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Abstract

Inspired by the remarkable advances in video analytic-

s, research teams are stepping towards a greater ambition

– movie understanding. However, compared to those ac-

tivity videos in conventional datasets, movies are signifi-

cantly different. Generally, movies are much longer and

consist of much richer temporal structures. More impor-

tantly, the interactions among characters play a central role

in expressing the underlying story. To facilitate the efforts

along this direction, we construct a dataset called Movie

Synopses Associations (MSA) over 327 movies, which pro-

vides a synopsis for each movie, together with annotated

associations between synopsis paragraphs and movie seg-

ments. On top of this dataset, we develop a framework

to perform matching between movie segments and synop-

sis paragraphs. This framework integrates different as-

pects of a movie, including event dynamics and character

interactions, and allows them to be matched with parsed

paragraphs, based on a graph-based formulation. Our s-

tudy shows that the proposed framework remarkably im-

proves the matching accuracy over conventional feature-

based methods. It also reveals the importance of narra-

tive structures and character interactions in movie under-

standing. Dataset and code are available at: https://

ycxioooong.github.io/projects/moviesyn

1. Introduction

Among various forms of media, movies are often con-

sidered as the best to convey stories. While creating a

movie, the director can leverage a variety of elements

– the scene, the characters, and the narrative structures

– to express. From the perspective of computer vision,

movies provide a great arena with a number of new chal-

lenges, e.g. substantially greater length, richer presentation

styles, and more complex temporal structures. Recent stud-

ies [23, 26, 31, 32, 24, 16] attempted to approach this prob-

lem from different angles, only achieving limited progress.

Over the past decade, extensive studies have been de-

voted to video analytics. A number of video-based tasks,

e.g. action recognition [34, 4] and event classification [10],

have become active research topics. However, methods de-

vised for these tasks are not particularly suitable for movie

understanding. Specifically, for such tasks, visual features,

which can be a combination of various cues, are often suf-

ficient for obtaining good accuracies. However, movies are

essentially different. A movie is created to tell a story, in-

stead of demonstrating a scene or an event of a certain cate-

gory. To analyze movies effectively, we need new data, new

perspectives, and thus new approaches.

Recently, several datasets are constructed on movies,

including LSMDC [26] and MovieGraphs [31]. These

datasets, however, are limited in that they are small or have

a narrow focus on very short clips, i.e. those that last for

a few seconds. To facilitate the research in movie under-

standing, we need a new dataset that is large and diverse,

and more importantly allows high-level semantics and tem-

poral structures to be extracted and analyzed. In this work,

we construct a large dataset called Movie Synopses Associ-

ations (MSA) over 327 movies. This dataset not only pro-

vides a high-quality detailed synopsis for each movie, but

also associates individual paragraphs of the synopsis with

movie segments via manual annotation. Here, each movie

segment can last for several minutes and capture a complete

event. These movie segments, combined with the associat-

ed synopsis paragraphs, allow one to conduct analysis with

a larger scope and at a higher semantic level.

Figure 1 shows a movie segment and the corresponding

synopsis paragraph, where we have two important obser-

vations: (1) The story is presented with a flow of events,

governed by the underlying narrative structures. The sen-

tences in the synopsis often follow a similar order. (2) The

characters and their interactions are the key elements of the

underlying story. These two key aspects, namely the dy-

namic flow of events and the interaction among characters,

distinguish movies from those videos in conventional tasks.

In this work, we develop a new framework for matching

between movie segments and synopsis paragraphs. Rather

than encoding them with feature vectors, we choose to use

graphs for representation, which provide a flexible way to

capture middle-level elements and the relationships among

them. Specifically, the framework integrates two key mod-

ules: (1) Event flow module for aligning the sequence of

shots in a movie segment, each showing a particular even-

t, to the sequence of sentences in a synopsis paragraph.
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At Costigan's funeral, 

Sullivan and Madolyn
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… …
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Figure 1. The story in a synopsis paragraph is presented following narrative structures (the upper part), which are modeled into Event Flow

Module; The lower part shows the character interaction captured in Character Interaction Module. The yellow squares denote action.

(2) Character interaction module for capturing characters

and their behaviors (both actions and interactions) and as-

sociating them with the corresponding descriptions. Based

on these two modules, the matching can then be done by

solving optimization problems formulated based on their re-

spective representations.

It is noteworthy that the use of graphs in movie represen-

tation has been explored by previous works [31]. However,

our framework is distinguished in several aspects: 1) It takes

into account complicated temporal structures and character

interactions mined from data. 2) Our method does not re-

quire node-to-node annotation when using graphs.

In summary, our contributions lie in three aspects: (1)

We construct a large dataset MSA on 327 movies, which

provides annotated associations between movie segments

and synopsis paragraphs. This dataset can effectively sup-

port the study on how movie segments are associated with

descriptions, which we believe is an important step towards

high-level movie understanding. (2) We develop a graph-

based framework that takes into account both the flow of

events and the interactions among characters. Experiments

show that this framework is effective, significantly improv-

ing the retrieval accuracies compared to popular methods

like visual semantic embedding. (3) We perform a study,

which reveals the importance of high-level temporal struc-

tures and character interactions in movie understanding. We

wish that this study can motivate future works to investigate

how these aspects can be better leveraged.

2. Related Work

Datasets for Cross Modal Understanding. In recen-

t years, with the increasing popularity of cross-modal under-

standing tasks, e.g. video retrieval by language, a large num-

ber of datasets have been proposed [36, 1, 26, 19, 31, 30,

29, 33]. ActivityNet Captions [19] is a dataset with dense

captions describing videos from ActivityNet [3], which can

facilitate tasks such as video retrieval and temporal local-

ization with language queries. Large Scale Movie Descrip-

tion Challenge (LSMDC) [26] consists of short clips from

movies described by natural language. MovieQA [30] is

constructed for understanding stories in movies by ques-

tion answering. Some of the movies are provided plots with

aligned movie clips. MovieGraphs [31] is established for

human-centric situation understanding with graph annota-

tions. But there are three problems for these datasets: (1)

most of them obtain dull descriptions from crowd-sourcing

platforms, (2) they simply describe short video clips lasting

a few seconds, which leads to a huge gap between proposed

data and real-world data where the video is much longer and

the description is much more complex. (3) some of them

are relatively smaller in terms of dataset size. In order to

explore the high-level semantics and temporal structures in

the data from real-world scenarios, we build a new dataset

with long segments cut from movies and diverse descrip-

tions from the synopses in IMDb1.

Feature-based Methods. To retrieve a video with nat-

ural language queries, the main challenge is the gap be-

tween two different modals. Visual Semantic Embedding

(VSE) [9, 7], a widely adopted approach in video re-

trieval [38, 18, 37, 6, 35], tries to tackle this problem by

embedding multi-modal information into a common space.

JSF proposed in [37] learns matching kernels based on fea-

1https://www.imdb.com
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ture sequence fusion. To retrieve video and localize clip-

s, [27] introduces a framework that first perform paragraph

level retrieval and then refine the features by sentence level

clip localization. Feature-based approaches can not further

improve retrieval performance because these methods fail

to capture the internal structures of video and language.

Graph-based Methods. Graph-based methods [17, 21,

31], which build semantic graphs from both language and

video and then formulate the retrieval task as a graph match-

ing problem [2, 41, 39], is also widely used for cross-modal

retrieval. Method in [17] generates scene graph from lan-

guage queries for image retrieval. A graph matching algo-

rithm is proposed by [21] for semantic search in the do-

main of autonomous driving. The graph matching problem

is formulated as LP optimization with ground-truth align-

ment in optimization constraints. MovieGraphs proposed

in [31] uses graph as semantic representation and integrates

graph into potential functions for training. It’s notewor-

thy that node-level annotations are required during training.

In this work, we also use graph-based representations for

both movies and synopses. However, unlike previous works

that depend on the costly node-level annotations, our graph

matching only needs ground-truth of paragraph-level align-

ment, which makes it much more practical.

3. MSA Dataset

This section presents Movie Synopsis Association (M-

SA), a new dataset constructed upon 327 movies. Partic-

ularly, we choose a set of high-quality synopses from IMD-

b, i.e. those with detailed descriptions of individual events,

one for each movie. Each synopsis here consists of tens of

paragraphs, each describing an event in the movie.

We also provide the associations between movie seg-

ments and synopsis paragraphs through manual annotation.

These associations constitute a solid basis to support high-

level semantic analysis. We collected the associations fol-

lowing the procedure below. (1) We provide the annotators

with a complete overview of each movie, including the char-

acter list, reviews, etc., to ensure they are familiar with the

movies. (2) We carry out the annotation procedure in two

stages, from coarse to fine. At the first stage, each movie

is divided into 64 clips, each lasting for around 2 minutes.

For each synopsis paragraph, an annotator is asked to select

a segment, i.e. a subsequence of N consecutive clips, that

cover the corresponding description. At the second stage,

annotators adjust the temporal boundaries of the resultant

segments to make them better aligned with the paragraphs.

This two-stage procedure leads to a collection of paragraph-

segment pairs. (3) We dispatch each paragraph to three an-

notators and only retain those annotations with high consis-

tency among them. Here, the consistency is measured in

terms of temporal IoU among the annotations. Finally, we

obtained 4, 494 highly consistent paragraph-segment pairs

Table 1. Statistics of the MSA dataset.
Train Val Test Total

# Movies 249 28 50 327

# Segments 3329 341 824 4494

# Shots / seg. 96.4 89.8 76.9 92.3

Duration / seg. 427.4 469.6 332.8 413.3

# Sents. / para. 6.0 6.0 5.5 5.9

# Words. / para. 130.8 132.5 120.5 129.0

Table 2. Comparison between MSA dataset and MovieQA [30].

#movie #sent./movie #words/sent. dur. (s)

MovieQA 140 35.2 20.3 202.7

MSA 327 81.2 21.8 413.3

(out of 5, 725 annotations of the original collection).

Table 1 shows some basic statistics of the dataset. This

dataset is challenging: (1) The duration of each movie seg-

ment is over 400 seconds on average, far longer than those

in existing datasets like LSMDC [26]. (2) The descriptions

are rich with over 100 words per paragraph.

Figure 2 compares ActivityNet Caption [19] with the M-

SA dataset with examples. We can see that the descrip-

tions in MSA are generally much richer and at a higher

level, e.g. describing characters and events, instead of sim-

ple actions. MovieQA also contains description-clip pairs.

Table 2 compares MovieQA with our MSA dataset. Note

that the plot synopses from MovieQA are obtained from

Wikipedia while ours are from IMDb. Compared to syn-

opses from Wikipedia, those from IMDb are written by

movie fans and reviewed by others. They are longer and

contain more details.

4. Methodology

In this section, we would present our framework for

matching between movie segments and synopsis paragraph-

s. Specifically, given a query paragraph P from a synopsis,

we aim at retrieving its associated movie segment Q out of

a large pool of candidates. This framework consists of two

modules: a Event Flow Module (EFM) to exploit the tempo-

ral structure of the event flows, and a Character Interaction

Module (CIM) to leverage character interactions.

As shown in Figure 1, given a query paragraph P and

a candidate movie segment Q, each module yields a simi-

larity score between P and Q, denoted as Sefm(P,Q) and

Scim(P,Q) respectively. Then the overall matching score

S(P,Q) is defined to be their sum as

S(P,Q) = Sefm(P,Q) + Scim(P,Q), (1)

In what follows, Sec. 4.1 and 4.2 present the EFM and

CIM modules respectively. Sec. 4.3 introduces the training

algorithm, where both modules are jointly optimized.

4.1. Event Flow Module

This module takes into account the temporal structures of

event flows. It is motivated by the observation that the sen-
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1. Steven goes to the gym to play basketball with some friends,

and Chip awkwardly shows up.

2. Chip inserts himself into the game, and plays in a very

aggressive manner, knocking down other plays and eventually

breaking the basketball board.

3. Steven is obviously mad at Chip and walks off.

1. A group of basketball players are seen standing on

a gymnasium floor with several people watching on

the sides.

2. One of the players falls to the floor with another

making a gesture in the background.

Figure 2. Comparison between examples from ActivityNet Caption (left) and MSA (right). The durations are 12s and 220s respectively.

At home, Ryan packs for 
another road trip, his 

shelves are …

At the airport, he checks 
in with his usual efficiency, 

and then sighs …

He pares her packing, 
tossing things he deems 

unnecessary into the trash.

Figure 3. Sentences in a synopsis paragraph often follow a similar

order as the situations in event presented in the movie segment.

Therefore, they can be aligned temporally.

tences in a synopsis paragraph tend to follow a similar order

as that of situation in events (each captured by a sequence

of movie shots2), as shown in Figure 3. In particular, the

alignment between the sentences and the movie shots can

be done based on the following principles: (1) Each sen-

tence can match multiple shots while a shot can be assigned

to at most one sentence. (2) The sentences and the movie

shots follow the same order. The matching should not swap

the order, e.g. associating a sentence that comes next to a

preceding shot.

Formulation. Suppose a paragraph P is composed of a

sequence of sentences {p1, . . . , pM}. We obtain an em-

bedding feature φi ∈ R
D for each sentence pi using ful-

ly connected embedding networks. Meanwhile, a movie

segment Q consists of a sequence of shots, which can be

extracted by a shot segmentation tool [28]. We derive a vi-

sual feature ψi ∈ R
D for each shot qi with fully connected

embedding networks. Here we aim at assigning each sen-

tence to a sub-sequence of shots, which can be represent-

ed by a binary assignment matrix Y ∈ {0, 1}N×M , where

yij = Y(i, j) = 1 if the ith shot is attached to the jth sen-

tence and 0 otherwise. Given the assignment matrix Y, the

total matching score can be expressed as

Sefm =
∑

i

∑

j

yijφ
T
j ψi = tr(ΦΨTY), (2)

where Φ = [φ1, . . . ,φM ]T and Ψ = [ψ1, . . . ,ψN ]T are

2A shot is a series of frames, that runs for an uninterrupted period of

time. Observing that frames within a shot are highly redundant, we use

shot as the unit instead of frames.

Richie and Sydney kiss 

while Irving watches on.

As he walks away, Irving

approaches her.

…

Richie and Sydney kiss 

while Irving watches on.

As he walks away, Irving

approaches her.

detect

As Richie walks away, 

Irving approaches Sydney.

co-ref.

parse
approach

Richie

Irving Sydney

awayas

walk

link

SydneyIrving

approach

Richie

walk

Figure 4. The procedure of constructing graphs from paragraph.

At first, all the character names and pronouns are detected. Then

each sentence is parsed to a dependency tree. Based on the tree

structure, graphs are generated at rule-based linking stage.

the feature matrices for both domains. Taking the alignment

principles described above into account, we can obtain the

assignment Y by solving the following problem:

max
Y

tr(ΦΨTY) (3)

s.t. Y1 � 1, (4)

I(yi) ≤ I(yi+1), ∀i ≤ N − 1. (5)

Here, yi refers to the ith row of matrix Y, and I(·) denotes

for the index of the first nonzero element in a binary vector.

This is a bipartite graph matching problem which can be

efficiently solved by dynamic programming.

4.2. Character Interaction Module

As discussed earlier, the interactions among characters

play a significant role in movie storytelling. We also ob-

serve that the character interactions are often described in

synopsis. To incorporate this aspect, we propose the Char-

acter Interaction Module (CIM) based on graph represen-

tations derived from both the synopsis paragraphs and the

visual observations in the movie segments.

Specifically, each paragraph and movie segment are rep-

resented by graphs Gp = (Vp, Ep) and Gq = (Vq, Eq) re-

spectively. The vertex sets Vp and Vq contain both char-

acter and action nodes. The edge sets Ep and Eq cap-

ture both character-character and character-action relations.
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With these two graphs, the similarity between P and Q can

be computed by matching between Gp and Gq . Below, we

elaborate on the matching procedure.

Visual Graph from a Movie Segment. Firstly, we gen-

erate the character and action nodes: (1) For character n-

odes, we utilize Faster-RCNN [11] implemented on [5] and

pre-trained on [15, 14] to detect person instances in every

shot. (2) We attach each person instance with an action

node, which comes from a TSN [34] pretrained on AVA

dataset [12]. Secondly, we produce the edge sets by the

following procedures: (1) If a group of people appear in

the same or adjacent shots, we introduce an edge between

every pair of them. (2) We link each character node to its

corresponding action node.

Semantic Graphs from Sentences. For each paragraph,

we construct a collections of sub-graphs from each sentence

based on dependency trees, as illustrated in Figure 4.

The construction process consists of four major steps:

(1) Name detection: We detect all the named entities (e.g.,

Jack) using StanfordNer [8]. Then we resort to CorefAn-

notator [25] to link pronouns with named entities and sub-

stitute all pronouns with their corresponding names. (2)

Character association: With the help of IMDb, we can

retrieve a portrait for each named character and thus obtain

facial and body features using ResNet [13] pre-trained on

PIPA [40]. This allows character nodes to be matched to

the person instances detected in the movie. (3) Sentence

parsing: We use GoogleNLP API3 to obtain the dependen-

cy tree of a sentence. Each node in the tree is labeled with

a part-of-speech tagging. (4) Edge linking: Based on the

dependency tree, we link each character name to its par-

ent verb. Meanwhile, if a group of character names share

the same verb, we introduce an edge between every pair of

them. Note that we only consider the verbs that stand for ac-

tion. We first select 1000 verbs with the highest frequency

from the synopses corpus, and then retain those correspond-

ing to visually observable actions, e.g. “run”. This results

in a set of 353 verbs.

It is worth noting that we generate a collection of sub-

graphs from paragraph instead of a connected graph. For

convenience, we consider the collection of sub-graphs as a

graph with notation Gp although it can be further decom-

posed into multiple disjoint sub-graphs. This is also what

we do in our implementation.

Matching Paragraph with Movie Segment. For graph

Gp, let Vp be its vertex set with |Vp| = m = mc+ma, where

mc is the number of character nodes and ma is that of action

nodes. Similarly, we have Gq with |Vq| = n = nc + na.

The target of graph matching is to establish a node-to-

node assignment for the two input graphs while taking the

the pair-wise constraints, namely the edges, into account.

3https://cloud.google.com/natural-language/

We define a binary vector u ∈ {0, 1}nm×1 as the indica-

tor, where uia = 1 if i ∈ Vq is assigned to a ∈ Vp. To mea-

sure the similarity of nodes and edges from different graphs,

we establish the similarity matrix K ∈ R
nm×nm, where the

diagonal elements represent node similarities whereas the

off-diagonal entries denote edge similarities. Particularly,

κia;ia = K(ia, ia) measures the similarity between ith n-

ode in Vq and ath node in Vp. κia;jb measures the similarity

between two edges (i, j) ∈ Eq and (a, b) ∈ Ep. The n-

odes are represented as output features from networks. And

the edge is represented by the concatenation of its nodes’

features. The similarities in K is computed by dot product

between feature vectors.

Given the indicator u and the similarity matrix K, the

similarity of two graphs can be derived as

Scim(P,Q) =
∑

i,a

uiaκia;ia +
∑

i,j
i 6=j

∑

a,b
a 6=b

uiaujbκia;jb, (6)

where the first term models the similarity score between

matched notes i ∈ Vq and a ∈ Vp. The second term gives

the bonus from matched edges between (i, j) and (a, b).
Based on the properties of nodes, certain constraints are

enforced on u: (1) The matching should be a one-to-one

mapping. For example, one node in a vertex set can only be

matched to at most one node in the other set. (2) Nodes of

different types cannot be matched together. For example, a

character node can not be assigned to an action node.

The objective function, together with the constraints, can

be simply expressed in the following form:

max
u

uTKu, (7)

s.t.
∑

i uia ≤ 1 ∀a, (8)
∑

a uia ≤ 1 ∀i, (9)
∑

i∈V c
q
uia = 0 ∀a ∈ V a

p , (10)
∑

i∈V a
q
uia = 0 ∀a ∈ V c

p . (11)

Here V a
q denotes the vertex set containing only action

nodes in video with |V a
q | = na and V c

q for vertex only con-

taining cast nodes in video. The same for V a
p and V c

p .

Graph Pruning The problem itself is known as an NP-

hard Quadratic Assignment Problem (QAP). Solving it

could be time consuming especially when the graph is large,

which is normally the case for our video graph. To ease the

problem, we propose a graph pruning strategy to reduce the

graph size to an appropriate one that it can be solved in an

affordable time. The strategy is described as follows:

Seed Node Generation. We first select the most impor-

tant nodes as seed nodes. They are selected by the following

two criteria: (a) The problem can be approximately solved

by Kuhn–Munkres (KM) algorithm [20] in polynomial time.

The matched nodes can be selected as seed nodes. (b) The
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k most similar nodes with each node from the query graph

will be chosen as seed nodes.

Selection Propagation. Given the seed nodes, we ex-

tend the node selection by considering the nodes within J th

degree connection of a seed node. We denote the seed n-

odes by another indicator vector v ∈ {0, 1}n×1, the adja-

cency matrix as A of graph Gq , the nodes we select can be

expressed as v ← AJv. The pruned graph is obtained by

cropping the whole graph using selected nodes.

4.3. Joint Optimization.

The quality of the node features would highly influence

the result of matching. It is necessary for us to finetune the

parameters of the models in EFM and CIM for a better rep-

resentations. Since we do not have the ground truth align-

ment of Y in EFM or u in CIM, we can not directly update

the model parameters in a supervised manner. Hence, we

adopt an EM-like procedure to finetune the feature repre-

sentations and optimize matching objectives. The overall

loss of the whole framework is given below:

L = L(Y,θefm,u,θcim) (12)

where θefm and θcim denote model parameters for em-

bedding networks in EFM and CIM respectively.

E-Step. Using current model parameter values θ∗efm and

θ∗cim, we solve Eq.3 by dynamic programming mentioned

in Sec.4.1 and we obtain a sub-optimal value in Eq.7 by

applying KM algorithm. Here in our implementation, the

time complexity of the KM algorithm is O(τ3) where

min(n,m) ≤ τ ≤ max(n,m).

M-Step. We update the model parameters in M-step with
optimal solutions Y∗ and u∗ obtained in E-step. Particular-
ly, given Y∗ and u∗, we update model parameters by

θ
∗

efm,θ
∗

cim = argmin
θefm,θcim

L(Y∗

,θefm,u
∗

,θcim)

= argmin
θefm,θcim

L(S∗;θefm,θcim)
(13)

where L(S;θ) is the pair-wise ranking loss with margin α

shown below:

L(S;θ) =
∑

i

∑

j 6=i

max(0, S(Qj , Pi)− S(Qi, Pi) + α)

+
∑

i

∑

j 6=i

max(0, S(Qi, Pj)− S(Qi, Pi) + α) (14)

5. Experiments

We conduct experiments of movie-synopsis retrieval on

MSA dataset. Specifically, search a movie segment from

candidate pool given a synopsis paragraph as query.

5.1. Experiment Setup

Dataset. The MSA dataset is randomly split into train,

val, test subsets with 3329, 341, 824 samples respectively.

Note that there are no overlap movies among subsets. The

statistic of the subsets is shown in Table 1.

There are two settings to measure the performance,

namely, cross-movie and within-movie. The cross-movie

setting considers the whole test set as the candidate pool for

each query whereas the within-movie setting only takes the

segments from the same queried movie to be the candidates.

Evaluation Metrics. To evaluate the performance, we

adopt the commonly used metrics: (1) Recall@K: the frac-

tion of GT videos that have been ranked in top K; (2)

MedR: the median rank of GT videos. (3) Avg. MedR:

Average MedR, this is only for within-movie setting.

Implementation Details. In EFM, Word2Vec [22] em-

bedding is used as sentence representation. The Word2Vec

model is finetuned on MSA corpus, i.e., synopses and sub-

titles. The shot feature consists of two parts: 1) visual fea-

tures extracted from pool5 layer of ResNet-101 [13]. 2) its

subtitle’s Word2Vec embedding. In CIM, we adopt ResNet-

50 pre-trained on PIPA [40] to extract the face and body

feature for a detected person instance or a cast portrait. The

action features in videos come from TSN [34] pre-trained

on AVA [12] and action verbs are represented by Word2Vec

embeddings. We train all the embedding networks using S-

GD with learning rate 0.001. The batch size is set to 16 and

the margin α in pair-wise ranking loss is set to 0.2.

5.2. Overall Results

We adopt VSE as the base models and previous method

JSF [37] is also used for comparison. Also for comparison,

we gradually add three kinds of features, namely, appear-

ance, cast and action as nodes to baseline method. Partic-

ularly, appearance node denotes the sentence embeddings

or shot features. For VSE, the features of movie shots and

sentences are further transformed with two-layer MLPs. We

then obtain the features of segments and paragraphs by tak-

ing the average of the shot and sentence features. During

matching, the segment/paragraph similarities are comput-

ed with cosine similarity. We use the same loss as shown

in Eq. 14. Matching scores from different nodes are fused

by weighted sum. The weights are obtained by observing

the performance of single node on val set. Here, for cross-

movie setting, weights are simply set as 0.3, 1.0 and 0.1 for

appearance, cast and action respectively. For within-movie

setting, weights are 0.3, 0.3 and 0.1. Table 3 shows the over-

all results of video retrieval on MSA.

Analysis on Overall Results. From the results shown in

Table 3, by comparing different methods, we observe that:

(1) Both VSE and JSF outperform random guess by a

large margin. The performance of JSF does not exceed
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Table 3. The overall performance of video retrieval on MSA dataset under both cross-movie and within-movie settings. Here, appr. refers

to appearance node, cast stands for character node and action denotes action node.

Cross-movie Within-movie

Method Nodes R@1 R@5 R@10 MedR R@1 R@5 R@7 Avg. MedR

1 Random - 0.12 0.61 1.21 412.5 6.07 28.88 38.35 8.74

2 JSF appr. 3.52 12.62 20.02 55 19.42 56.07 66.51 3.86

3 VSE appr. 4.49 15.41 24.51 39.5 21.36 60.07 69.42 3.62

4 VSE appr.+action 5.34 15.78 24.64 42.5 21.85 61.41 69.66 3.47

5 VSE appr.+action+cast 19.05 48.67 60.92 6 26.70 65.90 72.94 3.03

6 Ours(EFM) appr. 6.80 20.15 28.40 36 27.67 63.59 71.97 2.92

7 Ours(EFM) appr.+action+cast 21.12 48.67 61.04 6 30.58 66.14 73.42 2.70

8 Ours(EFM+CIM) appr.+action+cast 24.15 53.28 66.75 4.5 31.92 67.96 74.76 2.50

Table 4. Influence of different choices of N for updating scores in

CIM. The first row is the result before updating.

R@1 R@5 R@10 MedR

previous stage 21.12 48.67 61.04 6

N = 15 24.15 53.28 66.75 4.5

N = 40 23.91 51.94 63.71 5

N = 60 23.42 51.46 63.11 5

N = 80 23.42 51.46 62.86 5

that of VSE because the learned kernels in JSF fail to

capture the matching pattern between paragraphs and long

videos, when the concepts in paragraphs are complicated

and lengths of videos vary a lot.

(2) Our method with EFM and CIM outperforms the con-

ventional methods that only fuse features under both cross-

movie and within-movie settings. Particularly, Recall@1

under cross-movie setting is raised from 19.05% to 24.15%
(5.10% absolute and 27% relative improvement) and each

recall under within-movie setting improves over 1.5%.

Analysis on EFM and CIM. Also shown in Table 3, the

results of rows 3,6 demonstrate that the proposed EFM im-

proves the performance on most of the metrics. We can

see from the table that EFM works better especially under

within-movie setting (6.31% increment on Recall@1). It is

because that encoded story and narrative structure in EFM

is the key to distinguish segments from the same movie.

Meanwhile, results from rows 7-8 prove the effective-

ness of using character interaction graph, especially under

cross-movie setting. The CIM does not bring consisten-

t performance gain under within-movie setting compared

to EFM. The reason is that segments from the same movie

share a group of characters and their interactions are also

similar. This is also illustrated in the right part of rows 4-5.

5.3. Ablation Studies

We present ablation studies on different hyper parame-

ters. Unless stated, experiments are conducted under cross-

movie setting.

Choices of N in CIM. As mentioned before, at inference

stage, we need to obtain score in CIM by solving the opti-

Table 5. Comparison between the performance of using only visual

feature and that of using both visual and subtitle features as shot

representation. The input node is appr.

R@1 R@5 R@10 MedR

visual only 4.25 13.84 19.66 56

visual + subtt. 4.49 15.41 24.51 39.5

Table 6. Comparison of different graph pruning parameters.

R@1 R@5 R@10 MedR

J = 1 23.30 53.03 66.14 5

J = 2 24.15 53.28 66.75 4.5

J = 3 24.03 53.16 66.63 5

mization problem in Eq.7. It takes 2 seconds to solve one

matching on average. Under the cross-movie setting, we

need to solve these problems for 8242 times (the number of

test samples is 824), which sums up to more than a week.

To save time, we only update the score of candidates that

rank top N in previous stage, e.g., VSE with score fusion.

Table 4 shows the influence on different choices of N .

Note that we take the score in the first row to filter out a

candidate list for updating. We see that from N = 15 to

N = 40, the performance drops while remains steady when

N increases from 40 to 80. All the results still outperform

the baseline in the first row. The performance drop comes

from the increasing outliers when N increases. Therefore,

decrease N can not only improve inference efficiency but

also decrease the number of distractors in candidate pool.

Influence of using subtitle feature. Recall that we use

both the visual and subtitle feature as the representation of

a shot by observing that sometimes the narrators tend to

summarize important dialogues in synopses. We conduct

ablation study on the effectiveness of subtitle feature shown

in Table 5. The experiments are based on appearance nodes

only. The results show that subtitle are complementary to

visual information.

Graph Pruning Parameters. To raise inference efficien-

cy, we perform graph pruning in CIM. We set k = 2 to

select seed and J = 2 to spread selection (recall Sec. 4.2).

As k and J are complementary for controlling the size of

pruned graph, we only conduct studies on different values
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The next morning Solara joins Claudia at breakfast.

Synopsis Graph

Video Graph

… 
GT

… Pred

1.During the high-speed chase that follows, they drive the wrong way …

4.Construction workers pull them from the car shortly before it explodes…
3.The car crashes and falls over the end of a highway overpass.

2.Vincent finally shoots out one of Deirdre's tires.

When Pentangeli meet the Rosatos at a local bar, he is 

attacked but the murder is interrupted by a policeman.

Pentangeli is left for dead, and his Willi Cicci, is struck by 

a car while shooting at the Rosatos as they drive away.X

Miss

CIM

Results

EFM

Results

MissMiss

(a) Qualitative Result from CIM (b) Qualitative Result from EFM

(c) Qualitative Result from both EFM and CIM

Figure 5. Qualitative results of EFM and CIM modules. (a) shows a success case of CIM; (b) presents a failure case of EFM; (c) shows an

example that EFM succeeds but CIM fails.

of J . The results are shown in Table 6. It demonstrates that

J = 2 is enough for pruning a graph and increase J may

introduce more noise.

5.4. Qualitative Results

We present qualitative results on both EFM and CIM

modules to further explore their effectiveness.

Figure 5 (a) shows a positive result that the charac-

ters and actions in the sentence are accurately matched.

The right matching is obtained with the help of character-

character and character-action relations.

Figure 5 (c) shows a case that EFM successfully assigns

each sentence to the corresponding shots while CIM fail-

s to assign the characters. In particular, “Pentangeli” is

assigned to a wrong person instance while the other three

names match nothing. The reason is that the person in-

stances from movie segment are in poor quality due to dim

light, occlusion or large motion expect the one appearing at

the end of the segment.

Figure 5 (b) shows a failure case of EFM where the sec-

ond sentence is completely miss-aligned. As shown in the

upper part of the figure, this is possible because the shots be-

long to the third sentence contain some content of “shoot”

and “tire” which mislead the model. We also observe that

this case is challenging because the shots look similar to

each other due to no transition of scene.

From the above observations and analysis on more such

cases, we come to the following empirical conclusions: (1)

Edge constraints are important for alignments. (2) The qual-

ity of nodes matters. If nodes are in poor quality, the edge

constraints will take no effect. (3) Discriminative shot ap-

pearance, together with our proposed EFM, is helpful for

temporal alignment.

6. Conclusion

In this paper, we propose a new framework for match-

ing between movie segments and synopsis paragraphs. The

proposed framework integrates a Event Flow Module to

capture the narrative structures of movies and a Charac-

ter Interaction Module to model character interactions using

graph-based formulation. To facilitate research for movie-

synopsis matching, we construct a dataset called Movie

Synopses Associations (MSA). Experimental results show

the effectiveness of the proposed modules. Our framework

outperforms conventional feature-based methods and im-

proves the matching accuracy consistently on all metrics.

Both quantitative and qualitative studies demonstrate that

our method can capture rich temporal structures and diverse

interactions among characters.
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