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Abstract

We present DenseRaC, a novel end-to-end framework for

jointly estimating 3D human pose and body shape from a

monocular RGB image. Our two-step framework takes the

body pixel-to-surface correspondence map (i.e., IUV map)

as proxy representation and then performs estimation of pa-

rameterized human pose and shape. Specifically, given an

estimated IUV map, we develop a deep neural network opti-

mizing 3D body reconstruction losses and further integrat-

ing a render-and-compare scheme to minimize differences

between the input and the rendered output, i.e., dense body

landmarks, body part masks, and adversarial priors. To

boost learning, we further construct a large-scale synthetic

dataset (MOCA) utilizing web-crawled Mocap sequences,

3D scans and animations. The generated data covers diver-

sified camera views, human actions and body shapes, and

is paired with full ground truth. Our model jointly learns to

represent the 3D human body from hybrid datasets, mitigat-

ing the problem of unpaired training data. Our experiments

show that DenseRaC obtains superior performance against

state of the art on public benchmarks of various human-

related tasks.

1. Introduction

Though much progress has been made in human pose

estimation, body segmentation and action recognition, it re-

mains underexplored to leverage such estimations into the

3D world, due to the difficulty in data acquisition, ambigui-

ties from monocular inputs and nuisances in natural images

(e.g., illumination, occlusion, texture). Existing learning-

based methods [22, 39, 55] heavily rely on sparse 2D/3D

landmarks (i.e., skeleton joints), body part masks or silhou-

ettes. However, it is ambiguous to recover 3D human pose

and body shape from such limited information.

In this paper we propose DenseRaC, a new framework

for 3D human pose and body shape estimation from monoc-

ular RGB image, as illustrated in Fig. 2:

• The task is solved in a two-step framework, first by esti-

mating pixel-to-surface correspondences (i.e., IUV images)

from the RGB inputs, and then by leveraging the estimated

IUV images into 3D human pose and body shape.

• A parametric human pose and body shape representation

Figure 1. DenseRaC estimates 3D human poses and body shapes

given people-in-the-wild images. The proposed framework han-

dles scenarios with multiple people, all genders, and various cloth-

ing in real time. Here, we show results on Internet images [1].

is integrated into the forward pass and backward propaga-

tion, inspired by recent work [22, 39].

• An IUV image based dense render-and-compare scheme

is incorporated into the framework. We minimize 3D recon-

struction errors as well as discrepancies between inputs and

rendered images from estimated outputs.

We learn the proposed model with both unpaired and

paired data, compatible with different levels of supervi-

sions. The end-to-end training minimizes multiple losses

defined upon human pose and body shape jointly, including

parameter regression, 3D reconstruction, landmark repro-

jection, body part segmentation, as well as adversarial loss

on impossible configurations (see Sec. 3.3).

To boost learning, we further construct a large scale syn-

thetic dataset covering diversified human poses and body

shapes. The synthetic data is generated using web-crawled

3D animations and scanned all-gender body shapes for hu-

man studies, and rendered from various camera views (see

Sec. 4). Learning from synthetic data mitigates the prob-

lem of unpaired, partial paired, or inaccurately annotated

training data in popular public people-in-the-wild and Mo-

cap benchmarks, as well as improves the model robustness

against varied camera views and occlusions.

In our experiments, we evaluate DenseRaC on three

tasks: 3D pose estimation, semantic body segmentation and

3D body reconstruction. Qualitative and quantitative exper-

imental results show DenseRaC outperforms existing meth-

ods on both public benchmarks and the newly proposed syn-

thetic dataset (see Sec. 5).
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Figure 2. Illustration of DenseRaC. Our two-step framework uses pixel-to-surface correspondences of human body as the intermediate

representation, fed with data sources either from estimations on realistic images through DensePose-RCNN or rendered images on synthetic

3D humans. Given IUV images, we develop a deep neural network conducting parametric pose and shape regression and a differentiable

renderer performing render-and-compare. The proposed framework optimizes losses of 3D reconstruction and discrepancies between

inputs and rendered outputs by end-to-end learning.

To the best of our knowledge, this is the first end-to-end

framework introducing a pixel-to-surface correspondence

map as the intermediate representation and a corresponding

dense render-and-compare scheme for learning 3D human

pose and body shapes. We believe DenseRaC shows a great

potential for numerous real-world applications in surveil-

lance, entertainment, AR/VR, etc. Some featured results

are shown in Fig. 1.

2. Related Work

The proposed method is mainly related to researches in

three fields.

Monocular 3D pose estimation is a longstanding prob-

lem in computer vision. Current approaches train deep

networks from large-scale training sets to regress 3D hu-

man joint transformations [18, 27]. Deep neural net ar-

chitectures enable direct body location with pose predic-

tion, which is an advantage compared to traditional model-

based methods that require good initialization [4, 26]. Sev-

eral methods predict 3D pose directly given monocular

data [52, 41, 50, 38, 32, 16, 19, 47]. On the other hand,

many approaches lift 2D human poses [8, 5], used as inter-

mediate representation, and learn a model for 2D-3D pose

space mapping [61, 63, 62, 34, 9]. State of the art in this

track obtains fascinating performance on popular bench-

marks limited to laboratory instrumented environments, and

yet shows unsatisfactory results on in-the-wild images. An-

other common issue is that most existing methods do not in-

corporate a physically plausible human skeleton model and

lack constraints on the estimated results, which results in

extra post-processings for graphics related applications.

3D human body reconstruction aims at recovering full

3D meshes of the human body from single RGB images

or video sequences, rather than major 3D skeleton joints.

For example, Zuffi et al. [64] integrated both realistic body

model and part-based graphical models [58, 57, 59] for

jointly emphasizing graphics-like models of human body

shape and part-based human pose inference. In [30, 4, 26,

53], a skinned body model (SMPL) is used to formulate

body shape as a linear function of deformation basis (i.e.,

with blend shapes). In [51, 42, 22, 39], SMPL is consid-

ered as the parametric representation of 3D human body

and DNNs are developed to estimate such parameters end-

to-end. Guler et al. [13, 12] build a FCN for human shape

estimation by learning dense image-to-template correspon-

dences. Other work [7, 55, 20] focuses on reconstructing

3D body shapes using RGB or RGBD images and not di-

rectly estimates 3D human pose and body shapes. These

approaches are also suitable for multiple-view video cap-

ture setup [35, 54]. In this paper, we use a SMPL variant

as the parametric representation of 3D human body and fur-

ther develop a pixel-to-surface dense correspondence based

render-and-compare framework.

Learning from synthetic humans. Modeling 3D humans

in arbitrary scenes requires representative training sets. A

number of previous work has considered automatically gen-

erating data for assisting 3D models, e.g., upper body [40],

full-body silhouettes [2]. [14] artificially renders pedestri-

ans in a scene while leveraging camera parameters and ge-

ometrical layout, and further trains a scene-specific pedes-

trian detector. In [44], real 2D pose samples are reshaped by

adding small perturbations, and augmented with different

backgrounds. Rogez et al. [49], for a given 3D pose, com-

bines local image patches from several images with kine-

matic constraints to create a new synthetic image. Rahmani

et al. [46] fits synthetic 3D human models to Mocap skele-

tons and renders human poses from numerous virtual view-

points. Varol et al. [56] also generate a synthetic human

body dataset with random factors (e.g., pose, shape, tex-

ture, background, etc.). These datasets cannot solely serve
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Figure 3. Illustration of mapping from pixel to 3D surface. Our

framework estimates an IUV image and dense 3D landmarks from

an RGB input, whose pixels refer to 3D points on the body model.

to train models generalized to real data, due the gap between

synthesized and realistic images. In this paper, we propose

to use pixel-to-surface correspondence maps to bridge the

gap. The joint training on hybrid datasets is proved to be

effective in improving performance on realistic data. To our

best knowledge, we are the first to address joint human pose

and body shape estimation using such training modalities.

3. DenseRaC Framework
As illustrated in Fig. 2, the proposed framework esti-

mates 3D human poses and body shapes in two steps: first

obtaining pixel-to-surface correspondences (i.e., IUV im-

ages) and then leveraging the intermediate results IUV im-

ages into 3D surfaces. There are two sources of IUV in-

puts: i) estimations from RGB inputs using a pre-trained

DensePose-RCNN [12], and ii) rendered IUV images from

synthetic data.

Our framework employs a compact and expressive 3D

human body model, which is parameterized by 3D human

pose θ ∈ R
58×3, body shape β ∈ R

50, instead of directly

estimating 3D point clouds, voxels or depth maps. The 3D

human pose is represented as a tree structure, with 58 rela-

tive 3D rotations between parent and child joints while the

body shape is represented by 50 shape coefficients, as elab-

orated in Sec. 3.5.

3.1. Network Architecture

Given IUV inputs, we design a network architecture con-

sisting of three modules:

• A generator with a back-boned base network (i.e.,

ResNet-50 [15]) to extract expressive feature maps and a re-

gressor which takes the stretched feature maps (i.e., 2048D

feature vector) from the base network as inputs and esti-

mates 3D human body parameters [θ, β] and camera param-

eters α ∈ R
3 (i.e., 227D concatenated vector). The camera

model is assumed to be an orthographic projection, param-

eterized by scale factor f and camera axis (x, y). The re-

gressor is composed of 3 fully connected layers with 1024

nodes each. Inspired by [22], we consider the regressor to

model an iterative update ∆θ,β,α to the final output, starting

from the parameter mean [θ̄, β̄, ᾱ]. The weights are shared

across all three layers, simulating the recursive tree struc-

ture within 3D human pose.

• A differentiable renderer creates 2D projections of the

reconstructed 3D human body mesh, using the estimated

camera parameters (see Sec. 3.3). We implement a differ-

ential rasterizer which creates an IUV image suitable for

gradient flow. Following a render-and-compare scheme, we

define three losses to measure and minimize the differences

between the input IUV image and the rendered IUV image

from our model output.

• A discriminator to constrain impossible configurations

for unpaired data. We design two shallow networks with

two fully connected layers as a discriminator. One is used

for discriminating 3D human poses and the other one for

body shapes. The number of nodes for pose and shape in

sub-networks are set to 512 and 64, respectively.

3.2. IUV as Proxy Representation

As illustrated in Fig. 3, we utilize the IUV image as a

proxy representation. An IUV map, similarly to UV map

in graphics, defines pixel-to-surface correspondences (one-

to-one), from 2D image to 3D surface mesh. Each pixel

of an IUV image refers to a body part index I , and (U, V )
coordinates that map to a unique point on the body model

surface (see Sec. 3.5).

As also discussed in [39], RGB input contains much

more information of the human target than 2D joints, sil-

houettes, or body part masks that are traditionally used as

proxy representation. However information such as appear-

ance, illumination or clothing may not be relevant for in-

ferring the 3D geometry, and even overfits the network to

nuisance factors. Similar to [39], we also observe that ex-

plicit body part representations are more useful for the task

of 3D human pose and body shape estimation, compared to

RGB images and plain silhouettes. Better part segmenta-

tion produces better 3D reconstruction accuracy, while pro-

viding full spatial coverage of the person (compared to joint

heatmaps). While further increasing the number of segmen-

tation parts above a certain threshold (12) only incremen-

tally leverage 3D pose prediction accuracy, it nevertheless

greatly improves body shape estimation (see Sec. 5). We

argue that prior work only estimates average body shape.

Note we further use two sources of IUV images as

inputs, i.e., IUV images from realistic images estimated

from [12] and IUV images from virtual humans synthesized

by our renderer (see Sec. 3.3). The IUV estimation could be

obtained by other off-the-shelf models or two-stage/end-to-

end training. Both inputs go through our neural network

model and are used to estimate 3D human pose and body

shape parameters. Thus, there are several benefits for using

IUV image representation: i) improving robustness against

nuisances of light and texture in natural images, ii) provid-

ing richer geometry information on 3D human body (by in-

cluding body part masks and dense landmarks), iii) unifying

realistic and synthetic data for joint learning.

3.3. Dense Render­and­Compare

In this paper, 3D human pose and body shape are rep-

resented compactly by a parametric model (see Sec. 3.5).

Parametrized 3D human body is inferred and fit to the input

image, given also camera parameters. Human body surface

is represented as a 3D triangular mesh, and body posing is

7762



obtained by standard linear blend skinning. To fully com-

pare a reconstructed 3D human body to a 2D observation

of it, we integrate a differentiable renderer, i.e., a computer

graphics technique that creates a 2D image from a 3D ob-

ject using differentiable operations [31, 23], and develop an

end-to-end weakly-supervised training scheme.

Rendering consists of projecting 3D vertices of a mesh

onto a 2D image plane and rasterizing it (i.e., sampling the

faces). 3D-to-2D projection is obtained by a combination

of differentiable transformations [33]. Rasterization is a

discrete operation that requires gradient definition to allow

back-propagation in a neural network. In [31], the authors

approximate derivatives at occlusion boundaries which are

discontinuous, while colors are interpolated between ver-

tices (i.e., there is no differentiation with respect to tex-

ture). In [23], the authors obtain approximate gradients by

blurring image to avoid sudden pixel color change. This

produces non-zero gradients and enables gradient-flow be-

tween pixel (color) value to vertex position. However, light-

ing and material properties in natural images are complex to

model and integrate into neural networks.

On the contrary, our IUV representation is invariant to

background, lighting conditions and surface texture like

clothing (see Sec. 3.2). In addition, UV values on each body

part I are continuous with respect to neighbor pixels (see

Fig. 3). This actually allows to naturally compute gradients

on mesh surface and at boundaries and back-propagate them

through network layers.

Our renderer creates IUV image comparable to the gen-

erated output of [12] (see Fig. 4). Self-occlusion is handled

by depth buffering. Our rasterizer draws only the surface

faces closest to the camera (and facing it) at each pixel. Dur-

ing back propagation, we only pass gradient flows of pixels

corresponding to visible regions.

Different from [53, 24] where render-and-compare

losses are computed upon silhouettes and 2D depth maps,

we compute dense render-and-compare losses Lrac using

IUV values between ground-truth IUV images and rendered

ones (see Sec. 3.4). The differentiable renderer (including

IUV rasterizer) and losses are implemented with differen-

tiable operations using a neural net framework with auto-

matic differentiation [6, 53, 24].

3.4. Loss Terms

Our model integrates a dense render-and-compare mod-

ule with corresponding loss computations in the backward

propagation, hence leveraging previous methods [42, 22,

39, 55]. The loss function is defined as

L = Lrac + 1Lrec + 1Lrgr, (1)

where 1 indicates the existence of such annotation, Lrac,

Lrec and Lrgr denote render-and-compare loss, 3D recon-

struction loss and parameter regression loss, respectively.

• Render-and-Compare Loss Lrac is evaluated under

three measurements, that is,

Lrac = Lrpj + Lmsk + Ladv, (2)

where Lrpj , Lmsk and Ladv denote landmark reprojection

loss, part mask loss and adversarial loss, respectively.

Landmark Reprojection Loss Lrpj measures displace-

ment between ground truth and estimated dense 2D land-

marks:

Lrpj =
∑N

i
1i‖pi − p̂i‖1, (3)

where 1i indicates the visibility (1 if visible, 0 otherwise)

for i-th 2D landmark (N in total), pi ∈ R
2 and p̂i ∈ R

2

represent i-th 2D landmark from ground truth and 3D mesh

reprojection, respectively. To correctly localize the land-

marks from ground truth (i.e., IUV image estimated from

DensePose [12]), we formulate this problem as a point-to-

point greedy match and solve the correspondence problem

by k-Nearest Neighbor (k-NN) search. Specifically, we first

create a k-D tree for IUV values of 3D body mesh vertices.

For any input IUV image, we search for 1-NN of each vis-

ible pixel and obtain a matched pair with the closest 3D

body mesh vertex within a distance threshold τ . Empiri-

cally, τ ∈ [0.01, 0.1] yields 100-300 matching pairs con-

sidered as near-optimal one-to-one 2D/3D dense landmarks

correspondences. This serves as a weakly-supervised scaf-

fold to densely fit 3D human body to the re-projected 2D

image. Note the matching is computed offline and serves as

a pre-processing step on IUV inputs, as shown in Fig. 5.

Part Mask Loss Lmsk provides semantic information

for the location of body part:

Lmsk=
∑

k
(1− IoU(Ik, Îk)), IoU(Ik, Îk)=

|Ik ∩ Îk|

|Ik ∪ Îk|
, (4)

where k is body part index and IoU(·, ·) represents in-

tersection over union of two masks. We keep the same

body segments (12 parts) I and (U, V ) mapping as speci-

fied in [12].

Adversarial Loss Ladv constrains configuration plau-

sibility. Unlike [22] using unpaired or Mosh-based [29]

weakly-supervised SMPL annotations, we use ground-truth

3D human poses and body shapes from our synthetic

dataset, which contains much larger action variations than

most Mocap sequences (see Sec. 4). We believe such long-

tail poses are crucial for the adversarial loss in finding the

decision boundary. Hereby, we account for millions of syn-

thetic samples as both paired ground truth and unpaired ad-

versarial prior for realistic datasets. We follow the GAN

loss definitions in [10] and train our generator and discrim-

inator jointly.

• 3D Reconstruction Loss Lrec measures the deformation

of reconstructed 3D human body, compared with ground

truth:

Lrec =
∑K

i
‖Pi − P̂i‖2, (5)

where Pi and P̂i represent 3D keypoint positions from input

and generated 3D mesh, respectively.

• Parameter Regression Loss Lrgr measures mean

square errors between estimated parameters [θ, β, α] and

ground truth [θ̂, β̂, α̂]:

Lrgr = ‖[Rθ, β, α]− [Rθ̂, β̂, α̂]‖2, (6)

7763



Figure 4. IUV images from MOCA generated by rasterizing 3D

bodies obtained with 3D poses from Mixamo and body shapes

from CAESAR. MOCA contains 2M+ images with fully paired

ground truth.

where Rθ denotes the rotation matrix of θ. Notably, pose

parameters are first transformed in rotation matrices. Losses

are computed upon such matrices and gradients are auto-

matically back-propagated. This helps avoid the singularity

problem of XYZ-Euler based 3D rotation and requires no

extra constraints on the rotation matrix, that is,

RR
T = diag(1, . . . , 1), det(R) = 1, (7)

where det(·) denotes the matrix determinant.

3.5. Human Body Model

We use a body shape model similar to SMPL [30, 4].

The statistical body model is obtained by PCA on pose-

normalized 3D models of real humans, obtained by non-

rigid registration of a body template to 3D scans of the

CAESAR dataset1, which represents anthropometric vari-

ability of 4,400 men and women. The body template mesh

has 7,324 vertices, 14,644 triangular faces and a skeletal rig

with body and hand joints.

Our model is trained with all 3D scans in the dataset, re-

sulting in a statistical model that can describe bodies from

unseen in-the-wild images regardless of gender. An arbi-

trary body shape can then be described by a set of shape

coefficients (i.e., shape parameters or shape blend shapes)

using a linear representation. Truncating shape coefficients

to 50 principal components enables reconstruction of all-

gender body shapes without noticeable distortions: e.g., the

SMPL-Male with 10 coefficients does not reconstruct well

female shape (RMSE=9.9mm), while an all-gender model

does (RMSE=6.3/3.4mm with 10/50 coeffs respectively).

Considering potential applications in AR/VR, 3D ani-

mations and better utilization of annotations, we enrich the

standard SMPL 24-joint skeleton with 28 joints for model-

ing fingers and 5 more joints on spine and head for better

flexibility. We further add a root node for global translation

and rotation, leading to a skeleton with 58 joints.

1http://store.sae.org/caesar/

4. MOCA Synthetic Dataset
The literature has provided several datasets to evaluate

human 3D pose (e.g., H3.6M [18], MPI-INF-3DHP [36]),

but only few for joint 3D pose and body shape (e.g., SUR-

REAL [56] and UP-3D [26]). However, SURREAL is ded-

icated to body segmentation and depth estimation and only

has a rough skeleton (24 major body joints), while UP-3D

has weakly-supervised shapes (from SMPL fitted to LSP

and MPII), arguably imprecise [55].

Hence, we propose MOCA, a large-scale synthetic

dataset with 2,089,104 images containing ground-truth

body shapes and 3D poses, as shown in Fig. 4. For vari-

ous human poses and actions, we seek to a popular collec-

tion center of 3D human animations (i.e., Mixamo2), whose

sources mainly come from Mocap systems and artist de-

signs. We implement a web crawler to fetch high fidelity

animations. Notably, Mixamo supports tuning parameters

(e.g., limb length, energy, overdrive) for each action se-

quence to generate variants. As we observe certain parame-

ter settings may introduce artifacts, we thus keep the default

setting for all sequences. We collect a set of 2,446 3D an-

imation sequences with 261,138 frames at 30 fps, covering

wide action categories of sports, combat, daily and social

activities. We extract a finer 3D skeleton with fingers and

facial bones using Maya and re-map those joints onto our

body model.

We then generate 2,781 bodies using the 3D scans from

CAESAR dataset and compute corresponding (PCA) shape

coefficients. By combining 3D pose θ and shape β, we pose

body models to specific pose&shape configurations by stan-

dard linear blend skinning.

The complete combination of all 3D poses and body

shapes produces an enormous amount of 3D human body

samples. Currently, we randomly select 8 body shapes

for each action sequence. We further add a random cam-

era view for each sequence, and render them as IUV im-

age sequences using our IUV rasterizer (see Sec. 3.3), ob-

taining a dataset with 2,089,104 frames in total and fully

paired ground truth of body shape, 3D pose and the cam-

era view. For training/testing set partition, we set the ratio

as 90%/10%. We synthesize the training set with the first

2,201 Mixamo action sequences and 2,502 CAESAR body

shapes and leave the rest 246 action sequences and 279 body

shapes only visible to the testing set.

5. Experiments
We evaluate DenseRaC on several public large-scale

benchmarks for three tasks: 3D pose estimation, body shape

estimation and body semantic segmentation. We further as-

sess human 3D reconstruction results (i.e., mesh-level re-

construction, joint&shape parameter estimation) on the pro-

posed large synthetic dataset MOCA that contains ground-

truth 3D pose and body shape. Our experiments compare

favorably to the state of the art. Estimated 3D poses and

2http://www.mixamo.com
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Figure 5. Pre-processed training samples from public benchmarks.

Left: original image, right: estimated IUV image, ground-truth

keypoint annotations (yellow) and dense landmarks (red).

body shapes are stable on videos (see additional materials).

Our qualitative results also show natural hand poses (e.g.,

opened, clenched).

5.1. Datasets

We use five public human benchmarks plus our syn-

thesized MOCA for model training and evaluation, i.e.,

LSP [21], MPII [3], COCO [28], H3.6M [17, 18]

and MPI-INF-3DHP [36]. We adopt standard train-

ing/validation/testing partitions on all datasets and calibrate

loss terms using cross-validation. When a certain dataset is

used for evaluation, all data from other datasets will be used

in training.

For all training and testing samples, we crop out each

person in the whole image using ground-truth bounding

boxes. All samples are resized to ∼150-180 pixel height

with preserved aspect ratio, and further adjusted to 224 ×

224 with padding/cropping respectively. We then run IUV

image estimation [12] on all samples. Considering a sample

I may contain multiple people and false alarms, we com-

pute a saliency score s = |m|
‖mc−Ic‖2

for each detected per-

son mask m, where mc and Ic represent the center of the

person mask and the image, respectively. We then pick the

person mask with the largest saliency score and suppress the

other detection responses.

For the training set, we further run pixel-to-surface

matching (as described in Sec. 3.3) to create dense corre-

spondences. We discard samples with less than 200 corre-

sponding pairs, as IUV image estimation usually failed un-

der such situation. As illustrated in Fig. 5, pre-processing

suppresses nuisances in the training samples quite well.

During training, all training samples will further be aug-

mented with a random jittering of translation, scaling and

reflection to improve the model robustness. We also ran-

domly black out a rectangle image region for the synthetic

samples to simulate occlusion in realistic scenarios.

To unite the skeleton structure across all datasets, we use

the same 14 joints as in LSP for joint related computation

while maintaining our 58-joint skeleton in the backend.

5.2. Implementation Details

In these experiments, the whole framework is imple-

mented with TensorFlow and runs on a DGX workstation

H3.6M
Protocol #1 Protocol #2 Protocol #3

MPJPE MPJPE MPJPE

Martinez et al. (ICCV’17) [34] 62.9 47.7 84.8

Fang et al. (AAAI’18) [9] 60.3 45.7 72.8

Rhodin et al. (CVPR’18) [48] 66.8 - -

Yang et al. (CVPR’18) [60] 58.6 37.7 -

Hossain et al. (ECCV’18) [16] 51.9 42.0 -

Lassner et al. (CVPR’17) [26] 80.7 - -

HMR (CVPR’18) [22] 88.0 56.8 77.3

Pavlakos et al. (CVPR’18) [42] - 75.9 -

NBF (3DV’18) [39] - 59.9 -

DenseRaC baseline 82.4 53.9 77.0

+ render-and-compare 79.5 51.4 75.9

+ synthetic data 76.8 48.0 74.1

MPI-INF-3DHP
Protocol #1 Protocol #2

PCK AUC MPJPE PCK AUC MPJPE

Mehta et al. (3DV’17) [36] 75.7 39.3 117.6 - - -

Mehta et al. (TOG’17) [37] 76.6 40.4 124.7 83.9 47.3 98.0

HMR (CVPR’18) [22] 72.9 36.5 124.2 86.3 47.8 89.8

DenseRaC baseline 73.1 36.7 123.1 86.8 47.8 88.7

+ render-and-compare 74.7 38.6 124.9 87.5 48.3 86.7

+ synthetic data 76.9 41.1 114.2 89.0 49.1 83.5

Table 1. Quantitative comparisons of mean per joint position er-

ror (MPJPE), PCK and AUC between the estimated 3D pose and

ground truth on H3.6M under Protocol #1, #2, #3 and MPI-INF-

3DHP under Protocol #1, #2. - indicates results not reported.

Lower MPJPE, higher PCK and AUC indicate better performance.

Best scores are marked in bold.

with 2 Intel E5 CPUs, 512GB memory and 8 Titan V100

GPUs. Data synthesis and pre-processing (i.e., IUV im-

age estimation) are implemented with multi-gpu data par-

allelism. The multi-gpu renderer processes around 300 fps

and takes 2 days to generate 2 million MOCA samples (total

size 2.7TB). Data pre-processing on realistic datasets takes

12 hours to prepare 0.8 million samples.

For learning, only a single GPU is used due to difficulty

in gradient transfer and a potential performance drop. We

use batch size 128, learning rate 10−5 for the generator and

10−4 for the discriminator, and Adam as the optimizer. Our

full model is jointly trained on all datasets for 30 epochs.

Empirically, for one batch, the forward pass takes around

15ms and the backward propagation takes (∼130ms) with

IUV image render-and-compare (∼55ms) as the overhead.

The total training process takes around a week to complete.

For inference, IUV images are first estimated at around 15

fps and then the forward pass of our model is called, taking

120 fps and thus achieves real time.

5.3. 3D Pose Estimation

We first evaluate our method for the task of 3D pose es-

timation on H3.6M [18] and MPI-INF-3DHP [36] datasets.

For H3.6M, we use three evaluation protocols used to

measure the performance: i) Protocol #1 uses 5 subjects

(S1, S5, S6, S7 and S8) for training and 2 subjects (S9 and

S11) for testing. Sequences are down-sampled to 10 fps

and all 4 cameras and trials are used for evaluation. MSE is

measured between estimated and ground-truth 3D joints. ii)
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Input DenseRaC HMR NBF BodyNet Input DenseRaC HMR NBF BodyNet

Figure 6. Qualitative comparisons of results estimated from DenseRaC versus state of the art [22, 39, 55]. DenseRaC estimates 3D human

poses and body shapes closest to the reality. Note that all examples come from the test set. Best viewed in color.

UP-3D
Body Part Fg/Bg

Accuracy F1 Accuracy F1

SMPL on DpCut (ECCV’16) [4] 87.7 0.64 91.9 0.88

SMPL, UP-P91 (ICCV’17) [26] 87.3 0.61 91.0 0.86

HMR (CVPR’18) [22] 87.1 0.60 91.7 0.87

BodyNet (ECCV’18) [55] - - 92.8 0.84

DenseRaC 87.9 0.64 92.4 0.88

MOCA
Body Part Fg/Bg

Accuracy F1 Accuracy F1

HMR (CVPR’18) [22] 86.6 0.19 92.1 0.60

DenseRaC 89.3 0.27 96.4 0.68

Table 2. Quantitative comparisons of foreground and part segmen-

tation on UP-3D and MOCA datasets. Accuracy unit is in %. -

indicates results not reported. Best scores are marked in bold.

Protocol #2 selects the same subjects for training and test-

ing as Protocol #1, while evaluation is only conducted on

sequences captured from the frontal camera (i.e., “cam 3”)

from trial 1 on all frames. Predictions are post-processed

via rigid transformations (i.e., per-frame Procrustes analy-

sis) before comparison. iii) Protocol #3 uses the same sub-

jects, frame rates and trials for training and testing in Proto-

col #1 except that camera views are further partitioned. The

first three cameras (i.e., “cam 0, 1, 2”) are used for training

and the last camera (i.e., “cam 3”) for testing.

For MPI-INF-3DHP, we use all sequences from S1-S7

as training set and sequences from S8 as testing set. We

regard Protocol #1 as the default comparison and Protocol

#2 as applying rigid transformations before comparison.

We compare our method with both task-oriented 3D pose

state of the art [50, 62, 34, 36, 37, 9, 48, 60, 16] and four

parametric body model based estimators [26, 22, 42, 39].

We set up two baselines to validate the effectiveness of

two key components in the proposed framework: render-

and-compare and joint learning with synthetic data. In

“DenseRaC baseline”, we use SMPL model and the same

losses as [22], only switch input sources from RGB images

to IUV images. Variant “+ render-and-compare” denotes

adding the proposed dense render-and-compare scheme

losses into the framework and part masks. Variant “+ syn-

thetic data” switches to our human body model and further

uses augmented synthetic data for joint learning.

As reported in Table 1, we can observe each component

in DenseRaC contributes to the final performance and leads

DenseRaC to outperform state-of-the-art parametric body

model estimators by a large margin. Also notice DenseRaC

is comparable with latest task-oriented 3D pose estimators.

5.4. Human Body Segmentation

Given rendered images from outputs, we further employ

semantic segmentation as another task to measure how sim-

ilar the reconstructed 3D human body looks to the person in

the input image. We evaluate the tasks of human body seg-

mentation and test our approach on the LSP subset of UP-

3D [26] and MOCA datasets. For UP-3D, we post-process

our 24 body part masks by merging into the annotated 6

body part masks (i.e., head, torso, left and right leg, and left

and right arm) and evaluate on body part and foreground

segmentation, while we evaluate both body part segmenta-

tion (ignoring 4 subtle body parts, i.e., hands and feet) and

foreground segmentation on MOCA. We measure segmen-

tation accuracy and mean F1 score of the results and report

metrics and comparisons in Table 5.3. It can be observed

that our method achieves comparable or better performance

with state of the art [4, 26, 22, 55] on all datasets.

5.5. 3D Human Body Reconstruction

Notice 3D pose estimation and body semantic segmen-

tation are tasks focusing on evaluating partial knowledge of
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Methods MPJPE MPVPE MSEθ,β

HMR (CVPR’18) [22] unpaired 110.2 - -

HMR (CVPR’18) [22] paired 91.9 - -

DenseRaC, LJ
rpj 133.0 174.5 18.227

DenseRaC, LJ
rpj + Ladv 131.5 173.6 17.820

DenseRaC, LJ
rpj + Ladv + Lmsk 122.8 161.5 16.305

DenseRaC, Lrpj + Ladv + Lmsk 107.9 142.3 13.608

DenseRaC, LJ
rpj + Ladv + LJ

rec 88.6 121.1 11.901

DenseRaC, LJ
rpj + Ladv + Lmsk + LJ

rec 86.5 119.8 10.496

DenseRaC, Lrpj + Ladv + Lrec 82.9 111.0 8.943

DenseRaC, Lrpj + Ladv + Lmsk + Lrec 82.4 110.7 8.722

DenseRaC, Lrpj + Lmsk + Lrec + Lrgr 80.4 105.4 8.164

DenseRaC, full 80.3 105.2 8.151

Table 3. Quantitative comparisons of MPJPE, MPVPE,

Pose&Shape Parameter Mean Square Error MSEθ,β on MOCA

dataset. Lower values are better. See text for detailed explanations.

the reconstructed 3D human body, We further evaluate the

reconstructed 3D human body using two metrics: Mean Per

Mesh Vertex Position Error (MPVPE) and regression error

on MOCA dataset. These two metrics consider the 3D hu-

man body as a whole and provide more guidance about how

well the reconstructed 3D human body is. For compari-

son, we re-train HMR which takes IUV images as input and

uses 2D/3D joint supervisions (i.e., only 14 2D/3D joints in

LSP format) and their original unpaired data (Mosh [29] on

H3.6M and external Mocap) for the adversarial prior. As re-

ported in Table 3, DenseRaC still significantly outperforms

the competitive method.

Ablative Studies. We set up variants of DenseRaC

to validate effectiveness of each loss terms. We also de-

fine two loss variants LJ
rpj and LJ

rec representing 14-joint-

only keypoint reprojection and 3D reconstruction losses,

respectively. From the results, we could reach the fol-

lowing conclusions: i) All loss terms contribute to the

final performance; ii) Losses used for dense render-and-

compare provide richer information than those from sparse

joints, greatly reduce impossible 3D body configurations;

iii) When task oriented loss terms are given (i.e., Lrec and

Lrgr), the contribution from the dense render-and-compare

scheme seems to be suppressed, yet such finer supervisions

help DenseRaC reach a much better local optimum.

Empirical Studies. We present qualitative results and

comparisons to have a better understanding of merits of

our method. As shown in Fig. 6, DenseRaC outperforms

other competitive methods and reconstructs more plausible

and natural 3D human bodies. Notably, HMR, which re-

lies on sparse landmarks, sometimes reconstructs plausible

3D human body appearance, but confuses body front and

back. Both NBF and BodyNet are sensitive to occlusions

and heavy clothing. When fitting SMPL to such erroneously

reconstructed volumes, BodyNet tends to produce highly

non-human body shapes3. For all three methods, the esti-

mated human bodies are arguably in an average body shape

and insensitive to genders. We also search failure cases on

validation set, as shown in Fig. 7. DenseRaC suffers from

3We uses results from 3D skeleton fitting for BodyNet, as volume fit-

ting usually performs much worse.

Figure 7. Current limitations: heavy occlusions (first row), incor-

rect IUV estimations (second row) and under-represented body

shapes like children (third row). Each triplet shows the original

image, IUV from [12] (our model input), and our model output.

Input DenseRaC DenseRaC+Sim BodyNet BodyNet Fit

Figure 8. Comparisons for cascaded and end-to-end frameworks

on the application of virtual dressing.

errors in IUV estimations (e.g., occlusions, long-tail data),

and is limited by the orthographic projection assumption

and SMPL-based human body representation.

We also explored virtual dressing, namely draping vir-

tual clothing on 3D human body, using our beneath-clothing

estimation. As shown in Fig. 1 (top right) and Fig. 8, a cas-

caded framework for adding physical simulations of cloth-

ing is possible [11, 25] and more visually acceptable than

end-to-end volumetric reconstruction of BodyNet.

6. Conclusion

We propose DenseRaC, a new end-to-end framework for

reconstructing 3D human body from monocular RGB im-

ages in the wild. DenseRaC utilizes the pixel-to-surface

correspondence map as proxy representation and incorpo-

rates a dense render-and-compare scheme to minimize the

gap between rendered outputs and inputs. We further boost

the model training with large scale synthetic data (MOCA),

mitigating the problem of unpaired training data. The pro-

posed framework obtains superior performance and we will

explore handling occlusion and interaction (e.g., by multi-

view fusion [45], temporal smoothing [43]) next.
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