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Abstract

We present a general paradigm for dynamic 3D recon-

struction from multiple independent and uncontrolled image

sources having arbitrary temporal sampling density and

distribution. Our graph-theoretic formulation models the

spatio-temporal relationships among our observations in

terms of the joint estimation of their 3D geometry and its

discrete Laplace operator. Towards this end, we define a

tri-convex optimization framework that leverages the geomet-

ric properties and dependencies found among a Euclidean

shape-space and the discrete Laplace operator describing

its local and global topology. We present a reconstructability

analysis, experiments on motion capture data and multi-view

image datasets, as well as explore applications to geometry-

based event segmentation and data association.

1. Introduction

Image-based dynamic reconstruction addresses the mod-

eling and estimation of the spatio-temporal relationships

among non-stationary scene elements and the sensors ob-

serving them. This work tackles estimating the geometry

(i.e. the Euclidean coordinates) of a temporally evolving

set of 3D points using as input unsynchronized 2D feature

observations with known imaging geometry. Our problem,

which straddles both trajectory triangulation and image se-

quencing, naturally arises in the context of uncoordinated

distributed capture of an event (e.g. crowd-sourced images

or video) and highlights a pair of open research questions:

How to characterize and model spatio-temporal relation-

ships among the observations in a data-dependent manner?

What role (if any) may available spatial and temporal priors

play within the estimation process? The answer to both these

questions is tightly coupled to the level of abstraction used

to define temporal associations and the scope of the assump-

tions conferred upon our observations. More specifically, the

temporal abstraction level may be quantitative or ordinal (i.e.

capture time-stamps vs. sequencing), while the scope of the

assumptions may be domain-specific (i.e. temporal sampling

periodicity/frequency, choice of shape/trajectory basis) or

Figure 1: Multi-view capture produces a set of unorganized

2D observations. Our graph formulation of dynamic re-

construction jointly estimates sequencing and 3D geometry.

Imagery adapted from [27].

cross-domain (physics-based priors on motion estimates).

Estimating either absolute or relative temporal values for

our observations would require explicit assumptions on the

observed scene dynamics and/or the availability of sampling

temporal information (e.g. image time-stamps or sampling

frequency priors). In the absence of such information or

priors, we strive to estimate observation sequencing based

on data-dependent adjacency relations defined by a pairwise

affinity measure. Towards this end, we make the following

assumptions: A1) 2D observations are samples of the con-

tinuous motion of a 3D point set; A2) the (unknown and

arbitrary) temporal sampling density allows approximate lo-

cal linear interpolation of 3D geometry; and A3) temporal

proximity implies spatial proximity, but not vice-versa (e.g.

repetitive or self-intersecting motion). Under such tenets,

we can address multi-view capture scenarios comprised of

unsynchronized image streams or the more general case of
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uncoordinated asynchronous photography.
We solve a dictionary learning instance enforcing a dis-

crete differential geometry model, where each dictionary

atom corresponds to a 3D estimate, while the set of sparse

coefficients describes the spatio-temporal relations among

our observations. Our contributions are:
• A graph-theoretic formulation of the dynamic recon-

struction problem, where 2D observations are mapped

to nodes, 3D geometry are node attributes, and spatio-

temporal affinities correspond to graph edges.

• The definition and enforcement of spatio-temporal pri-

ors, (e.g. anisotropic smoothness, topological com-

pactness/sparsity, and multi-view reconstructability) in

terms of the discrete Laplace operator.

• Integration of available per-stream (e.g. intra-video)

sequencing info into global ordering priors enforced in

terms of the Laplacian spectral signature.

2. Related work

Dynamic reconstruction in the absence of temporal in-

formation is an under-constrained problem akin to single

view reconstruction [5, 6, 18, 29, 28, 24]. Some prior work

in trajectory triangulation operate under the assumptions

of known sequencing info and/or constrained motion pri-

ors. Along these lines, Avidan and Shashua [6] estimate

dynamic geometry from 2D observations of points con-

strained to linear and conical motions. However, under the

assumption of dense temporal motion sampling, the con-

cept of motion smoothness has been successfully exploited

[25, 26, 45, 46, 35, 42, 43, 36, 30, 31]. Park et al. [25]

triangulate 3D point trajectories by the linear combination of

Direct Cosine Transform trajectory bases with the constraint

of a reprojection system. Such a trajectory basis method

has low reconstructability when the number of the bases is

insufficient and/or the motion correlation between object

and camera is large. In [26], Park et al. select number of

bases by an N-fold cross validation scheme. Zhu et al. [45]

apply L1-norm regularization to the basis coefficients to

force the sparsity of bases and improve the reconstructability

by including a small number of keyframes, which requires

user interaction. Valmadre et al. [35] reduce the number

of trajectory bases by setting a gain threshold depending

on the basis null-space and propose a method using a high-

pass filter to mitigate low reconstructability for scenarios

having no missing 2D observations. Zheng et al. [43, 42]

propose a dictionary learning method to estimate the 3D

shape with partial sequencing info, assuming 3D geometry

estimates may be approximated by local barycentric inter-

polation (i.e. self-expressive motion prior) and developed a

bi-convex framework for jointly estimating 3D geometry and

barycentric weights. However, uniform penalization of self-

expressive residual error and fostering symmetric weight

coefficients, handicap the approach against non-uniform den-

sity sampling. Vo et al. [36] present a spatio-temporal bundle

adjustment which jointly optimizes camera parameters, 3D

static points, 3D dynamic trajectories and temporal align-

ment between cameras using explicit physics priors, but

require frame-accurate initial time offset and low 2D noise.

Efforts at developing more detailed spatio-temporal models

within the context of NRSFM include [2, 3, 4].

Temporal alignment is a necessary pre-processing step

for most dynamic 3D reconstruction methods. Current video

synchronization or image sequencing [8, 21, 39, 23, 14, 9]

rely on the image 2D features, foregoing the recovery of

the 3D structure. Feature-based sequencing methods like

[8, 39, 33] make different assumptions on the underlying

imaging geometry. For example, while [8] favors an ap-

proximately static imaging geometry, [39] prefers viewing

configurations with large baselines. Basha et al. [21] over-

comes the limitation of static cameras and improves accuracy

by leveraging the temporal info of frames in individual cam-

eras. Padua et al. [23] determines spatio-temporal alignment

among a partially order set of observation by framing the

problem as mapping of N observations into a single line in

RN , which explicitly imposes a total ordering. Unlike pre-

vious methods, Gaspar et al [16] propose a synchronization

algorithm without tracking corresponding feature between

video sequences. Instead, they synchronize two videos by

the relative motion between two rigid objects. Tuytelaars et

al. [34] determined sequencing based on the approximate 3D

intersections of viewing rays under an affine reference frame.

Ji et al. [19] jointly synchronize a pair of video sequences

and reconstruct their commonly observed dense 3D structure

by maximizing the spatio-temporal consistency of two-view

pixel correspondences across video sequences.

3. Graph-based Dynamic Reconstruction

For a set of 2D observations in a single image with known

viewing parameters, there is an infinite set of plausible 3D ge-

ometry estimates which are compliant with a pinhole camera

model. We posit that for the asynchronous multi-view dy-

namic reconstruction of smooth 3D motions, the constraints

on each 3D estimate can be expressed in terms of its temporal

neighborhood. That is, we aim to enforce spatial coherence

among successive 3D observations without the reliance on

instance-specific spatial or temporal models. It is at this

point that we come to a chicken-egg problem, as we need to

define a notion of temporal neighborhood in the context of

uncontrolled asynchronous capture w/o timestamps or sam-

pling frequency priors. To address this conundrum we use

spatial proximity as a proxy for temporal proximity, which

(as prescribed by our third assumption, i.e. A3) is not uni-

versally true. Moreover, given that observed events ”happen”

over a continuous 1D timeline, we would also like to gener-

alize our notion proximity into one of adjacency, so as to be

able to explicitly define the notion of a local neighborhood.

Towards this end, we pose the dynamic 3D reconstruction
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problem in terms of discrete differential geometry concepts.

3.1. Notation and Preliminaries

We consider P dynamic 3D points {Xp} observed in N
images {In} with known intrinsic and extrinsic camera ma-

trices Kn and Mn. The 2D observation of Xp in In is

denoted by xn,p, while its 3D position is denoted by Xn,p.
Euclidean Structure Matrix. The position of all 3D points

across all images is denoted by the matrix

X =







X11 . . . X1P

...
. . .

...

XN1 . . . XNP






(1)

where each row vector Xnp ∈ R3 specifies the 3D Euclidean

coordinates of a point. Each matrix row Xn,: ∈ R3×P ,

represents the 3D shape of the P points in frame n.
Structure Motion Graph. We define a fully connected

graph G = (V,E), and map each input image In to a vertex

vn ∈ V . A multi-value function φ(·) maps a vertex into a

point in the shape space, allowing the interpretation X =
[φ(v1); . . . ;φ(vN )]. Edge weight values eij ∈ E are defined

by an affinity function α(·) relating points in our shape space,

such that eij = αij = α (φ(vi), φ(vj)).
Discrete Laplace operator. The Laplace operator ∆ is a

second differential operator in n−dimensional Euclidean

space, which in Cartesian coordinates equals to the sum of

unmixed second partial derivatives. For a weighted undi-

rected graph G = (V,E), the discrete Laplace operator is

defined in terms of the Laplacian matrix:
L = L[A] = D− A = diag(A · 1)− A (2)

where A is the graph’s symmetric affinity matrix, whose

values Aij correspond to the edge weights eij ∈ R≥0, and

D is the graph’s diagonal degree matrix, whose values are

the sum of the corresponding row in A. 1 L is positive semi-

definite, yielding x
⊤Lx ≥ 0, ∀x ∈ Rn. When convenient,

we obviate the explicit dependence of L on A.
Affinity Matrix Decomposition. The pairwise affinity func-

tion α(·) (relating our 3D estimates) is implicitly defined in

terms of the estimated entries Aij . Importantly, these affinity

values also encode the graph’s local topology (i.e. connectiv-

ity). Given the a priori unknown topology and distribution

of our 3D estimates, we make the following design choices:

1) A is not assumed to be symmetric, yielding a directed

structure graph. 2) we explicitly model the decomposition

A = DW, which follows from Eq. (2),
L = D− A = D(I−W) (3)

This decomposition decouples the estimation of each node’s

degree value (encoded in D), from the relative affinity weight

values for the node’s local neighborhood (encoded in W).

3.2. Geometric Rationale

We leverage the interdependencies among our 3D motion

estimates X and its discrete Laplace operator L, through

1Alternative definitions have been used in [15, 38, 41, 32, 44, 10, 12].

an optimization framework for their joint estimation. In

practice, L describes the topology of the given structure X in

terms of an affinity function α(·). The values αij constitute

the entries of the affinity matrix Aij relating the 3D shapes

observed at frames i and j. These individual values are

determined through the estimation of the D and W variables

within our optimization framework. Hence, the affinity α
function will not be explicitly defined, but rather its values

will be instantiated from the results of our optimization,

which builds upon the following geometric observations.

Remark 1 (Anisotropic Smoothness Prior). The norm of

the Laplacian’s linear form (LX), tends to vanish when

any given function value φ(vi) approximates the (affinity-

weighted) average of φ(vj 6=i) in its local neighborhood. This

follows from the point-wise Laplacian definition

[LX]i,: = (∆φ)(vi) =
∑N

j
Aij [φ(vi)− φ(vj)] (4)

This implies approximately linear 3D motion segments

allow accurate barycentric interpolation from as little as two

neighboring 3D motion samples. Conversely, the penalty

for poorly approximated non-linear motion segments may

be mitigated by the multiplicative contribution of the degree

value towards the affinity value, i.e. Aij = DiiWij

Remark 2 (Collapsing Neighborhood Prior). The trace of

the Laplacian’s quadratic form (X⊤LX) tends to vanish as

the local neighborhood becomes sparser and more compact,

this follows from

tr(X⊤LX) =
∑N

i,j
Aij ||φ(vi)− φ(vj)||

2
2 (5)

This implies sparsity in global affinity, while non-zero

Aij values imply proximity among 3D samples Xi,: and Xj,:.

Remark 3 (Spectral Sequencing Prior). Any line mapping

of V into a vector f ∈ RN constitutes an ordering of the

graph vertices. Accordingly, when f is a known and constant

affinity preserving mapping, the non-trivial minimization

of f⊤Lf will yield entries in L approximating the affinities

encoded in f . This follows from

f
⊤Lf =

∑N

i,j
Aij (fi − fj)

2
(6)

This implies enforcing global sequencing priors by cou-

pling L’s spectral signature to an input vector f .

3.3. Optimization Cost Function

Based on the geometric properties encoded by the discrete

Laplace operator the formulate the optimization problem:

min
X,L

S (LX) + T
(

X⊤LX
)

+R (L,Θ)+O (X,Θ) , (7)

where Θ = {{xnp}, {Kn}, {Mn}} denotes the aggregation

of all input 2D observations and their camera parameters.

Each cost function term addresses a particular aspect of our

optimization. S(·) fosters local smoothness, T (·) fosters a
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Figure 2: Geometry of Remarks 1 & 2. At top: Arrows

denote selected neighboring samples and dashed lines their

convex hull. At bottom: Corresponding graph edge structure.

linear topological structure, R(·) fosters strong convergence

among viewing rays, while O(·) reduces reprojection errors.

For simplicity, we define the problem variables in terms

of L and X. However, given the explicit dependence of L
on A, we’ll redefine the joint optimization of Eq. (7), as a

tri-convex optimization problem over X, D, and W.

The next two sections describe the functional models (S ,

T , R, and O) utilized in Eq. (7), the structure of the estima-

tion variables (X, D, and W), and the constraints applicable

to them. We present two variants of our general framework,

addressing, respectively, the absence and the estimation of

global temporal sequencing priors on the elements of {In}.

4. Solving for Asynchronous Photography

We consider an unordered image set {In}, and rely on

the Collapsing Neighborhood Prior to estimate an affinity

function matrix whose connectivity approximates a chain-

structure connectivity. We interpret such connectivity as

temporal ordering relations among our observations.

Enforcing anisotropic smoothness. The functional form

S (LX) =
1

P
||D(I−W)X||2F (8)

defines the first term of Eq. (7). Minimizing S w.r.t. X
attracts function values φ(vi) towards the convex hull de-

fined by all φ(vj 6=i) in its local neighborhood. Conversely,

minimizing S w.r.t. L (i.e. D, W) fosters the selection

of neighboring nodes whose mappings φ(vj 6=i) facilitate

barycentric interpolation. Here, selection refers to assigning

non-zero values Aij in the affinity matrix.

The values in each row of W (i.e. Wi,:) represent the

relative affinity weights for vi. Hence, we enforce 1) the

sum of each row equal to 1, and 2) strict non-negativity of all

entries in W.Moreover, D represents the out-degree for each

node in the directed graph, akin to a global density estimate.

We decouple node degree values from the relative affinity

weights in W. We enforce strictly positive degree values

Dii ≥ ǫ, requiring connectivity to at least one adjacent node.

Enforcing Neighborhood Locality. For a directed graph,

we define the trace of the Laplacian quadratic form as

tr(X⊤
↔

LX) =
∑N

i,j
Aij ||Xi,: − Xj,:||

2
2 (9)

Where
↔

L = L[A+A⊤] combines the outdegree and indegree

Laplacian matrix, and is compliant with the definition in Eq.

(5). Diagonal entries of the N ×N matrix X⊤L[A+A⊤]X are

the Laplacian quadratic form for each dimension of φ(), and

the functional form of T in Eq. (7) is given by their sum:

T
(

X⊤LX
)

=
λ1

P

∑N

i,j
DiiWij ||Xi,: − Xj,:||

2
2 (10)

Minimizing T w.r.t. X (i.e. fixing A) attracts the esti-

mates φ(vj 6=i) of neighboring elements to be near to φ(vi).
Conversely, minimizing T w.r.t. A, fosters the selection of

nearby nodes to form a compact neighborhood, as defined by

the weighted sum of the magnitude of the difference vectors

φ(vi)− φ(vj 6=i), ∀Aij 6= 0.

Enforcing Observation Ray Constrains. We penalize the

distance of a 3D point Xnp to its known viewing ray using

dnp = ||(Xnp −Cn) × rnp||2, where rnp is a unit vector

parallel to the viewing ray R
⊤
nK

−1
n [x⊤

np 1]⊤ and camera

pose parameters are given by Mn = [Rn| −RnCn] [43].

The functional form of O from Eq. (7) is

O (X,Θ) =
∑N,P

n,p

λ2

NP
||dnp||

2
2, (11)

which is quadratic for X. The value of λ2 depends on the 2D

noise level and the mean camera-to-scene distance.

Enforcing Multi-view Reconstructability. Viewing geom-

etry plays a determinant role in the overall accuracy of our

3D estimates (see section 7 for a detailed analysis). Intu-

itively, for moderate-to-high 2D noise levels, the selection

of temporally adjacent cameras with small baselines will

amplify 3D estimation error. In order to foster the selec-

tion of cameras having favorable convergence angles among

viewing rays corresponding to the same feature track, we

define the functional form of R from Eq. (7) as

R (L,Θ) =
λ3

NP

∑N,N,P

i,j,p
(DiiWij (rip · rjp))

2
(12)

5. Solving for Unsynchronized Image Streams

Given an image set comprised of the aggregation of mul-

tiple image streams, we ascertain partial sequencing (i.e.

within disjoint image subsets). We use this info in two dif-

ferent ways: First, we enforce spatial smoothness among

successive observations from a common stream. Second, we

integrate disjoint local sequences into a global sequencing

estimate we enforce through our optimization.

Enforcing Intra-Sequence Coherence. We define W =
Wvar+Wprior, where Wvar constitutes the variable compo-

nent of our estimation, while Wprior encodes small additive

values for the immediately prior and next frames from the

same image stream. The collapsing neighborhood prior will

enforce such pseudo-adjacent 3D estimates to be similar.
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(a) Matching with DTW. (b) Arc distance

Figure 3: Arc distance between two observations of the same

3D point across different image streams.

Manipulating the Spectral Signature of L. For a given

global sequencing prior, in the form of a line embedding

f ∈ RN of all our graph nodes, we modify Eq. (10) to be

T
(

f
⊤Lf

)

=
λ1

P

∑N

i,j
DiiWij (fi − fj)

2
. (13)

We now describe how we determine such line embedding f .

Integrating Global Sequencing Priors. Our goal is to in-

tegrate preliminary (e.g. initialization) geometry estimates,

Xinit, with reliable but partial sequencing information (e.g.

single video frame sequencing) into a global sequencing

prior. Towards this end, we pose image sequencing from

a given 3D structure X as a dimensionality reduction in-

stance, where the goal is to find a line mapping which pre-

serves (as much as possible) pairwise proximity relations

among 3D estimates. While using Euclidean distance as a

pairwise proximity measure is suitable for approximately

linear motion, non-linear motion manifolds (i.e. repetitive or

self-intersecting motions) may collapse temporally distant

observations to proximal locations in the line embedding.

Arc Distance through Dynamic Time Warping. We de-

fine approximate 3D trajectory arc distance for shapes within

sequenced images streams, as the sum of 3D line segment

lengths among adjacent observations, see Fig. 3a. To gen-

eralize this notion across image streams, we perform global

approximate inter-sequence registration through Dynamic

Time Warping (DTW). Our goal is to assign to each 3D esti-

mate tai along trajectory a the closest line segment (tbj , t
b
j+1)

in each of the other trajectories b 6= a, without violating any

sequencing constraints in our assignments, which we define

tai → (tbj , t
b
j+1) ∄ tak>i → (tbl<j , t

b
l+1) ∀a 6= b (14)

Once all assignments are made, inter-sequence arc-length

between tai and tbl is trivially computed as the sum of 1) dis-

tance to the element tb∗ in the line segment (tbj , t
b
j+1) closest

to the tbl , plus 2) the intra-sequence arc distance between

tb∗ and tbl . Fig. 3b illustrates the arc distance from points

between tai and tbl as the length of green line.

Dimensionality Reduction Methods. We use arc length to

define a pair-wise distance matrix Z, from which we attain

a vector embedding f ∈ Rn through Spectral Ranking (SR)

[15, 13] and Multidimensional Scaling (MDS) [1]. Sequenc-

ing is attained by sorting f . Alternatively, we interpret Z
as a complete graph’s weight matrix and find the approxi-

mate shortest Hamiltonian path (SHP). Table 1 compares

Linear motion Nonlinear motion Repeating motion

Xinit Xopt Xinit Xopt Xinit Xopt

SR
ZE 0.9956 0.9996 0.9807 0.9991 0.6754 0.7140

Z 0.9965 1 0.9570 1 0.9711 0.9934

MDS
ZE 0.9943 1 0.7614 0.7044 0.6421 0.6553

Z 0.9961 1 0.8741 1 0.9316 0.9732

SHP
ZE 1 1 0.4368 0.9996 0.3329 0.7912

Z 1 1 0.5325 0.9996 0.3947 0.7934

Table 1: Kendall rank correlation vs. ground truth ordering

for sequencing attained from initial and estimated structure.

these methods operating on Z and the Euclidean distance

matrix ZE , both matrices were computed from Xinit and

Xopt, which denote respectively, the initial 3D structure and

the estimated 3D structure after our optimization.

6. Optimization

Eq. (7) is a tri-convex function for variable blocks X, W
and D. We use the ACS [17] strategy, alternatively optimiz-

ing over each variable block while fixing the other two. For

the first iteration, we initialize D and X (to be described),

then we alternatively optimize over each variable blocks in

the order of W, D and X until (thresholded) convergence of

our cost function among successive iterations.
Optimizing over X. While variable blocks W and D are

fixed, the cost function (7) is a quadratic equation for block

X without any constraints. The solution for this quadratic

programming problem is the set of variable values found at

the zeros of the derivative of the cost function.
Optimizing over W. With X and D fixed, minimizing

S (LX), T
(

X⊤LX
)

, O (X,Θ) and R (L,Θ), respectively,

yield a quadratic equation, linear equation and constant value

for W, making the cost function a quadratic equation for W

min
W

1

P
||D(I−W)X||2F +

λ1

P

N
∑

ij

DiiWij ||Xi,: − Xj,:||
2
2

+
λ3

NP

∑N,N,P

i,j,p
(DiiWij (rip · rjp))

2

s.t. W1N×1 = 1N×1, W ≥ 0
(15)

Each row of W is independent and is solved as a quadratic

programming problem with linear constrains. We optimize

each row in parallel by the Active-Set method in [11].
Optimizing over D. When X and W are fixed, optimizing

Eq. (7) yields a quadratic equation in terms of the diagonal

values of D. We optimize the same equation as Eq. (15), but

with linear constrains {tr(D) = 1,D ≥ 0}, normalizing the

outdegree sum to one.
Optimizing for the spectral sequencing prior When opti-

mizing over W or D, the matrix X is replaced by a vector

f , computed from the current estimate of X, through one of

the dimensionality reduction methods described earlier (e.g.

MDS applied to Z) Hence, the second term becomes

f
⊤

↔

Lf =
∑N

ij
DiiWij(fi − fj)

2 (16)
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When using MDS as the dimensionality reduction method, f

approximately preserves the pairwise Arc distance, allowing

direct implementation within Eq. (16). When using SR, f

corresponds to the graph’s Fiedler vector, whose entry values

range from -1 to 1; requiring a uniform scaling in order to

match the range of the current structure estimate X.

Initialization. We initialize the degree matrix to be Dii =
1/N . We initialize the 3D structure Xinit

n,: observed in In
by the approximate two-view pseudo-triangulation of each

viewing ray rnp with its corresponding viewing ray r
∗
m 6=n,p

from the most convergent image Im, which is the Im with

the minimum aggregated pseudo-triangulation error when

considering all commonly observed points.

7. Structure Reconstruction Accuracy.

We analyze how the Lapalacian linear and quadratic

forms influence the accuracy of our estimates of X, assuming:

1) L is fixed, 2) encodes ground truth temporal adjacency,

and 3) noise free 2D observations. This equates to optimiz-

ing Eq. (7) while omitting terms O and R, yielding

min
X

1

P
||LX||2F +

λ1

P
tr(X⊤

↔

LX) (17)

We denote the ground truth structure as X∗ and since each

point is independently estimated, we analyze the condition

of one point per shape. Then, X as a point along a viewing

ray is Xn,: = X∗
n,: + lnrn, where the unknown variables ln

are the signed distance from ground truth along the viewing

ray, and |l| is the reconstruction error (i.e. depth error). Eq.

(17) is an unconstrained quadratic programming problem,

solved by setting the derivative over l to zero; yielding to

Bl = b (18)

B = (L⊤L+ λ1

↔

L)⊙







r
⊤
1 r1 . . . r

⊤
Nr1

...
. . .

...

r
⊤
1 rN . . . r

⊤
NrN






(19)

bn = (L⊤
:,nLX

∗ + λ1

↔

Ln,:X
∗)rn (20)

where B is an N ×N matrix and b is an N ×1 vector whose

n-th element is bn, and L:,n denotes the n-th column of L

and
↔

Ln,: denotes the n-th row. From Eq. (18), we attain the

lower and upper bounds for reconstruction error as

||B||−1
2 ||b||2 ≤ ||l||2 ≤ ||B−1||2||b||2 (21)

Imaging geometry convergence. We consider two cam-

eras alternating the capture of a motion sequence, which are

placed sufficiently far from the motion center c, such that the

viewing ray convergence angle for all joints can be approx-

imated by the angle θ between the cameras to the motion

center. We vary θ from 0 to π as in Fig. 4a.and evaluate the

reconstruction error and upper bounds, which as shown in

Fig. 4b decrease as viewing rays approach orthogonality.

3D motion observability. The vector
↔

Ln,:X∗ in Eq. (20),

lies on a local motion plane formed by X∗
n,: and it’s two

neighboring points. Similarly,each row in LX∗ will also

be a vector on a local motion plane. For smooth motion

under dense sampling, a triplet of successive local motion

planes can be approximated by a common 3D plane πn.

Hence, the vector L⊤
:,nLX

∗ + λ1

↔

Ln,:X∗ will be contained

in πn, yielding smaller values of bn as πn and the viewing

rays rn near orthogonality.In Fig. 4c, we consider a circle

motion observed by two cameras with constant convergence

angle, pointing to the motion center. In this configuration,

||B||−1
2 and ||B−1||2 are nearly constant. We vary the angle

β between the viewing directions and the motion plane πn.

Fig. 4d shows more accurate reconstruction is attained for

viewing directions near orthogonal to the motion plane.

8. Experiments

8.1. Motion Capture Datasets

We synthesize 2D features of human 3D motions for 31

joints with frame rates of 120 Hz [22]. We choose 10 sam-

ple motions, each having on average ∼300 frames. We use

the 3D joint positions as ground truth dynamic structure

and project them to each frame on four virtual cameras as

2D observations. All cameras have 1000 × 1000 resolu-

tion and 1000 focal length, are static with a distance of 3

meters around the motion center. The four cameras are

unsynchronized, with frame rate up to 30 Hz. Accuracy

is quantified by mean 3D reconstruction error. Our method

discrete Laplace operator estimation (DLOE) is compared

against self-expressive dictionary learning (SEDL)[43], tra-

jectory basis (TB)[26], high-pass filter (HPF)[35] and the

pseudo-triangulation approach in Sec. 6. SEDL requires

partial sequencing information. TB and HPF require com-

plete ground truth sequencing. We include a version of our

method leveraging ground truth sequencing by enforcing

structural constraints on W similarly to HPF.

Varying 2D noise. We add white noise on the 2d observation

with std. dev. from 1 to 5 pixels. The parameters λ2 and

λ3 are fixed as 0.0015 and 0.02. Per Fig. 5a, reconstruction

accuracy degrades as the 2d observation error increases. Our

method is competitive with frameworks requiring sequencing

info such as TB and HPF.

Varying frame rates. We temporally downsample the

motion capture datasets and perform experiments at frames

rates of 30 Hz, 15Hz and 7.5 Hz, without 2D observation

noise. As shown in Fig. 5b, without sequencing info, our

method outperforms SEDL for lower frame rates. Results

for methods using full sequencing info are comparable.

Missing data. We randomly decimate 10% to 50% of

total 3D points before projection onto the virtual cameras.

Reconstruction error comparisons are restricted to SEDL

and TB, as other methods don’t recover missing joints. Per

Fig. 5c, our method has lower reconstruction error, across

all missing data levels, compared to SEDL with partial
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Figure 4: In (a,b) error bounds specified in Eq. (21) get ”tighter” and reconstruction error is reduced when neighboring viewing

rays near orthogonality. In (c,d) as the angle β is close to π/2, both reconstruction error and ||b||2 decrease.
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(d) Nonuniform density

Figure 5: Reconstruction error for motion capture data under different conditions. Reported averages over 20 executions.

(a) Juggler. (b) Climb (c) Ski

data type motion type solver type number of cameras number of frames number of joints frame rate kendall rank correlation

Juggler unsynchronized videos repeating motion DLOE+MDS+Wprior 4 80 18 6.25 0.8816

Climb unsynchronized images linear motion DLOE+MDS+Wprior 5 27 45 N/A 0.8689

Ski unsynchronized videos nonlinear motion DLOE+MDS+Wprior 6 137 17 N/A 0.9526

Figure 6: Experiments on multi-view image capture. All datasets were devoid of concurrent observations.

sequencing info and TB with full sequencing info.

Non-uniform density. We randomly drop 10% to 50% of

total frames from the motion sequence. The reconstruction

error increases disproportionately for the other methods

compared to ours, as depicted in Fig. 5d.

Execution run times. Average run times for our Matlab

implementation on an Intel i7-8700K CPU for optimizing

each of our three variables are plotted in Fig. 8a, reconstruct-

ing P = 31 features over a variable number of frames N .

Time complexity for optimizing over D using an Active-Set

method [11] is O(min(3P,N)(PN + a2)), where a is the

number of non-zero values in the active-set. However, the

number of estimation variables for this stage is only N . Op-

timizing W takes O(min(3P,N)(PN + a2)N) since we

use the same solver for each row of W.Optimizing over X
is an unconstrained convex quadratic programming problem

equating to solving a linear system of equations with time

complexity of O((NP )3). Average running time for mini-

mizing either X or W are smaller due to the sparsity of W.

Total number of iterations depends on initialization quality,

reported experiments ran an average of 62.26 iterations.
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(a) Event segmentation (b) Multi-Target scenario

data type motion type solver type number of cameras number of frames number of joints frame rate kendall rank correlation

dance unsynchronized videos nonlinear motion DLOE+Wprior 4 300 15 7.5 0.9802

multi-person independent images nonlinear motion DLOE+Wprior 4 100 15 7.5 1

Figure 7: Results on Dancing and Toddler [20]. Disjoint Dancing segments form an input datum. Spectral visualization of

estimated affinity matrix reveal a triplet of clusters. For Toddler, we use DLOE for instance identification, see text for details.

(a) Single iteration run time (b) Ablation analysis

Figure 8: Optimization run time and cost function ablation

Ablation Analysis. We analyze the contribution of the

different terms in Eq. (7) toward reconstruction accuracy

for scenarios of moderate-to-high 2D noise levels. Fig. 8b

shows results for multiple variants. The observation ray term

O is common to all variants. Best performance is achieved

by the instance optimizing over all geometric terms.

8.2. Multi­view Video and Image Datasets

Experiments on imagery with known camera geometry

include Juggler[7], Climb [25] and Ski[27] datasets. We un-

synchronized images by removing concurrent observations,

randomly selecting a single camera when multiple images

shared a common timestamp. Timestamps were only used

for eliminating concurrency. For Juggler we use as 2D fea-

tures the joint positions detected by [40]. For Climb and

Ski we used the provided 2D feature tracks and 2D joint

detection locations, respectively. Fig. 6 illustrates our results

and describes the experimental setup.

8.3. Application to Event Segmentation

We consider the case of dynamic reconstruction of spa-

tially co-located, but temporally disjoint events captured in

a single aggregated image set. For such scenario we obtain

a Laplacian matrix describing a graph with multiple con-

nected components, one per each event. Importantly, for

each component we sequence its images and reconstruct its

dynamic 3D geometry. Spectral analysis of the Laplacian

matrix visualizes the chain-like topology of each of these

events/clusters, see Fig. 7a top right.

8.4. Application to Multi­Target Scenarios

Given M subjects observed in N images, our aggregated

shape representation Xi,: ∈ R3MP requires solving data

associations of input 2D features among M subjects across

N images [37]. To this end, we leverage DLOE’s event

segmentation capabilities (section 8.3) as follows: 1) For

each input In, we create a proxy image Ĩq for each subject

observed therein. 2) Execute DLOE on the aggregated set of

proxy images {Ĩq|N≤q≤MN} (each observing P 3D points)

to reconstruct each subject’s motion as a distinct event. 3)

Associate 3D estimates of {Ĩq} based on their common

ancestor In, providing a coalesced spatio-temporal context

for each reconstructed event. 4) Aggregate the 2D features of

all sibling Ĩq into a single 2D shape representation, enforcing

data associations from each event. 5) Run DLOE on the

aggregated representation over the N original input images,

to improve the decoupled event reconstructions from step 2.

Fig. 7b shows our workflow results for a two-target scenario.

9. Conclusion

We presented a data-adaptive framework for the model-

ing of spatio-temporal relationships among visual data. Our

tri-convex optimization framework outperforms state of the

art methods for the challenging scenarios of decreasing and

irregular temporal sampling. The generality of the formula-

tion and internal data representations suggest robust dynamic

3D reconstruction as a data association framework for video.
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