
Auto-FPN: Automatic Network Architecture Adaptation for Object Detection

Beyond Classification

Hang Xu1* Lewei Yao1∗ Wei Zhang1 Xiaodan Liang2† Zhenguo Li1

1Huawei Noah’s Ark Lab 2Sun Yat-sen University

Abstract

Neural architecture search (NAS) has shown great poten-

tial in automating the manual process of designing a good

CNN architecture for image classification. In this paper,

we study NAS for object detection, a core computer vision

task that classifies and localizes object instances in an im-

age. Existing works focus on transferring the searched ar-

chitecture from classification task (ImageNet) to the detec-

tor backbone, while the rest of the architecture of the de-

tector remains unchanged. However, this pipeline is not

task-specific or data-oriented network search which can-

not guarantee optimal adaptation to any dataset. There-

fore, we propose an architecture search framework named

Auto-FPN specifically designed for detection beyond simply

searching a classification backbone. Specifically, we pro-

pose two auto search modules for detection: Auto-fusion to

search a better fusion of the multi-level features; Auto-head

to search a better structure for classification and bounding-

box (bbox) regression. Instead of searching for one repeat-

able cell structure, we relax the constraint and allow differ-

ent cells. The search space of both modules covers many

popular designs of detectors and allows efficient gradient-

based architecture search with resource constraint (2 days

for COCO on 8 GPUs). Extensive experiments on Pascal

VOC, COCO, BDD, VisualGenome and ADE demonstrate

the effectiveness of the proposed method, e.g. achieving

around 5% improvement than FPN in terms of mAP while

requiring around 50% fewer parameters on the searched

modules.

1. Introduction

Object detection is a core and challenging problem in

computer vision. It aims to localize objects and predict the

associated class labels in an image. This task widely bene-

fits autonomous vehicles [9], surveillance video [43], lesion

analysis in medical images [59], facial recognition in mo-

bile phone [3], to name a few. Deep convolutional neural

*Equal contribution
†Corresponding author: xdliang328@gmail.com

Model Dataset
Search GPU Resource

Task
Method Days Constraint

ResNet [20] ImageNet Handcraft - - Cls

FPN [32] COCO Handcraft - - Det

NASNet [64]
CIFAR-10 RL-based 2000 × Cls

CIFAR-10 Transfer 2000 × Det

AmoebaNet [45] CIFAR-10 EA-based 2000 � Cls

DARTS [38] CIFAR-10 Grad-based 4 × Cls

PNASNet [36] CIFAR-10 SMBO 150 × Cls

DPC [11] Cityscapes EA-based 2600 × Seg

Auto-deeplab [35] Cityscapes Grad-based 3 × Seg

Auto-FPN

PASCAL VOC Grad-based 4 � Det

COCO Grad-based 16 � Det

BDD Grad-based 8 � Det

Table 1. Comparing our Auto-FPN against other CNN architec-

tures designs. 1) We make one of the first attempts to propose

an architecture search framework for detection. 2) Our method is

a gradient-based architecture search with resource constraints. 3)

Our efficient search requires only 16 V100 GPU days for COCO.

networks have been proved successful in object detection

and the performance grows rapidly. A modern object de-

tection system [40, 47, 50, 32, 18, 33] usually consists of

four components: pretrained backbone (e.g. Imagenet), fea-

ture fusion neck, region proposal network (in two-stage de-

tection), and RCNN head. While a better feature extractor

[54, 20, 57, 48, 49] certainly plays an important role, a lot

of progress in this area comes from the better design of net-

work architectures for feature fusion neck [32, 39, 29, 19]

and RCNN head [13, 30, 8, 28].

There has been a growing interest in automatically de-

signing a neural network architecture instead of relying

heavily on human expert’s labor and experience. Neural

architecture search (NAS) has demonstrated much success

in exploring architectures that exceed hand-crafted architec-

tures on image classification problems [64, 36, 38, 45]. Im-

age classification is straight-forward and relatively simple

since it requires less computation and the training process

is fast (CIFAR-10). In contrast, an object detection problem

is usually more challenging due to high-resolution input im-

age and longer training time (2 days for COCO on 8 GPUs).

For the problem of detection, existing NAS work [64] only

16649

transfers the searched architecture from classification task

(ImageNet) to the detector backbone, while the rest of the

architecture of detector remains unchanged. However, this

pipeline is not task-specific or data-oriented search which

cannot guarantee optimal adaptation to any domain. On

the contrary, our work aims to develop an efficient NAS

scheme specifically designed for object detection and can

be adapted to any detection dataset.

In this paper, we propose an architecture search frame-

work named Auto-FPN for detection beyond simply search-

ing a classification backbone. We draw inspiration from the

recent progress on two important components of detection

system: feature fusion neck and RCNN head. Specifically,

we propose two auto search modules for detection: Auto-

fusion neck module aims at utilizing information from all

feature levels in the in-network feature hierarchy and con-

ducting feature fusion for better prediction; Auto-head to

search a better and efficient structure for classification and

bbox regression.

By observing the state-of-the-art design of the feature fu-

sion neck, two components are important: 1) good path for

aggregating different feature levels (e.g. top-down path in

[32] and augmented bottom-up path in [39]), 2) proper re-

ceptive fields for each feature levels [29]. Thus in our Auto-

fusion module, we design a fully connected search space

with various dilated convolution operations between feature

levels to allow a flexible feature fusion with different re-

ceptive fields. For RCNN head, typical two-stage detectors

suffer from a heavy head (34% parameter size of the whole

FPN) [30]. To build an efficient yet accurate detector, we

consider a more advanced split-transform-merge paradigm

for the search space of Auto-head. Instead of searching one

repeatable cell structure [38, 37, 45, 5, 55, 41], we relax

the constraint and endow different structures in each mod-

ule. The search space of both modules is flexible enough

to cover many popular designs of detectors. For feasible

employment of the network, we further consider adding a

joint computational constrain and taking the parameter size,

FLOPS and MAC into regularizing the search.

For architecture search methods, evolutionary algo-

rithms [46, 37, 45] and reinforcement learning [1, 63, 64, 4,

61] based searching methods usually require large amounts

of repeated training and evaluation on candidate architec-

tures thus are computationally intensive even on the low

resolution image classification dataset (e.g. CIFAR-10).

Therefore, both methods may not be suitable for object

detection which requires high-resolution input image and

longer training time. Inspired by the recent differentiable

formulation of NAS [38, 58], we apply a continuous relax-

ation of the discrete architectures of both modules. Archi-

tecture search is then conducted via stochastic gradient de-

scent. Since high-resolution is crucial for detecting small

objects, we directly search on high-resolution images with

size of 800 pixels. The search is very efficient for each mod-

ule and takes only about 11 hours on 8 V100 GPUs for PAS-

CAL VOC [14], 2 days for COCO [34] and 1 day for BDD

[60]. In practice, training a good gradient-based NAS is not

easy. We further explore and share the tricks to compare

different training strategies in Section 4.3.

Extensive experiments are conducted on the widely used

detection benchmarks, including Pascal VOC [14], COCO

[34], BDD [60], Visual Genome (VG) [27], and ADE [62].

The proposed method outperforms current state-of-the-art

detection methods, i.e., the baseline FPN [32] and PANet

[39]. We observe consistent performance gains on the base

detection network FPN [32] but with fewer parameters. In

particular, our method achieves around 2.6% of relative

mAP improvement on Pascal VOC, 5.2% on MS-COCO,

2.7% on BDD, 28.2% on VG and 15.2% on ADE with more

than 50% fewer parameters in neck and head.

2. Related Work

Object Detection. Modern object detection methods can

generally be categorized in two groups: one-stage detec-

tion methods such as SSD [40] and YOLO [47], and two-

stage detection methods such as Faster R-CNN [50], FPN

[32], and R-FCN [13]. Within the state-of-the-art systems,

there are two essential components besides the classification

backbone: multi-level features module and RCNN head.

For example, FPN [32] and PANet [39] modified multi-

level features module to obtain a better feature fusion. On

the other hand, R-FCN [13] and Light-head RCNN [30] de-

signed different structures of bbox head.

Neural Architecture Search. Neural architecture

search aims at automatically searching for an efficient neu-

ral network architecture for a certain task and dataset, hence

releasing human experts from labor of designing network.

Apart from some RNN searching works [24, 63, 38] for

NLP tasks, most works are based on searching CNN ar-

chitectures for image classification. Only a few of them

focus on more complicated vision tasks such as semantic

segmentation [11, 35]. There are mainly three approaches

in NAS area: 1) Evolutionary Algorithms (EA) based meth-

ods [46, 37, 45], which try to “evolves” architectures or Net-

work Morphism by mutating the current best architectures;

2) Reinforcement learning based methods [1, 63, 64, 4, 61]

train a RNN policy controller to generate a sequence of ac-

tions to specify CNN architecture; 3) Gradient based meth-

ods [38, 58, 35, 6] define an architecture parameter for con-

tinuous relaxation of the discrete search space, thus allow-

ing differentiable optimization of the architecture. Among

those approaches, EA and RL methods usually require mas-

sive computation during search, usually thousands of GPU

days. Meanwhile, gradient based methods often take only

several GPU days. Since training for object detection is al-

ready very time consuming, gradient based approach seems

6650

…

Images Backbone RPN Head

cla
ss

lo
ca

tio
n

Auto-head
C

la
ss

Lo
ca

tio
n

……

Auto-fusion

…

proposals

Automatic path search

L layers M cells

Figure 1. An overview of our architecture search framework for detection. Our method can be stacked on any backbone and focuses on

searching better architectures of the neck and the RCNN head of a detection system. The proposed Auto-fusion module aims at finding a

better architecture for utilizing information from all feature hierarchy and conducting feature fusion for better prediction. The Auto-head

module is constructed by different auto-searched cells in order to perform a better classification and bbox prediction.

to be more desirable for current setting of the problem. The

concurrent work NAS-FPN [16] is a nice related work re-

leased after the submission of this paper. We use a different

search space and different algorithm compared to it. Al-

though their results show much higher mAP, their model

is considerably large. Their searched Neck accounts for

more than 300B FLOPs and 25M parameters (larger than

a ResNet50 backbone), while ours is even smaller than

the vanilla FPN. This is because NAS-FPN only consid-

ers mAP as the objective, while our work also considers

resource constraint to seek a best trade off between effi-

ciency and performance. For a comparison, our method

requires much less params/ FLOPs (0.04x/ 0.1x) and runs

much faster(2.8x) than NAS-FPN.

Multi-level Features. Multi-level features are com-

monly used in high-level recognition tasks. In segmenta-

tion, lower-level features can help to recognize the detailed

edges of the objects. In detection, fusion of multi-level

features can help to recognize information in small areas.

SSD [40], DSSD [15], and MS-CNN [7] create a feature

pyramid and assign proposals to appropriate feature levels

for inference. HyperNet [26], ION [2] and Hypercolumn

[17] concatenate features from different levels. FCN [42]

and U-Net [51] fused features from lower layers through

skip-connections. FPN [32], RetinaNet [33], TDM [53] and

PANet [39] augmented a top-down path or a bottom-up path

for object detection. TridentNet [29] further constructs a

parallel multi-branch feature architecture with different re-

ceptive fields.

3. The Proposed Approach

3.1. Motivation and Overview

Modern object detection systems can be decoupled into

four components: ImageNet pretrained backbone, feature

fusion neck, region proposal network (RPN), and RCNN

head for classification and bbox regression.

ImageNet pretrained backbone. The common back-

bone can be VGG [54], ResNet [20], and ResNeXt [57].

Most of the detection models require initialization of back-

bone from the ImageNet [52] pretrained models during

training. Although He et al. [18] have shown that Ima-

geNet pretraining is not indispensable for detection, a much

longer training (x11) is required as a compensation for no

pretraining, which makes it computationally infeasible for

us to directly search on the backbone.

Feature fusion neck. Features from different layers

(usually a feature pyramid) are commonly used in object

detection to predict objects of various sizes. The feature

fusion neck aims at utilizing information from all feature

levels in the in-network feature hierarchy and conducting

feature fusion for better prediction. NAS can be naturally

implemented in this work for better feature fusion.

Region proposal network (RPN). RPN only exists in

two-stage detectors for generating multiple anchor propos-

als within a particular image. The design of RPN is quite

simple but effective. Therefore, in this paper we continue to

use this design and do not search for it.

RCNN head. This part aims at refining the object pro-

posal’s location and predicting final classification result.

However, handcrafting architecture is heavy and inefficient.

We use NAS here for better classification and localization

results.

We believe searching better architectures for the neck

and head are currently the most important issues in object

detection with no exploration in the community. Therefore,

we make the first attempt and propose an architecture search

framework consisting of two modules: Auto-fusion for neck

and Auto-head, which are specifically designed for detec-

tion as shown in Figure 1.

3.2. AutoFusion

Searching a better feature fusion. Generally speak-

ing, neurons in high layers strongly respond to entire ob-

jects while other neurons are more likely to be activated by

local textures and patterns. Taking FPN [32] as an exam-

ple, FPN’s neck augments a top-down path to propagate se-

mantically strong features to local textures and patterns and

enhances all features with reasonable classification capabil-

ity. PANet [39] further enhances the entire feature hierarchy

6651

SSD FPN

PANetAuto-fusion

…
search

Figure 2. Illustration of different designs of detection neck. SSD

[40] directly considers a feature pyramid structure to utilize the

feature hierarchy for detection. FPN [32] proposes a top-down

pathway to conduct feature fusion. PANet [39] further enhances

the entire feature hierarchy by bottom-up path augmentation. In-

stead of those handcrafted designs, our Auto-fusion tries to find

an optimal neck structure which can adapt to any detection dataset

and tasks. Auto-fusion’s search space can cover all connection pat-

terns described above, and it tries to seek a better fusion process

through automatic neural architecture search. Links in the dashed

box at the top right represent the equivalent connection patterns

under our search space. It can be found that our search space is

general enough to cover SSD, FPN, and PANet.

with accurate localization signals in lower layers by bottom-

up path augmentation, which shortens the information path

between lower layers and the topmost features. A compar-

ison of different kinds of necks can be found in Figure 2.

To cover all the connection patterns, we propose an Auto-

fusion module with a fully connected search space. On the

other hand, TridentNet [29] adapts different dilated convo-

lutions on each feature level for assigning proper receptive

fields. Thus various dilated convolutions operations are in-

cluded in our Auto-fusion.

Search space and architecture. Conventionally, we de-

fine that layers producing feature maps with the same spa-

tial sizes are in the same network stage while each feature

level corresponds to the output of each stage. Here, we take

ResNet [20] as an example and use {P 0

1
, P 0

2
, P 0

3
, P 0

4
} to

denote feature levels generated by the backbone. From P1

to P4, the spatial size is gradually down-sampled with fac-

tor 2. We use {P l
1
, P l

2
, P l

3
, P l

4
} to denote newly generated

feature maps after l layers.

Among various neck architectures, we notice two prin-

ciples that are consistent: the output scale of feature P l
i re-

mains unchanged as the input feature map P 0

i ; P l
i is up-

sampled or downsampled to the next layer with a certain

operation. Following these common practices, we propose

the following neck search space as shown in Figure 3a. Our

Auto-fusion consists of L layers with {P l−1

1
, ... , P l−1

i }
as input features of the lth layer. For each pair of input

jth level feature P l−1

j and output ith level feature P l
i in

the lth layer, links with different operations are considered:

P l
i = Oi→j(P

l−1

j), where O(.) ∈ ON is an operation,

l = 1, 2, ..., L. The set of possible operation types ON con-

sists of the following operators:

• no connection (none) • 5×5 dilated conv with rate 2

• skip connection (identity) • 5×5 dilated conv with rate 3

• 3×3 dilated conv with rate 2 • 3×3 depthwise-separable conv

• 3×3 dilated conv with rate 3 • 5×5 depthwise-separable conv

Four kinds of dilated convolutions are considered since

the spatial-awareness and receptive field are crucial for fea-

ture fusion. Finally, P l
i is upsampled/downsampled to the

corresponding target resolution of the lth level.

We reuse the continuous relaxation by adding an archi-

tecture parameter α as described in [38]. We approximate

each Ol
i→j with its continuous relaxation Ôl

i→j , which is

defined as:

Ôi→j(P
l−1

j) =
∑

Ok∈ON

αkl
i→jO

kl
i→j(P

l−1

j)

where
∑|ON |

k=1
αkl
i→j = 1, and αkl

i→j ≥ 0.
In other words, αk

i→j are normalized scalars associated

with each operator O(.) ∈ ON , which can be easily im-

plemented as a softmax function. Our goal is then to find

a good path for each layer to fuse the features in the neck.

In Figure 2, it can be found that our search space is general

enough to cover many popular designs for the necks such as

SSD [40], FPN [32] and PANet [39].

Decoding architectures from α. For each set of αkl
i→j

we can choose the most likely operator by taking the

argmax(αkl
i→j). Then the neck is reconstructed by the se-

lected operation. Finally, the whole model is fully trained

to report the final performance.

3.2.1 Model Extension on One-stage Detector

One stage detectors such as SSD [40] and RetinaNet [33]

also consider a feature pyramid structure to predict bound-

ing box and classification on different resolutions of fea-

ture level. For example, based on the backbone of VGG16,

SSD512 considers a feature pyramid structure with 7 fea-

ture levels. RetinaNet uses a FPN neck based on ResNet.

Thus, our Auto-fusion can be naturally implemented on the

multi-level feature structure even on the one-stage detector

and helps to find a better feature fusion for the detection task

on a particular dataset. Experiments of model extension on

SSD can be found in Section 4.2.

3.3. AutoHead

Searching a better structure for classification and

bbox regression. Given the extracted feature for each re-

gion proposal, RCNN head aims to predict final classifica-

6652

…

…

outputinput

search space

none

identity

dilated

conv1x1

Weighted	sum

(a) Auto-fusion layer

… …

…

…

…

search space

none

conv

dilated

conv1x1

𝐻"
#

𝐻"
$

𝐻"
%

𝐻"
&

𝐻"𝐻"'#𝐻"'$ 𝐻"𝐻"'#

Output	of	𝑚th cell	𝐻" Weighted sum

C

C Concatenate

(b) Auto-head cell

Figure 3. Illustration of our search space. (a) Each layer of Auto-

fusion consists of a series of fully connected links between all fea-

ture levels. Each link is composed of a conv1x1 followed by a

group of parallel operators in ON . (b) Auto-head cell consists of

7 nodes (2 input nodes, 4 intermediate nodes, and 1 output node).

Analogous links are designed between nodes.

tion result and refine the proposal’s location. Typical two-

stage detectors suffer from a heavy head [30]. For exam-

ple, for Faster-RCNN [50], a complete block of conv5 x of

the ResNet is implemented here. For FPN [32], it uses two

shared fully connected layers (34% parameters of the whole

FPN). It is time-consuming here in terms of per-region pre-

diction and even gets worse when a large number of propos-

als are utilized. In order to design an efficient and accurate

head, we propose our Auto-head module for fast adaptation

on any dataset with better classification and localization.

Search space. We consider a split-transform-merge

paradigm for designing the search space in Auto-head as

shown in Figure 3b. Following [38, 45, 64], we consider M

convolutional cells of 7 nodes stacked to form the head. For

the mth cell, the input nodes i.e. the first and second nodes

are set equal to the outputs of the (m−2)th cell and the (m−
1)th cell, and the output node is the depth-wise concatena-

tion of all the intermediate nodes {H1

m, H2

m, H3

m, H4

m}. To

allow a more flexible search space, our setup further relaxes

the search space to allow different structure of each cell (e.g.

different architecture parameter βm for each cell). Unlike

[38], we do not have reduction cell since the input spatial

resolution is already very small (e.g. 7x7 for FPN). For the

set of possible operations OH, we further add 3x3 conv and

5x5 conv to allow fully utilization of extracted features of

ROIs and delete dilated conv with rate 3 because dilated

conv is not useful here in small spatial resolution.

3.4. Optimization

Using the continuous relaxation allows the architecture

parameters α and β to control the connection strength

among all operations. Therefore the architecture can be op-

timized jointly with the network parameters efficiently us-

ing stochastic gradient descent. For fast training, we adopt

the first-order approximation in [38] and randomly parti-

tion the training data into two disjoint sets with the same

size: trainA and trainB. The optimization alternates be-

tween these two steps until converge: update network pa-

rameters w by ∇wLtrainA(w,α, β); update architecture pa-

rameters α, β by ∇wLtrainB(w,α, β). The loss function L
consists of 5 parts: localization losses for RPN and RCNN-

head, classification losses for RPN and RCNN-head, and

the resource constraint C(α, β).

3.5. Resource Constraint

For feasible employment of the detection network, we

consider adding a constrain on the computational cost to

regularize the searching progress. Directly estimating the

forwarding time of the whole network is not feasible since

the forwarding time is not an explicit differentiable func-

tion of the architecture parameters. In this paper, we con-

sider three indices for C(α, β): 1) the parameter size; 2) the

number of float-point operations (FLOPs); 3) the memory

access cost (MAC). We further consider MAC since MAC

can distinguish identity and none.

Then the resource constraint can be added as a regular-

izer in the objective function:

L(w,α, β) = Lmodel(w,α, β) + λC(α, β)

where C(α, β) is the resource constraint associated with

architecture parameters α, β. Since C(α, β) can be decom-

posed to each operation and it is linear in terms of all soft-

max architecture parameters α, β:

C(α, β) =
∑

i,j,k,l

α
kl
i→jC(Okl

i→j) +
∑

i,j,k

β
k
i→iC(Ok

i→j),

where C(Ok
i→j) is the computational cost of each oper-

ation with a sum of normalized parameter size, FLOPs and

MAC. Note that the C(α, β) is differentiable with respected

to α, β. Thus the resource constraint can be easily applied

in the current optimization.

4. Experiments

4.1. Architecture Search Implementation Details

We consider a total of L = 2 layers and M = 2 cells

for searching the neck and head in the network. The Auto-

fusion search space has 7.9× 1028 unique paths, and Auto-

head has 1.9 × 1025. Note that this search space is larger

than DARTS [38] since we do not use fixed cell.

ResNet-50 [20] pre-trained on ImageNet [52] is used as

our backbone network. For Auto-fusion, the number of out-

put channels of each feature level is 256 during searching

and training. Max pooling/Bilinear upsampling is used to

reduce/increase spatial size between levels. For Auto-head,

6653

method
Search Params Params Params

mAP AP50 AP75 APS APM APL
On (neck)/M (head)/M (total)/M

FPN - 3.34 14.31 41.76 38.6 60.4 42.0 23.7 42.4 49.2

Auto-fusionS COCO 1.39 14.31 39.8 39.3 61.7 42.5 24.9 43.5 50

Auto-fusionM COCO 1.61 14.31 40.02 39.6 61.9 42.8 24.6 44.0 50.3

Auto-fusionL COCO 1.83 14.31 40.24 39.7 62.0 42.9 25.7 43.8 50.4

Auto-headS COCO 3.34 2.42 29.87 39.1 59.9 42.6 23.2 43.3 49.1

Auto-headM COCO 3.34 6.93 34.37 39.9 60.5 43.4 25.6 44.2 50.2

Auto-headL COCO 3.34 6.93 34.37 40.2 60.6 44.2 25.3 44.0 51.2

Auto-FPN COCO 1.61−52% 6.93−52% 32.64−22% 40.5+1.9 61.5+1.1 43.8+1.8 25.6+1.9 44.9+2.5 51.0+1.8

Auto-FPN BDD 1.61 5.7 31.41 39.2 60.7 42.3 24.1 43.4 49.9

Auto-FPN VOC 1.83 5.39 31.32 38.9 60.4 41.9 23.3 43.0 49.6

Table 2. Comparison of mean Average Precision (mAP) and parameter size on COCO (minval). The backbones are ResNet-50.

the output of each cell has 512 channels. The output of the

last cell goes through a global average pooling to become

a vector and then fed into the classification and bbox re-

gression. Adaptive feature pooling is applied as [39]. Batch

normalization is not used in both modules during searching.

To evaluate the our methods on different domains, we

conduct architecture search on the PASCAL VOC [14],

COCO [34] and BDD [60] for detection. We conduct all

experiments using Pytorch [44, 10], 8 V100 cards on a sin-

gle server. During searching, we augment with flipped im-

ages and multi-scaling (pixel size={400 ∼ 800}). We ran-

domly select half of the images in training set as trainA, and

the other half as trainB. During searching and training, the

batch size is 2. When learning model parameters, SGD opti-

mizer with initial learning rate 0.02 is used, cosine learning

rate 0.02 to 0.001, momentum 0.9 and 10−4 as weight de-

cay. For learning the architecture parameters, we use Adam

optimizer [25] with learning rate 0.003 and weight decay

0.001. The architecture searching is conducted for a total of

24 epochs for COCO and BDD and 36 for VOC. We also

tried longer epochs, but did not observe benefit. We begin

optimizing architecture parameters after the 1/3 of the total

epochs. Each module is searched sequentially due to the

GPU memory constraint. Our final model Auto-FPN is the

optimal combination of the searched architecture of Auto-

fusion and Auto-head. It takes about 11 hours for PASCAL

VOC, 2 days for COCO and 1 day for BDD to complete

searching of each module. We consider three settings of λ

for the resource constraints for our model (small: λ = 0.2,

middle: 0.02, big: 0.002, and half size for VOC).

Figure 4 visualizes an example of the neck (left) and

head architecture (right) found by our Auto-FPN on COCO

with middle resource constraint. For the optimal neck ar-

chitecture, the information of each feature level densely

spreads to other feature levels with identity and dilated con-

volution with rates 2 and 3, suggesting the importance of

large receptive fields. For the optimal head architecture,

Auto-head found a structure consisting of conv5x5 and al-

lowed interaction between intermediate nodes with fully

P_{0}_1

P_{1}_1

identity

P_{1}_2

P_{1}_3

P_{1}_4

identity

P_{2}_1

identity

P_{2}_2

dil_conv_5x5_r3

P_{2}_3

identity

P_{2}_4

identity

P_{0}_2

identity

identity

identity

identity

identity

identity

identity

identity

P_{0}_3

identity

identity

identity

identity

identity

identity

identity

identity

P_{0}_4

dil_conv_5x5_r3

dil_conv_5x5_r3

identity

dil_conv_5x5_r2
dil_conv_5x5_r3

H_{0}

0

conv_5x5

H_{0}
conv_5x5

1
conv_5x5

2

conv_5x5

conv_5x5

conv_5x5

3
conv_5x5

H_{1}

conv_5x5

H_{0}

0
conv_5x5

1conv_5x5

2
conv_5x5

3

conv_5x5

H_{1} conv_5x5

conv_5x5

H_{2}conv_5x5

conv_5x5

Figure 4. Example of the neck (left) architecture and head archi-

tecture (right) found by our Auto-FPN on COCO.

utilization of extracted features. More structures found on

different datasets and λ are in the supplementary material.

4.2. Object Detection Results

We first search the architecture and then evaluate the per-

formance on PASCAL VOC [14], COCO [34] and BDD

[60]. Furthermore, we adapt the searched architecture on

two new datasets: Visual Genome [27] and ADE [62] for

testing the adaptation of new domains. Instead of picking

the best performance with repeated running as DARTS [38]

(4 times) and Auto-deeplab [35] (10 times), we report the

performance of running only once.

After identifying the optimal architecture, stochastic gra-

dient descent (SGD) is performed to train the full model

on 8 GPUs with 2 images on each GPU. The initial learn-

ing rate is 0.02, and reduces two times (×0.1) during fine-

tuning; 10−4 as weight decay; 0.9 as momentum. For

all the datasets, we train 24 epochs. During training,

we augment with flipped images and multi-scaling (pixel

size={400 ∼ 1300}). During testing, pixel size=800 is used

(VOC: 600). For evaluation, we adopt the metrics from

COCO detection evaluation criteria [34] which is mean Av-

erage Precision (mAP) across IoU thresholds from 0.5 to

0.95 and Average Recall (AR) with different scales.

PASCAL VOC (VOC) [14] contains 20 object classes.

For PASCAL VOC, training is performed on the union of

VOC 2007 trainval and VOC 2012 trainval (10K images)

6654

Dataset method
Search Params Params Params

mAP
On (neck)/M (head)/M (total)/M

P
A

S
C

A
L

V
O

C

FPN - 3.34 14.00 41.44 79.7

Auto-fusionS VOC 1.54 14.00 39.65 80.7

Auto-fusionM VOC 1.75 14.00 39.86 82.2

Auto-fusionL VOC 1.83 14.00 39.93 82.7

Auto-headS VOC 3.34 2.54 29.98 80.5

Auto-headM VOC 3.34 5.24 32.69 81.3

Auto-headL VOC 3.34 5.77 33.21 81.2

Auto-FPN VOC 1.83−45% 5.24−63% 31.17−25% 81.8+2.1

Auto-FPN COCO 1.61 6.77 32.49 81.3

Auto-FPN BDD 1.61 5.54 31.26 81.4

B
D

D

FPN - 3.34 13.95 41.39 33.0

Auto-fusionS BDD 1.32 13.95 39.37 33.8

Auto-fusionM BDD 1.61 13.95 39.66 33.8

Auto-fusionL BDD 2.04 13.95 40.09 33.9

Auto-headS BDD 3.34 1.44 28.88 33.8

Auto-headM BDD 3.34 5.52 32.96 34.0

Auto-headL BDD 3.34 6.34 33.78 33.9

Auto-FPN BDD 1.61−52% 5.52−60% 31.23−25% 33.9+0.9

Auto-FPN COCO 1.61 6.75 32.46 33.7

Auto-FPN VOC 1.83 5.21 31.14 33.3

Table 3. Comparison of mean Average Precision (mAP) on PAS-

CAL VOC and BDD. Auto-FPN is the combination of two mod-

ules. The backbones of all the models are ResNet-50.

and evaluation is on VOC 2007 test (4.9K images). We

only report mAP scores using IoU at 0.5. COCO [34]

contains 80 object classes. COCO 2017 contains 118k im-

ages for training, 5k for evaluation. Berkeley Deep Drive

(BDD) [60] is an autonomous driving dataset with 10 object

classes. BDD contains about 70K images for training and

10K for evaluation. For Visual Genome (VG) [27], we use

the synsets [52] instead of the raw names of the categories

due to inconsistent label annotations, following [22, 12, 23].

We consider 1000 most frequent classes. We split the re-

maining 92K images with objects on these class sets into

88K and 5K for training and testing, following [23]. For

ADE[62], we use 20K images for training and 1K images

for testing with 445 categories, following [12, 23].
Comparison with the state-of-the-art. Tables 2 and 3

show the results of the architecture searched from COCO,

VOC and BDD by our methods. Auto-FPN achieves signif-

icant gains than the baseline FPN with less parameters on

all the three detection benchmarks. Auto-FPN achieves an

overall AP of 40.5% compared to 38.6% by FPN on COCO,

81.8% compared to 79.7% on VOC, and 33.9% compared

to 33.0% on ADE, respectively. In terms of parameter size,

the searched architecture is about 40%-50% smaller in neck

and 50%-60% smaller in head. It can also be found that

searching directly on the target dataset would be better than

transferring architecture searched from other dataset.

To compare with state-of-the-art methods, we also im-

% Method backbone mAP

C
O

C
O

Faster-RCNN [50] ResNet-101 34.9

FPN [32] ResNet-101 40.7

Relation Network [21] ResNet-101 38.8

RetinaNet [33] ResNet-101 39.1

DetNet [31] DetNet-59 40.2

GA-Faster RCNN [56] ResNet-50 39.8

PANet [39] ResNet-50 39.8

TridentNet [29] ResNet-101 42.0

Auto-FPN ResNet-50 40.5

Auto-FPN ResNet-101 42.5+1.8

Auto-FPN ResNeXt-101 44.3

Table 4. Comparison of mAP of the single-model on COCO.

Data Method
Search Params Params Params

mAP
From (neck)/M (head)/M (total)/M

V
G

FPN - 3.34 19.03 46.47 7.0

Auto-FPN VOC 1.83 7.75 33.68 7.0

Auto-FPN COCO 1.61−52% 9.29−51% 35.00−25% 7.2+0.2

Auto-FPN BDD 1.61 8.06 33.77 7.0

A
D

E

FPN - 3.34 16.18 43.63 10.5

Auto-FPN VOC 1.83 6.33 32.26 12.0

Auto-FPN COCO 1.61−52% 7.86−51% 33.58−28% 12.1+1.6

Auto-FPN BDD 1.61 6.63 32.35 11.8

Table 5. Transferability of Auto-FPN on Visual Genome (VG) and

ADE. We transferred the searched architecture from VOC, COCO

and BDD to the new dataset and evaluated the performance on VG

and ADE. Backbones of all the models are ResNet-50.

plement different backbones with the searched architecture

from COCO in Table 4. We report the accuracy numbers

of the competing methods directly from the original paper

except FPN. Our implementation of the baseline FPN with

ResNet-101 has higher accuracy than that in original works

(40.7% versus 36.2% [32]). As can be seen, Auto-FPN per-

forms 4.2% better than the baseline FPN with less param-

eters and all the other hand-crafted competitors with same

backbone. Note that most competitive models are bigger

than FPN. The qualitative results can be found in Figure 5.

Architecture Transfer: VG and ADE. To evaluate the

domain transferability of our Auto-FPN, we transfer the

searched architecture from the above three datasets to VG

and ADE, as shown in Table 5. With the architecture found

in COCO, our method boosts 0.2% mAP for VG and 1.6%

for ADE with about 25% less parameters. The better trans-

ferability of the model found in COCO may be due to more

training data and categories in COCO.

Model extension: Auto-fusion for SSD. To evaluate our

model extension, we implement our Auto-fusion module on

the top of SSD512 [40] and search on the VOC and COCO.

The training settings follow SSD512 [40]. We obtain a

smaller model with better performance (increase 0.1% mAP

on VOC and 2.5% on COCO). Feature fusion seems to be

important for COCO and our model with neck is even 12%

6655

F
P

N

toilet

sink

person

chaircouch

refrigerator

refrigerator

person

bird
bird

birdbird
backpack backpack

handbag

chair

chaircouch

dining_table

personcar carcar carcar car

clock
A

u
to

-F
P

N

cupcuptoilet

sink
sink

sink

person

couch

person

bird
bird

bird

handbag

backpack backpack
handbag

cup

chair

chair

bed

dining_table

book

car carcarcar
fire_hydrantfire_hydrant

clock

Figure 5. Qualitative result comparison on COCO between FPN and Auto-FPN. The backbones are ResNet-50.

Data Method
Search Params Params

mAP
On (neck&head)/M (total)/M

V
O

C

SSD [40] - 3.69 27.19 79.8

Auto-fusionS VOC 3.32 26.82 79.8

Auto-fusionM VOC 3.54−4% 27.04−0.5% 79.9+0.1

Auto-fusionL VOC 6.92 34.43 79.7

C
O

C
O

SSD-VGG19 [40] - 12.54 36.04 29.3

SSD-ResNet101 [15] - - - 31.2

Auto-fusionS COCO 8.30 31.80 30.8

Auto-fusionM COCO 8.37−33% 31.88−12% 31.8+2.5

Auto-fusionL COCO 9.86 33.36 31.6

Table 6. Auto-fusion for one-stage detector SSD on VOC and

COCO. We further apply our Auto-fusion on the top of baseline

method SSD512. Backbones of Auto-fusion are VGG19.

smaller than SSD since the output channel is 256 (smaller

than the output in SSD512).

4.3. Comparison of different training strategies and
more NAS baselines

We found that training a good gradient based NAS is not

very easy. Here we share our exploration of tricks and dif-

ferent training strategies as shown in Table 7: 1) Starting

optimizing architecture parameters in the middle of train-

ing can improve the results by 1%; 2) Freezing the back-

bone parameters during searching not only accelerates the

training but also improves the performance; 3) Searching

with BN will decrease the performance by 1.7%; 4) Dur-

ing searching for the head, loading the pretrained neck will

boost the performance by 2.9%; 5) Without resource con-

straints, our method becomes larger with only a small im-

provement in neck but no improvement in head.

We further added more NAS baselines to validate

the performance under current search space: a) Random

Search: We randomly sample architectures from the cur-

rent search space and conduct a fully train for each archi-

tecture under the same training setting in our experiments;

b) Evolutionary Algorithm: EA search is implemented with

an early-stop strategy (due to limited time, 6 epochs for

VOC and 4 epochs for COCO) and the best architecture is

selected to perform a final fully train; c) SNAS[58]: We

Training method
Auto-fusion Auto-head

params mAP params mAP

baseline 1.75M 82.2 5.24M 81.3

w/o step training 1.97M 81.7 5.47M 80.7

w/o frozen backbone 2.15M 65.2 1.10M 78.2

w BN 2.08M 80.5 2.82M 78.3

w/o pretrained neck - - 1.42M 78.4

w/o resource constraint 1.9M 82.6 6.51M 80.9

Table 7. Comparison of using different training strategies during

searching on VOC. “Step training” is starting optimizing architec-

ture parameters in the middle of searching.

Search No. arch Search time Average/Best mAP

Method searched (GPU days) of searched arch

P
A

S
C

A
L

V
O

C Random 20 ˜ 18.3 76.4/80.3

Evolutionary 60 ˜ 20.0 81.1

SNAS[58] 1 ˜ 0.8 81.0

Auto-FPN 1 ˜ 0.8 81.8

M
S

-C
O

C
O Random 10 ˜ 130.0 36.4/38.2

Evolutionary 30 ˜ 68.3 38.6

SNAS[58] 1 ˜ 16.0 37.9

Auto-FPN 1 ˜ 16.0 40.5

Table 8. More NAS baselines upon current search space on VOC

and COCO.

adopt the new architecture parameter update according to

[58]. The final trained results are showed in Table 8. Com-

pared to other NAS baselines, our method can find better

architectures with less time.

5. Conclusion

In this work, we propose Auto-FPN to search for an effi-

cient and better architecture for two important components

of the detection system which is one of the first attempts to

extend NAS to object detection. The search space is spe-

cially designed for detection and flexible enough to cover

many popular designs of detectors. Auto-FPN outperforms

the state-of-the- art detection methods but with fewer pa-

rameters.

6656

References

[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh

Raskar. Designing neural network architectures using rein-

forcement learning. arXiv preprint arXiv:1611.02167, 2016.

2

[2] Sean Bell, C Lawrence Zitnick, Kavita Bala, and Ross Gir-

shick. Inside-outside net: Detecting objects in context with

skip pooling and recurrent neural networks. In CVPR, 2016.

3

[3] Chandrasekhar Bhagavatula, Chenchen Zhu, Khoa Luu, and

Marios Savvides. Faster than real-time facial alignment: A

3d spatial transformer network approach in unconstrained

poses. In ICCV, 2017. 1

[4] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun

Wang. Efficient architecture search by network transforma-

tion. In AAAI, 2018. 2

[5] Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and

Yong Yu. Path-level network transformation for efficient ar-

chitecture search. 2018. 2

[6] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. In

ICLR, 2019. 2

[7] Zhaowei Cai, Quanfu Fan, Rogerio S Feris, and Nuno Vas-

concelos. A unified multi-scale deep convolutional neural

network for fast object detection. In ECCV, 2016. 3

[8] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving

into high quality object detection. In CVPR, 2018. 1

[9] Florian Chabot, Mohamed Chaouch, Jaonary Rabarisoa, Ce-

line Teuliere, and Thierry Chateau. Deep manta: A coarse-

to-fine many-task network for joint 2d and 3d vehicle analy-

sis from monocular image. In CVPR, 2017. 1

[10] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaox-

iao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping

Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin.

mmdetection. https://github.com/open-mmlab/

mmdetection, 2018. 6

[11] Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George

Papandreou, Barret Zoph, Florian Schroff, Hartwig Adam,

and Jon Shlens. Searching for efficient multi-scale architec-

tures for dense image prediction. In NIPS, 2018. 1, 2

[12] Xinlei Chen, Li-Jia Li, Li Fei-Fei, and Abhinav Gupta. Iter-

ative visual reasoning beyond convolutions. In CVPR, 2018.

7

[13] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object

detection via region-based fully convolutional networks. In

NIPS, 2016. 1, 2

[14] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The pascal visual object classes (voc)

challenge. IJCV, 88(2):303–338, 2010. 2, 6

[15] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi,

and Alexander C Berg. Dssd: Deconvolutional single shot

detector. In ICCV, 2017. 3, 8

[16] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. Nas-fpn:

Learning scalable feature pyramid architecture for object de-

tection. In CVPR, 2019. 3

[17] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Ji-

tendra Malik. Hypercolumns for object segmentation and

fine-grained localization. In CVPR, 2015. 3

[18] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking im-

agenet pre-training. arXiv preprint arXiv:1811.08883, 2018.

1, 3

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Spatial pyramid pooling in deep convolutional networks for

visual recognition. TPAMI, 37(9):1904–1916, 2015. 1

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 1, 3, 4, 5

[21] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen

Wei. Relation networks for object detection. In CVPR, 2018.

7

[22] Ronghang Hu, Piotr DollÃ¡r, Kaiming He, Trevor Darrell,

and Ross Girshick. Learning to segment every thing. In

CVPR, 2018. 7

[23] ChenHan Jiang, Hang Xu, Xiaodan Liang, and Liang Lin.

Hybrid knowledge routed modules for large-scale object de-

tection. In NIPS. 2018. 7

[24] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever.

An empirical exploration of recurrent network architectures.

In ICML, 2015. 2

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[26] Tao Kong, Anbang Yao, Yurong Chen, and Fuchun Sun.

Hypernet: Towards accurate region proposal generation and

joint object detection. In CVPR, 2016. 3

[27] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,

Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-

tidis, Li-Jia Li, David A Shamma, Michael Bernstein, and

Li Fei-Fei. Visual genome: Connecting language and vision

using crowdsourced dense image annotations. IJCV, 2016.

2, 6, 7

[28] Bo Li, Tianfu Wu, Lun Zhang, and Rufeng Chu. Auto-

context r-cnn. arXiv preprint arXiv:1807.02842, 2018. 1

[29] Yanghao Li, Yuntao Chen, Naiyan Wang, and Zhaoxiang

Zhang. Scale-aware trident networks for object detection.

arXiv preprint arXiv:1901.01892, 2019. 1, 2, 3, 4, 7

[30] Zeming Li, Chao Peng, Gang Yu, Xiangyu Zhang, Yangdong

Deng, and Jian Sun. Light-head r-cnn: In defense of two-

stage object detector. In CVPR, 2017. 1, 2, 5

[31] Zeming Li, Chao Peng, Gang Yu, Xiangyu Zhang, Yangdong

Deng, and Jian Sun. Detnet: A backbone network for object

detection. In ECCV, 2018. 7

[32] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In CVPR, 2017. 1, 2, 3, 4, 5,

7

[33] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In ICCV,

2017. 1, 3, 4, 7

[34] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV, 2014. 2, 6, 7

6657

[35] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig

Adam, Wei Hua, Alan Yuille, and Li Fei-Fei. Auto-deeplab:

Hierarchical neural architecture search for semantic image

segmentation. arXiv preprint arXiv:1901.02985, 2019. 1, 2,

6

[36] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architecture

search. In ECCV, 2018. 1

[37] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha

Fernando, and Koray Kavukcuoglu. Hierarchical repre-

sentations for efficient architecture search. arXiv preprint

arXiv:1711.00436, 2017. 2

[38] Hanxiao Liu, Karen Simonyan, and Yiming Yang.

Darts: Differentiable architecture search. arXiv preprint

arXiv:1806.09055, 2018. 1, 2, 4, 5, 6

[39] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia.

Path aggregation network for instance segmentation. In

CVPR, 2018. 1, 2, 3, 4, 6, 7

[40] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In ECCV, 2016.

1, 2, 3, 4, 7, 8

[41] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning effi-

cient convolutional networks through network slimming. In

CVPR, 2017. 2

[42] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In

CVPR, 2015. 3

[43] Ping Luo, Yonglong Tian, Xiaogang Wang, and Xiaoou

Tang. Switchable deep network for pedestrian detection. In

CVPR, 2014. 1

[44] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. In NIPS Workshop, 2017. 6

[45] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. arXiv preprint arXiv:1802.01548, 2018. 1, 2, 5

[46] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,

Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey Ku-

rakin. Large-scale evolution of image classifiers. In ICML,

2017. 2

[47] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In CVPR, 2016. 1, 2

[48] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster,

stronger. In CVPR, 2017. 1

[49] Joseph Redmon and Ali Farhadi. Yolov3: An incremental

improvement. arXiv preprint arXiv:1804.02767, 2018. 1

[50] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In NIPS, 2015. 1, 2, 5, 7

[51] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In MICCAI, 2015. 3

[52] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. IJCV, 2015. 3, 5, 7

[53] Abhinav Shrivastava, Rahul Sukthankar, Jitendra Malik, and

Abhinav Gupta. Beyond skip connections: Top-down modu-

lation for object detection. arXiv preprint arXiv:1612.06851,

2016. 3

[54] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 1, 3

[55] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

and Quoc V Le. Mnasnet: Platform-aware neural architec-

ture search for mobile. arXiv preprint arXiv:1807.11626,

2018. 2

[56] Jiaqi Wang, Kai Chen, Shuo Yang, Chen Change Loy, and

Dahua Lin. Region proposal by guided anchoring. arXiv

preprint arXiv:1901.03278, 2019. 7

[57] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In CVPR, 2017. 1, 3

[58] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas:

stochastic neural architecture search. In ICLR, 2019. 2, 8

[59] Ke Yan, Mohammadhadi Bagheri, and Ronald M Summers.

3d context enhanced region-based convolutional neural net-

work for end-to-end lesion detection. In MICCAI, 2018. 1

[60] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike

Liao, Vashisht Madhavan, and Trevor Darrell. Bdd100k: A

diverse driving video database with scalable annotation tool-

ing. arXiv preprint arXiv:1805.04687, 2018. 2, 6, 7

[61] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-

Lin Liu. Practical block-wise neural network architecture

generation. In Proceedings of the CVPR, 2018. 2

[62] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela

Barriuso, and Antonio Torralba. Scene parsing through

ade20k dataset. In CVPR, 2017. 2, 6, 7

[63] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. In ICLR, 2017. 2

[64] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In CVPR, 2018. 1, 2, 5

6658

