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Abstract

Histopathology image analysis plays a critical role in

cancer diagnosis and treatment. To automatically segment

the cancerous regions, fully supervised segmentation algo-

rithms require labor-intensive and time-consuming labeling

at the pixel level. In this research, we propose CAMEL, a

weakly supervised learning framework for histopathology

image segmentation using only image-level labels. Using

multiple instance learning (MIL)-based label enrichment,

CAMEL splits the image into latticed instances and auto-

matically generates instance-level labels. After label en-

richment, the instance-level labels are further assigned to

the corresponding pixels, producing the approximate pixel-

level labels and making fully supervised training of seg-

mentation models possible. CAMEL achieves comparable

performance with the fully supervised approaches in both

instance-level classification and pixel-level segmentation on

CAMELYON16 and a colorectal adenoma dataset. More-

over, the generality of the automatic labeling methodology

may benefit future weakly supervised learning studies for

histopathology image analysis.

1. Introduction

Histopathology image analysis is the gold standard for

cancer detection and diagnosis. In recent years, the devel-

opment of deep neural network has achieved many break-

throughs in automatic histopathology image classification

and segmentation [15, 18, 19]. These methods highly de-

pend on the availability of a large number of pixel-level la-

bels, which are labor-intensive and time-consuming to ob-

∗Corresponding author.

tain.

To relieve the demand for theses fine-grained labels, peo-

ple have proposed many weakly supervised learning algo-

rithms only requiring coarse-grained labels at the image-

level [13, 25, 26]. However, due to the lack of sufficient

supervision information, the accuracy is much lower than

their fully supervised counterparts. One way to improve

the performance of weakly supervised learning algorithms

is to add more supervision constraints. For natural im-

ages, some studies [8, 14, 16] have proven the effective-

ness of adding bounding boxes or scribble information arti-

ficially in their weakly supervised learning process. CDWS-

MIL [13] has also shown the advantage of artificial area

constraints for weakly supervised histopathological seg-

mentation. However, it still takes much effort to obtain ar-

tificial constraints, especially in histopathology, where only

well-trained pathologists can distinguish the cancerous re-

gions from the normal ones. Therefore, automatically en-

riching labeling information instead of introducing artificial

constraints before building the segmentation model is cru-

cial for weakly supervised learning.

In this paper, we propose a weakly supervised learning

framework, CAMEL, for histopathology image segmenta-

tion using only image-level labels. CAMEL consists of

two steps: label enrichment and segmentation (Fig. 1). In-

stead of introducing more supervision constraints, CAMEL

splits the image into latticed instances and automatically

generates their instance-level labels in the label enrichment

step, which can be regarded as a solution for a weakly su-

pervised classification problem. In the label enrichment

step, we use a combined multiple instance learning (cMIL)

approach to construct a high-quality instance-level dataset

with instance-level labels from the original image-level

dataset. Then, we train a fully supervised classification
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Figure 1. System architecture of CAMEL. CAMEL consists of two basic steps: label enrichment and segmentation. M and m represent the

size of the image and the instance, respectively. N is the scale factor of cMIL where N =
M

m
.

model using this instance-level dataset. Once the model

is trained, we split the images in the original image-level

dataset into latticed instances and use this model to generate

their labels. After label enrichment, the instance-level la-

bels are directly assigned to their corresponding pixels, pro-

ducing the approximate pixel-level labels and making fully

supervised training of segmentation models possible. We

conducted our experiments on CAMELYON16 [1, 5] and

a colorectal adenoma dataset, the results of both instance-

level classification and pixel-level segmentation were com-

parable with their fully supervised counterparts.

The contributions of this paper can be summarized as

follows:

• We propose a weakly supervised learning framework,

CAMEL, for histopathology image segmentation us-

ing only image-level labels. CAMEL automatically

enriches supervision information of the image by gen-

erating the instance-level labels from the image-level

ones and achieves comparable performance with the

fully supervised baselines in both instance-level clas-

sification and pixel-level segmentation.

• To construct a high-quality instance-level dataset for

fully supervised learning, we introduce a cMIL ap-

proach which combines two complementary instance

selection criteria (Max-Max and Max-Min) in the data

preparation process to balance the data distribution in

the constructed dataset.

• To fully utilize the original image-level supervision in-

formation, we propose the cascade data enhancement

method and add image-level constraints to boost the

performance of CAMEL further.

• To facilitate the research in histopathol-

ogy field, our colorectal adenoma dataset

will be made publicly available at

https://github.com/ThoroughImages/CAMEL.

2. Related Work

2.1. Weakly Supervision in Computer Vision

In computer vision, people have proposed many weakly

supervised algorithms [3, 4, 9, 10, 12, 22, 23] for ob-

ject detection and semantic segmentation. However, in

histopathology image analysis scenarios, the difference of

morphological appearance between foreground (cancerous

region) and background (non-cancerous region) is less sig-

nificant [17] compared to what is usually observed in nat-

ural images. Moreover, the cancerous regions are discon-

nected, and their morphologies are usually various. There-

fore, the methods based on adversarial erasing [22] or seed

growing [4] may not be suitable.
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2.2. Weakly Supervision in Histopathology Image

2.2.1 Instance-Level Classification

MIL is widely applied in most weakly supervised method-

ologies [13, 25, 26]. However, despite the great success of

MIL, many solutions need pre-specified features [21, 26],

which require data specific prior knowledge and limit the

general applications. Instead of using pre-specified fea-

tures, Xu et al. [25] proposed to extract feature represen-

tations through a deep neural network automatically. How-

ever, the separation between feature engineering and MIL

complicates the training process. In cMIL, the training pro-

cedure is end-to-end without deliberate feature extraction

and feature learning, making the training process straight-

forward.

2.2.2 Pixel-Level Segmentation

Weakly supervised learning for histopathology image seg-

mentation [13] has been proposed in recent years. The best

performance was achieved by introducing artificial cancer

area constraints. In CAMEL, the label enrichment step gen-

erates instance-level labels with more detailed supervision

information and less labeling burden. In addition, compared

to CDWS-MIL [13], the classifier in CAMEL does not need

pre-training and thus increases the flexibility in choosing

the network architecture.

3. Method

3.1. Label Enrichment

Due to the lack of sufficient supervision information,

simply using the image-level labels is insufficient to train

the segmentation model. Therefore, before building the seg-

mentation model, we perform a label enrichment procedure

by generating instance-level labels from the original image-

level labels (see Fig. 1).

3.1.1 Combined Multiple Instance Learning

The effectiveness of CAMEL closely depends on the quality

of our automatically enriched instance-level labels, which

can also be regarded as a weakly supervised instance-level

classification problem with only image-level labels. Here,

we aim to transform this weakly supervised learning prob-

lem into a fully supervised instance-level classification one,

and benefit from many existing well-developed fully super-

vised learning methods.

We introduce a new solution called combined Multiple

Instance Learning (cMIL). The image is split into N × N

latticed instances with equal size. Here, we consider the

instances from the same image as in the same bag. In

cMIL, two MIL-based classifiers with different instance se-

lection criteria (Max-Max and Max-Min) are used to select

Figure 2. Training procedure of cMIL. M and m represent the size

of the image and the instance, respectively. N is the scale factor of

cMIL where N =
M

m
, here we require M to be divisible by m. We

first split the image into N ×N latticed instances with equal size.

The selected instance can be considered as the representative of

its corresponding image, therefore they own the same class label.

We train two MIL models separately using two instance selection

criteria (Max-Max and Max-Min).

Figure 3. Intuition behind two instance selection criteria named

Max-Max and Max-Min. Red and green circles represent the CA

and NC instances, respectively. We use triangles to represent the

selected instances, and circles with light colors to represent the

instances that are not selected. Each dotted line represents the de-

cision boundary of the classifier, which is trained with the selected

instances. Each ellipse represents an image (or a bag in MIL).

cMIL, which combines Max-Max and Max-Min, achieves a better

decision boundary.

instances to construct the instance-level dataset (Fig. 2).

The selected instance can be considered as the representa-

tive of its corresponding image, which determines the image

class (similar to the attention mechanism [24]).

If the image has a cancerous (CA) region, we can rea-

son that at least one instance is cancerous. On the other

hand, if the label of the image is non-cancerous (NC), all

the instances in it are non-cancerous. For both CA and NC

images, Max-Max selects the instance with maximum CA

response. As shown in Fig. 3(a) and (b), during the training
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stage, in NC region, the Max-Max criterion will select the

instance with maximum CA response, which has the high-

est similarity with CA, as the NC example. Therefore, the

model trained with these data would give a decision bound-

ary toward the CA direction, and this would lead to misclas-

sification of CA instances with lower responses (as shown

by light red circles). For example, CA instances with simi-

lar morphological appearances to NC may get misclassified.

Max-Min acts as a countermeasure that selects the instances

with the highest CA response for CA images and the in-

stances with the lowest response for NC images. As shown

in Fig. 3(c), Max-Min tends to have an opposite effect com-

pared to Max-Max. Therefore, in cMIL we combine these

two criteria to reduce the distribution deviation problem and

obtain a more balanced instance-level dataset to be used in

fully supervised learning (see Fig. 3(d)). It is worth not-

ing that, for NC images, although each instance is NC, we

only use the selected instances to avoid the data imbalance

problem.

We choose ResNet-50 [11] as the classifier. The two

MIL-based classifiers are trained separately under the same

configuration (Fig. 2): in the forward pass, we use the Max-

Max (or Max-Min for the other classifier) criterion to select

one instance from each bag based on their predictions, and

the prediction of the selected instance is regarded as the pre-

diction of the image. In the backprop, we use the cross en-

tropy loss between the image-level label and the prediction

of the selected instance to update the classifier’s parameters.

The loss function for each classifier is defined as follows:

Loss = −
∑

j

(yj log p̂j + (1− yj) log(1− p̂j)), (1)

where p̂j = Scriterion({f(bi)}), bi is instances in image

j, f is the classifier, Scriterion ∈ {Max-Max, Max-Min}.

Scriterion selects the target instance using the defined crite-

rion, yj is the image-level label.

For Max-Max criterion:

SMax−Max({f(bi)}) = max
i

{f(bi)}. (2)

For Max-Min criterion:

SMax−Min({f(bi)}) =

{

max
i

{f(bi)} if y = 1

min
i
{f(bi)} if y = 0

. (3)

After training, we again feed the same training data into

the two trained classifiers and select the instances under the

corresponding criterion, then the predictions are considered

as their labels. We combine the instances selected by the

two trained classifiers to construct the final fully supervised

instance-level dataset. Noted that we discard those poten-

tially confusing samples whose predicted labels are differ-

ent from their corresponding image-level labels.

Figure 4. Cascade data enhancement. Beside constructing the m×
m dataset using cMIL(N ) directly, we can also first construct an

intermediate m′ ×m
′ dataset using cMIL(N1), then construct the

final m×m dataset using cMIL(N2) in a cascade manner (N =

N1 ×N2).

3.1.2 Retrain and Relabel

Once the instance-level dataset is prepared, we are able to

train an instance classifier in a fully supervised manner. The

classifier we use in this step has the same architecture as

the classifier in cMIL (ResNet-50), we name this step as

retrain. Then, we split the original image into latticed in-

stances and relabel them using the trained instance-level

classification model (Fig. 1). For each image, we obtain

N2 high-quality instance labels from a single image-level

label.

3.2. Segmentation

With enriched supervision information, the instance-

level labels are directly assigned to the corresponding pix-

els, producing approximate pixel-level labels. Therefore,

we can train segmentation models in a fully supervised way

using well-developed architectures such as DeepLabv2 [6,

7] and U-Net [20]. To prevent the model from learning the

checkboard-like artifacts in the approximate labels, in the

training process, we perform data augmentation by feeding

smaller images that are randomly cropped from the original

training set and their corresponding masks into the segmen-

tation model.

3.3. Further Improvement

The granularity of the enriched labels is determined by

the scale factor N ; larger scale factor results in finer la-

bels. However, as a tradeoff, larger scale factor would lead

to severe image information loss. To tackle this issue, we

propose cascade data enhancement to recover the potential

loss and add image-level constraints to make better use of

the supervision information.

3.3.1 Cascade Data Enhancement

Each instance selection criterion only choose one instance

from the image to construct the instance-level dataset,

which only takes up a small portion of the image, resulting

in losing a considerable amount of image information from
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the original image-level dataset. In order to recover this in-

formation loss and increase data diversity in the instance-

level dataset, we further introduce the cascade data en-

hancement method to generate the instance-level dataset by

two concurrent routes (Fig. 4). Here, we use cMIL(N ) to

denote the cMIL with a scale factor of N . To derive la-

beled instances of a scale factor of N , we can either use

cMIL(N ) or cMIL(N1) and cMIL(N2) back-to-back where

N = N1 × N2. The two sources of data are combined be-

fore fed into the segmentation model.

3.3.2 Training with Image-Level Constraints

In order to maximize the utility of the original image-level

supervision information, in the retrain step, we can further

add the original image-level data as one additional input

source going through the classifier. As shown in Fig. 5,

the image-level constraint is imposed under Max-Max and

Max-Min criteria to the instance level, the total loss is de-

fined as the sum of the retrain loss and the constraint loss:

Loss = w1 · Lossconstrain + w2 · Lossretrain, (4)

where w1 and w2 are the weights of the two losses. We set

w1 = w2 in our experiments.

Lossconstrain = −
∑

Scriterion

(y log p̂+ (1− y) log(1− p̂)),

(5)

where p̂ = Scriterion({f(bi)}), bi represents the selected

instance, f is the image-level constrain route, Scriterion ∈
{Max-Max, Max-Min}, and y is the image-level label.

Lossretrain = −
∑

j

(yj log ŷj+(1−yj) log(1−ŷj)), (6)

where ŷj = g(nj), nj represents the input instance, g is the

retrain route, and yj is the instance-level label. Since two

routes share the same network, we have f ≡ g.

4. Experiments

4.1. Data Preparation

We conducted our experiments on CAMELYON16 [1,

5], a public dataset with 400 hematoxylin-eosin (H&E)

stained whole-slide images (WSIs) of lymph node sections.

In this research, same as CDWS-MIL [13], we regard the

1,280×1,280 patches at 20x magnification in the WSIs as

image-level data. The training set of CAMELYON16 con-

tains 240 WSIs (110 contain CA), which we split into 5,011

CA and 96,496 NC 1,280×1,280 patches, and we over-

sample the CA patches to match the number of NC ones.

Table 1. Instance-level classification performance of label enrich-

ment on CAMELYON16 test set.
320×320 (%) Sensitivity Specificity Accuracy

FSB320 90.0 97.4 94.5

Max-Max 56.9 98.1 81.9

Max-Min 82.0 82.6 82.3

Retrain (cMIL) 88.7 94.6 92.3

Retrain (constrained) 84.5 98.4 92.9

160×160 (%) Sensitivity Specificity Accuracy

FSB160 89.0 95.0 92.8

Max-Max 44.9 99.3 79.3

Max-Min 87.7 86.5 86.9

Retrain (cMIL) 85.5 90.1 88.4

Retrain (constrained) 75.2 98.5 89.9

Cascade 87.7 92.0 90.4

Cascade (constrained) 83.6 96.4 91.7

Besides, we have also constructed two other fully super-

vised training sets containing 320×320 and 160×160 in-

stances to help build the fully supervised baselines. The test

set includes 160 WSIs (49 contain CA), and we split and

select all the 3,392 1,280×1,280 CA patches, and then we

randomly sample NC patches to match the number ∗. The

1,280×1,280 patches are further split into sizes of 320×320

and 160×160 to test the models with corresponding input

sizes. The patches and the instances are labeled as CA if it

contains any cancerous region. Otherwise, the label is NC.

4.2. Implementation

We applied rotation, mirroring, and scaling (between

1.0x and 1.2x) at random to augment the training data.

All the models were implemented in TensorFlow [2] and

trained on 4 NVIDIA GTX1080Ti GPUs. Both instance

classifiers in cMIL and the retrain step were trained using

Adam optimizer with a fixed learning rate of 0.0001. In

cMIL, the batch size was set to 4 (one image-level patch

on each GPU). In the retrain step, the batch size was set

to 40 (ten instances on each GPU). During the segmenta-

tion stage, DeepLabv2 and U-Net were both trained using

Adam optimizer with a fixed learning rate of 0.001 and the

batch size of 24 (six images on each GPU). Due to the limi-

tation of the GPU resources, we used 640×640 images that

are randomly cropped from the original 1280×1280 train-

ing set and their corresponding masks to train the segmen-

tation models.

4.3. Performance of Label Enrichment

As Table 1 and Fig. 6 show, in accordance with Fig. 3,

models trained on data selected using Max-Max tends to

have relatively low sensitivity and high specificity. On the

contrary, Max-Min tends to help achieve relatively high sen-

sitivity and low specificity. With the data selected with the

∗We exclude Test 114 because of the duplicate labeling [15].
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Figure 5. Illustration of model training under image-level constraints. The supervision information from the original image-level data is

taken into consideration in the retrain step.

Figure 6. Instance-level classification results on CAMELYON16 test set. Compare to the ground truth, the model trained on the data

selected using Max-Max tends to predict less CA, and more CA using Max-Min. Retrain (cMIL) achieves a more reasonable trade-off and

better performance.

two criteria combined, the model can achieve a more rea-

sonable trade-off and better performance. By using the cas-

cade data enhancement method and adding the image-level

constraints, we further improve the model’s accuracy. To

compare the performance between our model and the fully

supervised baseline (FSB), we use the same classifier archi-

tecture (ResNet-50) for both models. On the 320×320 and

the 160×160 test sets, the instance classification accuracy

are comparable with the fully supervised baselines, which

are only 1.6% and 1.1% lower, respectively.

The improvement from cascade data enhancement shows

an effective way to recover from image information dilation

in constructing the fully supervised instance-level dataset

and suggests its potential for label enrichment on an even

finer granularity. It also implicates the robustness of cMIL

with different scale factors. The improvement from adding

the image-level constraints shows the benefit of combining

supervision information of image-level and instance-level.

We further verify the instance-level classification perfor-

mance of our best models on the 320×320 and 160×160

training sets (Table 2), where they achieve 95.5% and

94.6% accuracies, respectively. After label enrichment,

CAMEL successfully enriches the supervision information

from single image-level label to N2 instance-level granu-

larity for the images in the original image-level dataset with

high quality.
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Table 2. Quality of automatically enriched instance-level labels for

the original image-level dataset measured by the classification per-

formance on CAMELYON16 training sets.

N2 Sensitivity Specificity Accuracy

160×160 64 89.9 94.7 94.6

320×320 16 91.4 95.7 95.5

Figure 7. Pixel-level segmentation results (DeepLabv2) of

CAMEL and other methods on CAMELYON16 test set.

4.4. Performance of Segmentation

After label enrichment, the instance-level labels of the

training set are assigned to the corresponding pixels to pro-

duce approximate pixel-level labels. At this point, we can

train the segmentation model in a fully supervised manner.

We test the performance of DeepLabv2 with ResNet-34 [7]

and U-Net [20].

As given in Table 3, we use sensitivity, specificity, ac-

curacy, and intersection over union (IoU) to measure the

pixel-level segmentation performance. For comparison, the

performance of the fully supervised baseline pixel-level

FSB and the performance of the weakly supervised meth-

ods WILDCAT [9], DWS-MIL, and CDWS-MIL [13] are

also listed. WILDCAT is used for natural images in their

paper [9], and DWS-MIL and CDWS-MIL [13] are used

for histopathology image. Here, we add another baseline

model (image-level FSB) to show the importance of label

enrichment for segmentation performance. The image-level

FSB is trained with the data whose label is generated by di-

rectly assigning the image-level labels to the pixels, while

the pixel-level FSB is obtained using the original pixel-level

ground truth. CAMEL outperforms the image-level FSB,

WILDCAT, DWS-MIL, and CDWS-MIL, and is even com-

parable with the pixel-level FSB.

With the help of the efficient use of supervision informa-

tion, finer granularity brings with better segmentation per-

formance. Moreover, in the label enrichment step, the in-

stance pixels are labeled as CA if it contains any cancerous

region. This may lead to the over-labeling issue. As shown

in Fig. 7, smaller instance size alleviates this issue by con-

structing finer pixel-level labels, demonstrating the effec-

tiveness of finer labels and the potential of improvement for

label enrichment on an even finer granularity.

We further evaluate our models on the WSIs of CAME-

LYON16 test set. Fig. 8 shows some examples.

4.5. Generality of CAMEL

To evaluate the generality of CAMEL, we test CAMEL

on a colorectal adenoma dataset which contains 177 WSIs

(156 contain adenoma) gathered and labeled by pathologists

from the Department of Pathology, The Chinese PLA Gen-

eral Hospital. As Table 4 and Fig. 9 show, CAMEL con-

sistently achieves comparable performance against the fully

supervised baselines.

5. Conclusion

Computer-assisted diagnosis for histopathology image

can improve the accuracy and relieve the burden for pathol-

ogists at the same time. In this research, we present

a weakly supervised learning framework, CAMEL, for

histopathology image segmentation using only image-level

labels. CAMEL automatically enriches supervision infor-

mation from image-level to instance-level with high quality

and achieves comparable segmentation results with its fully

supervised counterparts. More importantly, the automatic

labeling methodology may generalize to other weakly su-

pervised learning studies for histopathology image analysis.

In CAMEL, the obtained instance-level labels are di-

rectly assigned to the corresponding pixels and used as

masks in the segmentation task, which may result in the

over-labeling issue. We will tackle this challenge using

mask boundary refinement [3, 4] in future work.
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Table 3. Pixel-level segmentation performance on CAMELYON16 test set.

DeepLabv2 (%) Sensitivity Specificity Accuracy F1-Score IoU

Pixel-Level FSB 87.9 99.1 95.3 92.6 86.3

Image-Level FSB 89.2 88.7 88.9 84.4 72.9

CAMEL (160) 92.7 95.7 94.7 92.1 85.4

CAMEL (320) 94.7 93.8 94.1 91.5 84.3

U-Net (%) Sensitivity Specificity Accuracy F1-Score IoU

Pixel-Level FSB 87.8 98.2 94.7 91.8 84.8

Image-Level FSB 95.5 82.1 86.6 82.8 70.6

CAMEL (160) 94.7 94.1 94.3 91.8 84.8

CAMEL (320) 94.7 94.0 94.2 91.7 84.7

Other Methods (%) Sensitivity Specificity Accuracy F1-Score IoU

WILDCAT (w/ ResNet-50) 69.6 93.8 85.7 76.6 62.0

DWS-MIL (w/ ResNet-50) 86.0 93.4 90.9 86.4 76.0

CDWS-MIL (w/ ResNet-50) 87.2 93.8 91.5 87.4 77.6

Figure 8. Some examples of instance-level classification and pixel-level segmentation (DeepLabv2) results on CAMELYON16 WSIs.

Table 4. Model performance on colorectal adenoma dataset.

Instance-level classification (%) Recall Precision Accuracy

FSB320 81.1 90.0 87.1

Retrain (cMIL) 84.9 81.0 83.8

FSB160 80.7 87.6 87.0

Retrain (cMIL) 80.9 85.1 86.0

Pixel-level segmentation (%) Recall Precision F1-Score

Pixel-Level FSB 86.1 89.0 87.5

CAMEL (160) 89.7 85.0 87.3

CAMEL (320) 95.4 78.5 86.1

61532001), Tsinghua Initiative Research Program (No.

20151080475), Shanghai Municipal Science and Technol-

ogy Major Project (No. 2018SHZDZX01) and ZJLab.

Figure 9. Pixel-level segmentation results (DeepLabv2) of

CAMEL on colorectal adenoma dataset.
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