-

provements of 65.33%→71.08% (with generic lexicon) on

ICDAR 2015, and 54.0%→69.23% on Total-Text, on end-

to-end text recognition. Code is available at: https://

github.com/MalongTech/research-charnet.

1. Introduction

Text reading in natural images has long been considered

as two separate tasks: text detection and recognition, which

are implemented sequentially. The two tasks have been ad-

vanced individually by the success of deep neural networks.

Text detection aims to predict a bounding box for each text

instance (e.g., typically a word) in natural images, and cur-

∗ Corresponding author: whuang@malong.com.

Figure 1: The proposed CharNet can directly output bounding boxes of

words and characters, with corresponding character labels in one pass.

rent leading approaches are mainly extended from object

detection or segmentation frameworks, such as [26, 41, 25].

Built on text detection, the goal of text recognition is to rec-

ognize a sequence of character labels from a cropped image

patch including a text instance. Generally, it can be cast into

a sequence labeling problem, where various recurrent mod-

els with CNN-extracted features have been developed, with

state-of-the-art performance achieved [34, 4, 32, 10].

However, the two-step pipeline often suffers from a num-

ber of limitations. First, learning the two tasks indepen-

dently would result in a sub-optimization problem, making

it difficult to fully explore the potential of text nature. For

example, text detection and recognition can work collab-

oratively by providing strong context and complementary

information to each other, which is critical to improving

the performance, as substantiated by recent work [12, 25].

Second, it often requires to implement multiple sequential

steps, resulting in a relatively complicated system, where

the performance of text recognition is heavily relied on text

detection results.
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Recent effort has been devoted to developing a unified

framework that implements text detection and recognition

simultaneously [12, 25, 26]. For example, in [12] and

[25], text detection models were extended to joint detec-

tion and recognition, by adding a new RNN-based branch

for recognition, leading to the state-of-the-art performance

on end-to-end (E2E) text recognition. These approaches

can achieve joint detection and recognition using a single

model, but they are in the family of two-stage framework

and thus have the following limitations. Firstly, the recogni-

tion branch often explores a RNN-based sequential model,

which is difficult to optimize jointly with the detection task,

by requiring a significantly larger amount of training sam-

ples. Thus the performance is heavily depended on a well-

designed but complicated training scheme (e.g., [12] and

[21]). This is the central issue that impedes the develop-

ment of a united framework. Secondly, current two-stage

framework commonly involves RoI cropping and pooling,

making it difficult to crop an accurate text region for feature

pooling, where a large amount of background information

may be included. This inevitably leads to significant per-

formance degradation on recognition task, particularly for

multi-orientation or curved text.

To overcome the limitations of RoI cropping and pool-

ing for two-stage framework, He et al. [12] proposed a

text-alignment layer to precisely compute the convolutional

features for a text instance of arbitrary orientation, which

boosted the performance. In [25], multiple affinity transfor-

mations were applied to the convolutional features for en-

hancing text information in the RoI regions. However, these

methods failed to work on curved text. In addition, many

high-performance models consider words (for English) as

detection units, but word-level detection often requires to

cast text recognition into a sequence labelling problem,

where a RNN model with additional modules, such as CTC

[6, 11, 33] or attention mechanism [34, 4, 1, 12], was ap-

plied. Unlike English, words are not clearly distinguish-

able in some languages such as Chinese, where text in-

stances can be defined and separated more clearly by char-

acters. Therefore, characters are more clearly-defined ele-

ments that generalize better over various languages. Impor-

tantly, character recognition is straightforward, and can be

implemented with a simple CNN model, rather than using a

RNN-based sequential model.

Contributions. In this work, we present Convolutional

Character Networks (referred as CharNet) for joint text de-

tection and recognition, by leveraging character as basic

unit. Moreover, for the first time, we provide a one-stage

CNN model for the joint tasks, with significant performance

improvements over the state-of-the-art results achieved by a

more complex two-stage framework, such as [12], [26] and

[25]. The proposed CharNet implements direct character

detection and recognition, jointly with text instance (e.g.,

word) detection. This allows it to avoid the RNN-based

word recognition, resulting in a simple, compact, yet power-

ful model that directly outputs bounding boxes of words and

characters, as well as the corresponding character labels, as

shown in Fig.1. Our main contributions are summarized as

follows.

Firstly, we propose a one-stage CharNet for joint text de-

tection and recognition, where a new branch for direct char-

acter detection and recognition is introduced, and can be in-

tegrated seamlessly into existing text detection framework.

We explore character as basic unit, which allows us to over-

come the main limitations of current two-stage framework

using RoI pooling with RNN-based recognition.

Secondly, we develop an iterative character detection

method which allows CharNet to transform the character

detection capability learned from synthetic data to real-

world images. This makes it possible for training CharNet

on real-world images, without providing additional char-

level bounding boxes.

Thirdly, CharNet consistently outperforms recent two-

stage approaches such as [12, 26, 25, 36] by a large margin,

with improvements of 65.33%→71.08% (generic lexicon)

on ICDAR 2015, and 54.0%→69.23% (E2E) on Total-Text.

Particularly, it can achieve comparable results, e.g., 67.24%

on ICDAR 2015, even by completely removing a lexicon.

2. Related Work

Traditional approaches often regard text detection and

recognition as two separate tasks that process sequentially

[15, 16, 37, 41, 10, 33]. Recent progress has been made

on developing a unified framework for joint text detection

and recognition [12, 25, 26]. We briefly review the related

studies on text detection, recognition and join of two tasks.

Text detection. Recent approaches for text detection

were mainly built on general object detectors with various

text-specific modifications. For instance, by building on

Region Proposal Networks [30], Tian et al. [37] proposed

a Connectionist Text Proposal Network (CTPN) to explore

the sequence nature of text, and detect a text instance in

a sequence of fine-scale text proposals. Similarly, Shi et

al. [31] developed a method with linking segment which

also localizes a text instance in a sequence, with the ca-

pability for detecting multi-oriented text. In [41], EAST

was introduced by exploring IOU loss [39] to detect multi-

oriented text instances (e.g., words), with impressive results

achieved. Recently, a single-shot text detector (SSTD) [9]

was proposed by extending SSD object detector [23] to text

detection. SSTD encodes text regional attention into convo-

lutional features to enhance text information.

Text recognition. Inspired from speech recognition,

recent work on text recognition commonly cast it into a

sequence-to-sequence recognition problem, where recur-

rent neural networks (RNNs) were employed. For exam-
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Figure 2: Overview of the proposed CharNet, which contains two branches working in parallel: a character branch for direct character detection and

recognition, and a detection branch for text instance detection.

ple, He et al. [10] exploited convolution neural networks

(CNNs) to encode a raw input image into a sequence of

deep features, and then a RNN is applied to the sequen-

tial features for decoding and yielding confidence maps,

where connectionist temporal classification CTC [6] is ap-

plied to generate final results. Shi et al. [32] improved

such CNN+RNN+CTC framework by making it end-to-

end trainable, with significant performance gain obtained.

Recently, the framework was further improved by intro-

ducing various attention mechanisms, which are able to

encode more character information explicitly or implicitly

[34, 4, 1, 12].

End-to-end (E2E) text recognition. Recent work at-

tempted to integrate text detection and recognition into a

unified framework for E2E text recognition. Li et al. [21]

drew inspiration from Faster R-CNN [30] and employed

RoI pooling to obtain text features from a detection frame-

work for further recognition. In [12], He et al. proposed an

E2E framework by introducing a new text-alignment layer

with character attention mechanism, leading to significant

performance improvements by jointly training two tasks.

Similar framework has been developed by Liu et al. in [25].

Both works have achieved strong performance on E2E text

recognition, but they were built on two-stage models imple-

menting ROI cropping and pooling operations, which may

reduce the performance, particularly on the recognition task

for multi-orientation or curved text.

Our work is related to character-based approaches for

text detection or recognition. Hu et al. proposed a Word-

Sup able to detect text instances at the character level [14],

while Liu et al. [24] developed a character-aware neural net-

work for distorted scene text recognition. However, they

did not provide a full solution for E2E text recognition. The

most closely related work is that of Mask TextSpotter [26]

which is a two-stage character-based framework for E2E

recognition, built on recent Mask R-CNN [9]. However, our

CharNet has a number of clear distinctions: (1) CharNet is

the first one-stage model for E2E text recognition, which is

different from the two-stage Mask TextSpotter, where RoI

cropping and pooling operations are required; (2) CharNet

has a character branch that directly outputs accurate char-

level bounding boxes. This enables it to automatically iden-

tify characters, allowing it to work in a weakly-supervised

manner by using the proposed iterative character detection;

(3) This results in a distinct capability for training CharNet

without additional char-level bounding boxes in real-world

images, while Mask TextSpotter requires full char-level an-

notations which are often highly expensive; (4) CharNet

achieved consistent and significant performance improve-

ments over Mask TextSpotter, as shown in Table 4 and 5.

3. Convolutional Character Networks

In this section, we describe the proposed CharNet in de-

tails. Then an iterative character detection method is intro-

duced for automatically identifying characters with bound-

ing boxes from real-world images, by leveraging synthetic

data. In this work, we use “text instance” as a higher level

concept for text, which can be a word or a text-line, with

multi-orientation or curved shape.

3.1. Overview

As discussed, existing approaches for E2E text recogni-

tion are commonly limited by using RoI cropping and pool-

ing, with a RNN-based sequential model for word recogni-

tion. The proposed CharNet is a one-stage convolutional

architecture consisting of two branches: (1) a character

branch designed for direct character detection and recogni-

tion, and (2) a text detection branch predicting a bounding

box for each text instance in an image. The two branches

are implemented in parallel, which form a one-stage model

9128



for joint text detection and recognition, as shown in Fig.

2. The character branch can be integrated seamlessly into

a one-stage text detection framework, resulting in an end-

to-end trainable model. Training the model requires both

instance-level and char-level bounding boxes with character

labels as supervised information. In inference, CharNet can

directly output both instance-level and char-level bounding

boxes with corresponding character labels in one pass.

Many existing text databases often do not include char-

level annotations which are highly expensive to obtain. We

develop an iterative learning approach for automatic charac-

ter detection, which allows us to learn a character detector

from synthetic data where full char-level annotations can

be generated unlimitedly. Then the learned character detec-

tion capability can be transformed and adapted gradually to

real-word images. This enables the model with ability to

automatically identify characters in real-world images, pro-

viding a weakly-supervision learning manner for CharNet.

Backbone networks. We employ ResNet-50 [8] and

Hourglass [20] networks as backbone for our CharNet

framework. For ResNet-50, we follow [41], and make use

of the convolutional feature maps with 4× down-sampling

ratio as the final convolutional maps to implement text de-

tection and recognition. This results in high-resolution fea-

ture maps that enable CharNet to identify extremely small-

scale text instances. For Hourglass networks, we stack two

hourglass modules, as shown in Fig. 2, and the final feature

maps are up-sampled to 1

4
resolution of the input image.

In this work, we use two variants of Hourglass networks,

Hourglass-88 and Hourglass-57. Hourglass-88 is modi-

fied from Hourglass-104 in [20] by removing two down-

sampling stages and reducing the number of layers in the

last stage of each hourglass module by half. Hourglass-57

is constructed by further removing half number of layers in

each stage of hourglass modules. Notice that, for both vari-

ants, we do not employ the intermediate supervision as did

in CornerNet [20].

3.2. Character Branch

Existing RNN-based recognition methods were com-

monly built on word-level optimization with a sequential

model, which has a significantly larger search space than

direct character classification. This inevitably makes the

models more complicated and difficult to train by requir-

ing a significantly longer training time with a large amount

of training samples. Recent work, such as [34, 4, 12], had

shown that the performance of RNN-based methods can be

improved considerably by introducing char-level attention

mechanism which is able to encode strong character infor-

mation implicitly or explicitly. This enables the models to

have the ability to identify characters more accurately, and

essentially adds additional constraints to the models which

in turn reduce the search space, leading to performance

boost. This suggests that precise identification of characters

is of great importance to RNN-based text recognition, which

inspired the current work to simplify it into direct character

recognition with an automatic character localization mech-

anism, resulting in a simple yet powerful one-stage fully

convolutional model for E2E text recognition.

To this end, we introduce a new character branch which

has the functions of direct character detection and recogni-

tion. The character branch uses character as basic unit for

detection and recognition, and outputs char-level bounding

boxes as well as the corresponding character labels. Specif-

ically, the character branch is a stack of convolutional lay-

ers, which move densely over the final feature maps of the

backbone. It has the input features maps with 1

4
spatial

resolution of the input image. This branch contains three

sub-branches, for text instance segmentation, character de-

tection and character recognition, respectively. The text

instance segmentation sub-branch and character detection

sub-branch have three convolutional layers with filter sizes

of 3×3, 3×3 and 1×1, respectively. The character recogni-

tion sub-branch has four convolutional layers with one more

3× 3 convolutional layer.

Text instance segmentation sub-branch exploits a binary

mask as supervision, and outputs 2-channel feature maps

indicating text or non-text probability at each spatial lo-

cation. Character detection sub-branch outputs 5-channel

feature maps, estimating a character bounding box at each

spatial location. By following EAST [41], each character

bounding box is parameterized by five parameters, indicat-

ing the distances of current location to the top, bottom, left

and right sides of the bounding box, as well as the orienta-

tion of bounding-box. In character recognition sub-branch,

character labels are predicted densely over the input fea-

ture maps, generating 68-channel probability maps. Each

channel is a probability map for a specific character class

among 68 character classes, including 26 English charac-

ters, 10 digital numbers and 32 special symbols. All of

the output feature maps from three sub-branches have the

same spatial resolution, which is exactly the same as that

of the input feature maps ( 1
4

of the input image). Finally,

the char-level bounding boxes are generated by keeping the

bounding boxes having a confident value over 0.95. Each

generated bounding box has a corresponding character la-

bel, which is computed at the corresponding spatial loca-

tion from the 68-channel classification maps - by using the

maximum of the computed softmax scores.

Training character branch requires char-level bounding

boxes with the corresponding character labels. Compared

to word-level annotations, acquiring char-level labels with

bounding boxes is much more expensive and would signifi-

cantly increase labor cost. To avoid such additional cost, we

develop an iterative character detection mechanism which is

described in Section 3.4.
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3.3. Text Detection Branch

Text detection branch is designed to identify text in-

stances at a higher level concept, such as words or text-

lines. It provides strong context information which is used

to group the detected characters into text instances. Be-

cause directly grouping characters by using characters in-

formation (e.g., character locations or geometric features)

is heuristic and complicated when multiple text instances

are located closely within a region, particularly for text in-

stances with multiple orientations or in a curved shape. Our

text detection branch can be defined in different forms sub-

jected to the type of text instances, and existing instance-

level text detectors can be adapted with minimum modifica-

tion. We take text detectors for multi-orientation words or

curved text-lines as examples.

Multi-Orientation Text. We simply modify EAST de-

tector [41] as our text detection branch, which contains two

sub-branches for text instance segmentation and instance-

level bounding box regression using IoU loss. The pre-

dicted bounding boxes are parameterized by five parameters

including 4 scalars for a bounding box with an orientation

angle. We compute dense prediction at each spatial location

of the feature maps by using two 3×3 convolutional layers,

followed by another 1 × 1 convolutional layer. Finally, the

text detection branch outputs 2-channel feature maps indi-

cating text or non-text probability, and 5-channel detection

maps for bounding boxes with orientation angles. We keep

the bounding boxes having a confident value over 0.95.

Curved Text. For curved text, we modify Textfield in

[38] by using a direction field, which encodes the direction

information that points away from text boundary. The di-

rection field is used to separate adjacent text instances, and

can be predicted by a new branch in parallel with text detec-

tion branch and character branch. This branch is composed

of two 3×3 convolutional layers, followed by another 1×1
convolutional layer.

Generation of Final Results. The predicted instance-

level bounding boxes are applied to group the generated

characters into text instances. We make use of a simple

rule, by assigning a character to a text instance if the char-

acter bounding box have an overlap (e.g., with > 0 IoU)

with an instance-level bounding box. The final outputs of

our CharNet are bounding boxes of both text instances and

characters, with the corresponding character labels.

3.4. Iterative Character Detection

Training our model requires both char-level and word-

level bounding boxes as well as the corresponding charac-

ter labels. However, char-level bounding boxes are expen-

sive to obtain and are not available in many existing bench-

mark datasets such as ICDAR 2015 [18] and Total-Text [5].

We develop an iterative character detection method that en-

ables our model to have capability for identifying charac-

Method w/ Real. Detection E2E

CharNet R-50 65.38 33.69

CharNet R-50 X 89.70 62.18

CharNet H-57 65.19 39.43

CharNet H-57 X 89.66 66.92

CharNet H-88 65.11 39.94

CharNet H-88 X 90.97 69.14

Table 1: Performance of CharNet with various backbone networks on

ICDAR 2015. “Real.” denotes “CharNet trained on real-world images

with the proposed iterative character detection”. Detection is compared

by using F-measure.

ters by leveraging synthetic data, such as Synth800k [7],

where multi-level supervised information can be generated

unlimitedly. This allows us to train CharNet in a weakly-

supervised manner by just using instance-level annotations

from real-world images.

A straightforward approach is to train our model directly

with synthetic images, and then run inference on real-world

images. However, it has a large domain gap between the

synthetic images and real ones, and therefore the model

trained from synthetic images is difficult to work directly on

the real-world ones, as shown in Table 1, where low perfor-

mance is obtained on both text detection and E2E recogni-

tion. We observed that a text detector has relatively stronger

generalization capability than a text recognizer. As shown

in [37], a text detector trained solely on English and Chi-

nese data can work reasonably on other languages, which

inspired us to explore the generalization ability of a charac-

ter detector to bridge the gap between the two domains.

Our intuition is to gradually improve the generalization

capability of model which is initially trained from synthetic

images where full char-level annotations are provided, and

the key is to transform the capability of character detec-

tion learned from the synthetic data to real-world images.

We develop an iterative process by gradually identifying the

“correct” char-level bounding boxes from real-world im-

ages by the model itself. We make use of a simple rule

that identifies a group of char-level bounding boxes as “cor-

rect” if the number of character bounding boxes in a text

instance is exactly equal to the number of character labels

in the provided instance-level transcript. Note that instance-

level transcripts (e.g., words) are often provided in existing

datasets for E2E text recognition. The proposed iterative

character detection are described as follows.

– (i) We first train an initial model on synthetic data,

where both char-level and instance-level annotations

are available to our CharNet. Then we apply the

trained model to the training images from a real-world

dataset, where char-level bounding boxes are predicted

by the learned model.

– (ii) We explore the aforementioned rule to collect the
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Figure 3: Character bounding boxes generated at 4 interactive steps from

left to right. Red boxes indicate the identified “correct” ones by our rule,

while blue boxes mean invalid ones, which are not collected for training

in next step.

“correct” char-level bounding boxes detected in real-

world images, which are used to further train the model

with the corresponding transcripts provided. Note that

we do not use the predicted character labels, which are

not fully correct and would reduce the performance in

our experiments.

– (iii) This process is implemented iteratively to enhance

the model capability gradually for character detection,

which in turn continuously improves the quality of

the identified characters, with an increasing number of

the “correct” char-level bounding boxes generated, as

shown in Fig. 3 and Table 2.

4. Experiments, Results and Comparisons

Our CharNet is evaluated on three standard benchmarks:

ICDAR 2015 [18], Total-Text [5], and ICDAR MLT 2017

[28]. ICDAR 2015 includes 1,500 images collected by

using Google Glasses. The training set has 1,000 im-

ages, and the remaining 500 images are used for evaluation.

This dataset is challenging due to the presence of multi-

orientated and very small-scale text instances. Total-Text

consists of 1,555 images with a variety of text types includ-

ing horizontal, multi-oriented, and curved text instances.

The training split and testing split have 1,255 images and

300 images, respectively. ICDAR MLT 2017 is a large-

scale multi-lingual text dataset, which contains 7,200 train-

ing images, 1,800 validation images, and 9,000 testing im-

ages. 9 languages are included in total.

4.1. Implementation Details

Similar to recent work in [12, 25], our CharNet is trained

on both synthetic data and real-world data. The proposed

iterative character detection is implemented by using 4 iter-

ative steps. At the first step, CharNet is trained on synthetic

data, Synth800k [7], for 5 epochs, where both char-level and

word-level annotations are available. We use a mini-batch

Step # Words Ratio (%) E2E # Epochs

0 6033 64.95 39.3 5

1 8262 88.94 62.9 100

2 8494 91.44 65.0 400

3 8606 92.65 66.1 800

Table 2: 4-step iterative character detection with CharNet. “# Words” is

the number of words identified as “correct” at each step iterative learning.

“Ratio” denotes the ratio of the “correct” words to all words in the train-

ing images from Total-Text. “# Epochs” indicates the number of training

epochs for each iterative step. At the Step 0, CharNet is trained on syn-

thetic data for 5 epochs, while Step 1-3 are implemented on real-world

images. “E2E” means “End-to-End Recognition with F-measure”.

of 32 images, with 4 images per GPU. On the synthetic data,

we set a base learning rate of 0.0002, which is reduced ac-

cording to lrbase × (1− iter
max iter

)power with power = 0.9,

by following [3]. The remained three iterative steps are im-

plemented on real-world data, by training CharNet for 100,

400 and 800 epochs respectively, on the training set of a

benchmark provided, e.g., ICDAR 2015 [18] or Total-Text

[5]. On the real-world data, we set a base learning rate of

0.002, and use the char-level bounding boxes generated by

the model trained from the previous step. We make use of

similar data augmentation as [25] and OHEM [35].

4.2. On Iterative Character Detection

Interactive character detection is an important function

for CharNet that allows us to train the model on real-world

images by only using text instance-level annotations. Thus

accurate identification of characters is critical to the perfor-

mance of CharNet. We evaluate the iterative character de-

tection with CharNet by using various backbone networks

on ICDAR 2015. Results are reported in Table 1. As can

be found, CharNet has low performance on both text detec-

tion and E2E recognition when we directly apply the model

trained from synthetic data to testing images from ICDAR

2015, due to a large domain gap between the two data sets.

The performance can be improved considerably by training

CharNet on real-world data with iterative character detec-

tion, which demonstrates its efficiency.

We further investigate the capability of our model for

identifying the “correct” characters in real-world images.

Experiments were conducted on Total-Text. In this experi-

ment, the “correct” characters are grouped into words, and

we calculate the number of correctly-detected words at each

iterative step. As shown in Table 2, at the step 0, when

CharNet is only trained on synthetic data, only 64.95%
words are identified as “correct” from real-world training

images. Interestingly, this number increases immediately

from 64.95% to 88.94% at the step 1, when the proposed

iterative character detection is applied. This also leads

to a significant performance improvement, from 39.3% to

62.9% on E2E text recognition. The iterative training con-
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Figure 4: CharNet improves both recall and precision on text detection

by jointly learning with character recognition.

tinues until the number of the identified words dose not in-

crease further. Finally, our method is able to collect 92.65%
correct words from real-world images by implementing 4

iterative steps in total. We argue that this number of char-

level annotations learned automatically by model is enough

to train our CharNet, as evidenced by the state-of-the-art

performance obtained, which is shown next.

4.3. Results on Text Detection

We evaluate the performance of CharNet on the text de-

tection task. To make a fair comparison, we use the same

backbone ResNet-50 as FOTS [25]. As shown in Table 3,

our CharNet achieves comparable performance with FOTS

when both methods are trained without recognition branch.

By jointly optimizing the model with text recognition, Char-

Net improves the detection performance by 4.13%, from a

F-measure of 85.57% to 89.70%, which is more significant

than 2.68% performance gain achieved by FOTS. It sug-

gests that our one-stage model allows text detection and

recognition to work more effectively and collaboratively.

This enables CharNet with higher capability for identifying

extremely challenging text instances with stronger robust-

ness which also reduces false detections, as shown in Fig.

4. In addition, CharNet also has a performance improve-

ment of 87.00% → 89.70% on F-measure over that of [12]

which uses a PVAnet [19] as backbone with multi-scale im-

plementation.

Moreover, our one-stage CharNet achieves new stage-

of-the-art performance on text detection on all three bench-

marks, which improves recent strong baseline (e.g., He et

al. [12], FOTS [25] and TextField [38]) by a large mar-

gin. For example, on single-scale case, the improvements

on F-measure are: 87.99% → 90.97% on ICDAR 2015 (in

Table 4), 80.3% → 85.6% on the Total-Text for curved text

(in Table 5), and 67.25%→75.77% on ICDAR 2017 MLT

(in Table 6). Notice that CharNet is designed by using char-

acters as basic unit. This natural property allows it to be eas-

ily adapted to curved text, where FOTS is difficult to work

reliably. TextField was designed specifically for curved text

but only has a F-measure of 82.4% on ICDAR 2015. Sev-

eral examples for detecting challenging text instances are

presented in Fig. 5.

Method Rec. R P F Gain

He et al. [12] 83.00 84.00 83.00 -

He et al. [12] X 86.00 87.00 87.00 +4.00

FOTS [25] 82.04 88.84 85.31 -

FOTS [25] X 85.17 91.00 87.99 +2.68

CharNet 81.37 90.23 85.57 -

CharNet X 88.30 91.15 89.70 +4.13

Table 3: Detection performance on ICDAR 2015. ResNet-50 was used by

both FOTS and CharNet as backbone, while PVAnet [19] was applied in

[12]. “Rec.” denotes “Recognition”. “Gain” is the performance gain ob-

tained by joint optimization with text recognition. “R”, “P”, “F” indicate

“Recall”, “Precision”, “F-measure”.

4.4. Results on End­to­End Text Recognition

For E2E text recognition task, we compare our CharNet

with recent state-of-the-art methods on ICDAR 2015 [18]

and Total-Text [5].

ICDAR 2015. As shown in Table 4, by using a same back-

bone ResNet-50, our CharNet has comparable results with

Mask TextSpotter [26]. However, Mask TextSpotter has

significant performance improvements by using additional

char-level manual annotations on real-world images, with a

weighted edit distance applied to a lexicon, e.g., 76.1% →

79.3% (S), 67.1% → 73.0% (W) and 56.7% → 62.4%
(G) on E2E recognition. Furthermore, CharNet also out-

performs FOTS by 1.38% in terms of generic lexicon. Un-

like FOTS, which makes use of a heavy recognition branch

with 6.31M parameters, our one-stage model only employs

a light-weight CNN-based character branch with 1.19M pa-

rameters. Importantly, our model can work reliably without

a lexicon, with performance of 60.72%, which is compa-

rable to 60.72% of FOTS with a generic lexicon. These

lexicon-free results demonstrate the strong capability of our

CharNet, making it better applicable to real-world applica-

tions where a lexicon is not always available.

We further employ Hourglass-57 [20] as backbone,

which has the similar number of model parameters com-

pared to FOTS (34.96M v.s. 34.98M). As shown in Table

4, our CharNet outperforms FOTS by 6.12% with generic

lexicon. With a more powerful Hourglass-88, we set a new

state-of-the-art single-scale performance on the benchmark,

and improve both Mask TextSpotter and FOTS considerably

in all terms. Finally, with multi-scale inference, CharNet

surpasses the previous best results [25] by a large margin,

e.g., from 65.33% to 71.08% with generic lexicon.

Total-Text. We conduct experiments on Total-text to

show that the capability of our CharNet on curved text. We

employ the protocol described in [5] to evaluate the perfor-

mance of text detection, and follow the evaluation protocol

presented in [26] for E2E recognition. No lexicon is used
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Method Params
Detection

Method
End-to-End Recognition

R P F S W G N

Single Scale

WordSup [14] - 77.03 79.33 78.16 Neumann et al. [29] 35.00 20.00 16.00 -

EAST [41] - 78.33 83.27 80.72 Deep text spotter [2] 54.00 51.00 47.00 -

R2CNN [17] - 79.68 85.62 82.54 TextProp.+DictNet [13, 40] 53.30 49.61 47.18 -

Mask TextSpotter [26] * - 81.00 91.60 86.00 Mask TextSpotter [26] * 79.30 73.00 62.40 -

FOTS R-50 [25] 34.98 M 85.17 91.00 87.99 FOTS R-50 [25] 81.09 75.90 60.80 -

CharNet R-50 26.48 M 88.30 91.15 89.70 CharNet R-50 80.14 74.45 62.18 60.72

CharNet H-57 34.96 M 88.88 90.45 89.66 CharNet H-57 81.43 77.62 66.92 62.79

CharNet H-88 89.21 M 89.99 91.98 90.97 CharNet H-88 83.10 79.15 69.14 65.73

Multi-Scale

He et al. MS [12] - 86.00 87.00 87.00 He et al. MS [12] 82.00 77.00 63.00 -

FOTS R-50 MS [25] 34.98 M 87.92 91.85 89.84 FOTS R-50 MS [25] 83.55 79.11 65.33 -

CharNet R-50 MS 26.48 M 90.90 89.44 90.16 CharNet R-50 MS 82.46 78.86 67.64 62.71

CharNet H-57 MS 34.96 M 91.43 88.74 90.06 CharNet H-57 MS 84.07 80.10 69.21 65.26

CharNet H-88 MS 89.21 M 90.47 92.65 91.55 CharNet H-88 MS 85.05 81.25 71.08 67.24

Table 4: Results on ICDAR 2015. “R-*” and “H-*” denote “ResNet-*” and “Hourglass-*”. “MS” means multi-scale inference. “R”, “P”, “R” are “Recall”,

“Precision”, “F-measure”. “S”, “W”, “G” and “N” mean F-measure using “Strong”, “Week”, “Generic” and “None” lexicon.

Method
Detection

E2E
R P F

Textboxes [22] 45.5 62.1 52.5 36.3

Mask TextSpotter [26] 55.0 69.0 61.3 52.9

TextNet [36] 59.5 68.2 63.5 54.0

TextField [38] 79.9 81.2 80.6 -

CharNet H-57 81.0 88.6 84.6 63.6

CharNet H-88 81.7 89.9 85.6 66.6

CharNet H-57 MS 85.0 87.3 86.1 66.2

CharNet H-88 MS 85.0 88.0 86.5 69.2

Table 5: Results on Total-Text. “H-*” denotes “Hourglass-*”. “MS” in-

dicates multi-scale inference. “R”, “P”, “R” are “Recall”, “Precision”,

“F-measure”. “E2E” is “End-to-End Recognition using F-measure”.

Method R P F

SARI FDU RRPN [27] 55.50 71.17 62.37

SCUT DLVClab 54.54 80.28 64.96

FOTS [25] 57.51 80.95 67.25

FOTS MS [25] 62.30 81.86 70.75

CharNet R-50 70.10 77.07 73.42

CharNet H-88 70.97 81.27 75.77

Table 6: Text detection on ICDAR 2017 MLT. “R-*” and “H-*” denote

“ResNet-*” and “Hourglass-*”. “R”, “P” and “F” represent “Recall”,

“Precision” and “F-measure”. “MS” indicates multi-scale inference.

in E2E recognition. As shown in Table 5, CharNet outper-

forms current state-of-the-art methods by 5.9% F-measure

on text detection, and 15.2% on E2E recognition. Com-

pared to character-based method, Mask TextSpotter [26],

our CharNet can obtain even larger performance improve-

ments on curved text.

Figure 5: Full results by CharNet.

5. Conclusions

We have presented a one-stage CharNet for E2E text

recognition. We introduce a new branch for direct char-

acter recognition, which can be integrated seamlessly into

text detection frameworks. This results in the first one-

stage fully convolutional model that implements two tasks

jointly, setting it apart from existing RNN-integrated two-

stage frameworks. We demonstrate that with CharNet, the

two tasks can be trained more effectively and collabora-

tively, leading to significant performance improvements.

Furthermore, we develop an iterative character detection

able to transfer the character detection capability learned

from synthetic data to real-world images. Additionally,

CharNet is compact with less parameters, and can work re-

liably on curved text. Extensive experiments on ICDAR

2015, MTL 2017 and Total-text, show CharNet consistently

outperforms existing approaches by a large margin.
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