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Abstract

Video compression artifact reduction aims to recover

high-quality videos from low-quality compressed videos.

Most existing approaches use a single neighboring frame

or a pair of neighboring frames (preceding and/or follow-

ing the target frame) for this task. Furthermore, as frames

of high quality overall may contain low-quality patches,

and high-quality patches may exist in frames of low quality

overall, current methods focusing on nearby peak-quality

frames (PQFs) may miss high-quality details in low-quality

frames. To remedy these shortcomings, in this paper we

propose a novel end-to-end deep neural network called

non-local ConvLSTM (NL-ConvLSTM in short) that exploits

multiple consecutive frames. An approximate non-local

strategy is introduced in NL-ConvLSTM to capture global

motion patterns and trace the spatiotemporal dependency

in a video sequence. This approximate strategy makes the

non-local module work in a fast and low space-cost way.

Our method uses the preceding and following frames of the

target frame to generate a residual, from which a higher

quality frame is reconstructed. Experiments on two datasets

show that NL-ConvLSTM outperforms the existing methods.

1. Introduction

Video compression algorithms are widely used due to

limited communication bandwidth and storage space in

many real (especially mobile) application senarios [34].

While significantly reducing the cost of transmission and

storage, lossy video compression also leads various com-

pression artifacts such as blocking, edge/texture floating,

mosquito noise and jerkiness [48]. Such visual distor-

tions often severely impact the quality of experience (QoE).

Consequently, video compression artifact reduction has

∗This author did most work during his internship at Bilibili.
†Corresponding author.
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Figure 1. An example of high-quality patches existing in low-

quality frames. Here, though the 140th and 143th frames have

better full-frame SSIM than the 142th frame, the cropped patch

from the 142th frame has the best patch SSIM. The upper part

shows the SSIM values of the fames and cropped patches; the

lower images are the cropped patches from three frames. Also,

comparing the details in the boxes of the same color, we can see

that the cropped patches from the 142th frame are of better quality.

emerged as an important research topic in multimedia and

computer vision areas [26, 43, 45].

In recent years, significant advances in compressed im-

age/video enhancement have been achieved due to the suc-

cessful applications of deep neural networks. For example,

[11, 12, 36, 49] directly utilize deep convolutional neural

networks to remove compression artifacts of images with-

out considering the characteristics of underlying compres-

sion algorithms. [16, 38, 43, 44] propose models that are

fed with compressed frames and output the enhanced ones.

These models all use a single frame as input, do not con-

sider the temporal dependency of neighboring frames. To

exploit the temporal correlation of neighboring frames, [26]

proposes the deep kalman filter network, [42] employs task

oriented motions, and [45] uses two motion-compensated

nearest PQFs. However, [26] uses only the preceding

frames of the target frame, while [42, 45] adopt only a pair

of neighboring frames, which may miss high-quality details

of some other neighbor frames (will be explained later).
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Video compression algorithms have intra-frame and

inter-frame codecs. Inter coded frames (P and B frames)

significantly depend on the preceding and following neigh-

bor frames. Therefore, extracting spatiotemporal relation-

ships among the neighboring frames can provide useful in-

formation for improving video enhancement performance.

However, mining detailed information from one/two neigh-

boring frame(s) or even two nearest PQFs is not enough

for compression video artifact reduction. To illustrate this

point, we present an example in Fig. 1. Frames with a

larger structural similarity index measure (SSIM) are usu-

ally regarded as better visual quality. Here, though the

140th and 143th frames have better overall visual quality

than the 142th frame, the cropped patch of highest qual-

ity comes from the 142th frame. The high-quality details

in such patches would be ignored if mining spatiotemporal

information from videos using the existing methods.

Motivated by the observation above, in this paper we try

to capture the hidden spatiotemporal information from mul-

tiple preceding and following frames of the target frame

for boosting the performance of video compression arti-

fact reduction. To this end, we develop a non-local Con-

vLSTM framework that uses the non-local mechanism [3]

and ConvLSTM [41] architecture to learn the spatiotem-

poral information from a frame sequence. To speed up

the non-local module, we further design an approximate

and effective method to compute the inter-frame pixel-

wise similarity. Comparing with the existing methods,

our method is advantageous in at least three aspects: 1)

No accurate motion estimation and compensation is ex-

plicitly needed; 2) It is applicable to videos compressed

by various commonly-used compression algorithms such

as H.264/AVC and H.265/HEVC; 3) The proposed method

outperforms the existing methods.

Major contributions of this work include: 1) We pro-

pose a new idea for video compression artifact reduction by

exploiting multiple preceding and following frames of the

target frame, without explicitly computing and compensat-

ing motion between frames. 2) We develop an end-to-end

deep neural network called non-local ConvLSTM to learn

the spatiotemporal information from multiple neighboring

frames. 3) We design an approximate method to compute

the inter-frame pixel-wise similarity, which dramatically re-

duces calculation and memory cost. 4) We conduct ex-

tensive experiments over two datasets to evaluate the pro-

posed method, which achieves state-of-the-art performance

for video compression artifact reduction.

2. Related Work

2.1. Single Image Compression Artifact Reduction

Early works mainly include manually-designed filters [3,

9, 30, 51], iterative approaches based on the theory of pro-

jections onto convex sets [29, 47], wavelet-based meth-

ods [40] and sparse coding [5, 25].

Following the success of AlexNet [21] on Ima-

geNet [31], many deep learning based methods have been

applied to this low-level long-standing computer vision

task. Dong et al. [11] firstly proposed a four-layer network

named ARCNN to reduce JPEG compression artifacts. Af-

terwards, [22, 28, 35, 36, 49, 50] proposed deeper networks

to further reduce compression artifacts. A notable exam-

ple is [49], which devised an end-to-end trainable denoising

convolutional neural network (DnCNN) for Gaussian de-

noising. DnCNN also achieves a promising result on JPEG

deblocking task. Moreover, [7, 14, 46] enhanced visual

quality by exploiting the wavelet/frequency domain infor-

mation of JPEG compression images. Recently, more meth-

ods [1, 6, 8, 12, 15, 24, 27] were proposed and got com-

petitive results. Concretely, Galteri et al. [12] used a deep

generative adversarial network and recovered more photore-

alistic details. Inspired by [39], [24] incorporated non-local

operations into a recursive framework for quality restora-

tion, it computed self-similarity between each pixel and its

neighbors, and applied the non-local module recursively for

correlation propagation. Differently, here we adopt a non-

local module to capture global motion patterns by exploit-

ing inter-frame pixel-wise similarity.

2.2. Video Compression Artifact Reduction

Most of existing video compression artifact reduction

works [10, 16, 38, 43, 44] focus on individual frames,

neglecting the spatiotemporal correlation between neigh-

boring frames. Recently, several works were proposed to

exploit the spatiotemporal information from neighboring

frames. Xue et al. [42] designed a neural network with a

motion estimation component and a video processing com-

ponent, and utilized a joint training strategy to handle var-

ious low-level vision tasks. Lu et al. [26] further incor-

porated quantized prediction residual in compressed code

streams as strong prior knowledge, and proposed a deep

Kalman filter network (DKFN) to utilize the spatiotem-

poral information from the preceding frames of the target

frame. In addition, considering that quality of nearby com-

pressed frames fluctuates dramatically, [13, 45] proposed

multi-frame quality enhancement (MFQE) and utilized mo-

tion compensation of two nearest PQFs to enhance low-

quality frames. Comparing with DKFN[26], MFQE is a

post-processing method and uses less prior knowledge of

the compression codec, but still achieves state-of-the-art

performance on HEVC compressed videos.

In addition to compression artifact removal, spatiotem-

poral correlation mining is also a hot topic in other video

quality enhancement tasks, such as video super resolu-

tion (VSR). [4, 18, 19, 23, 32, 37, 42] estimated optical

flow and warped several frames to capture the hidden spa-
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Figure 2. The framework of our method (left) and the architecture of NL-ConvLSTM (right)

tiotemporal dependency for VSR. Although these methods

work well, they rely heavily on the accuracy of motion es-

timation. Instead of explicitly taking advantage of motion

between frames, [17] utilized a 3D convolutional network

as a dynamic filter generation network to generate dynamic

upsampling filter and fine residual for VSR.

In summary, most end-to-end CNN based visual quality

enhancement methods consider only either a single frame or

a pair of neighboring frames, thus may miss important de-

tails of other neighboring frames. Unlike these works, here

we employ the NL-ConvLSTM mechanism to utilize multi-

ple frames and capture spatiotemporal variations in a frame

sequence without explicit motion estimation and compen-

sation, With an approximate strategy for non-local similar-

ity computation, our method can effectively reduce artifacts

and achieves state-of-the-art performance.

3. Method

The goal of video compression artifact reduction is to in-

fer a high quality frame Ŷt from a compressed frame Xt of

the original frame (ground truth) Yt, where Xt∈R
C×N is

the compressed frame at time t. Here, C is the number of

channels of a single frame. For the sake of notation clarity,

we collapse the spatial positions (width W and height H)

into one dimension, N=HW . Let Xt={Xt−T , . . . , Xt+T }
denote a sequence of (2T + 1) consecutive compressed

frames, our method takes Xt as input and outputs Ŷt.

3.1. The Framework

Our method is an end-to-end trainable framework that

consists of three modules: Encoder, NL-ConvLSTM mod-

ule and Decoder, as shown in Fig. 2. They are respectively

responsible for extracting features from individual frames,

learning spatiotemporal correlation across frames, and de-

coding high-level features to residuals, with which the high-

quality frames are reconstructed eventually.

Encoder. It is designed with several 2D convolutional

layers to extract features from Xt. With Xt as input, it

outputs Ft={Ft−T , . . . , Ft+T }. Here, Ft∈R
Cf×N is the

corresponding feature extracted from Xt, Cf is the channel

size of output features. It processes each frame individually.

NL-ConvLSTM. To trace the spatiotemporal depen-

dency in a frame sequence, we put a ConvLSTM [41] mod-

ule between the Encoder and the Decoder. ConvLSTM is

able to capture spatiotemporal information from a frame se-

quence of arbitrary length, but it is not good at handling

large motions and blurring motions well [18]. To tackle

this problem, we embed the non-local (NL) [3] mechanism

into ConvLSTM, and develop the NL-ConvLSTM module.

Here, the non-local similarity is used for pixels from dif-

ferent frames rather than pixels within a frame [3]. The

NL-ConvLSTM module N can be described as

[Ht, Ct] = N (Ft−1, Ft, [Ht−1, Ct−1]) . (1)

Different from ConvLSTM in [37, 41] that is fed with only

featureFt at time t, NL-ConvLSTM takes additional feature

Ft−1 at time (t-1) as input, and outputs the corresponding

hidden state and cell state Ht, Ct ∈ R
Ch×N . Here, Ch is the

number of channels of hidden state and cell state. Moreover,

hidden state Ht−1 and cell state Ct−1 are not fed into gate

operation directly in NL-ConvLSTM. In contrast, we calcu-

late inter-frame pixel-wise similarity St between Ft−1 and

Ft, then perform a weighted sum over Ht−1 and Ct−1 with

St as weight. In addition, bi-directional ConvLSTM is used

in our paper to learn spatiotemporal dependency from both

preceding and following frames. In the following sections,

we only mention the operation of forward NL-ConvLSTM
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for simplicity. Details of the NL-ConvLSTM module can

be referred to Fig. 2 (right), Fig. 3, Section 3.2 and 3.3.

Decoder. It decodes the hidden state from both direc-

tions of NL-ConvLSTM module into residual, with which

the high-quality frame is reconstructed. Specifically, we

first combine the hidden states by a convolutional layer

whose kernel size is 1×1, then use several stacked convolu-

tional layers to generate the residual.

3.2. Non­local ConvLSTM

ConvLSTM can be described as follows [37]:

[Ht, Ct] = ConvLSTM(Ft, [Ht−1, Ct−1]). (2)

To learn robust spatiotemporal dependency, we adopt the

non-local mechanism into ConvLSTM to help estimate mo-

tion patterns in frame sequences. As an extension of Con-

vLSTM, NL-ConvLSTM can be formulated as

St = NL (Ft−1, Ft) ,
[

Ĥt−1, Ĉt−1

]

= NLWarp([Ht−1, Ct−1] , St),

[Ht, Ct] = ConvLSTM(Ft,
[

Ĥt−1, Ĉt−1

]

),

(3)

where St ∈ R
N×N denotes the similarity matrix between

the pixels of the current frame and all pixels of the pre-

ceding frame. NL is the non-local operator for calculat-

ing the similarity matrix between features of two frames,

NLWarp is the warping operation for the hidden state and

cell state at time (t-1) with a weighted sum form.

Following the non-local operation [3], the inter-frame

pixel-wise similarity and non-local warping operation in our

work are as follows:

Dt (i, j) = ‖Ft−1 (i)− Ft (j)‖2 ,

St (i, j) =
exp (−Dt (i, j) /β)

∑

∀i exp (−Dt (i, j) /β)
,

[

Ĥt−1, Ĉt−1

]

= [Ht · St, Ct · St] ,

(4)

where i, j ∈ {1, · · · , N} are indices of pixels in a fea-

ture map, F (i) and H(i) are the corresponding feature

and state at position i. Dt (i, j) and St (i, j) are the Eu-

clidean distance and similarity throughout all channels be-

tween pixel i in the preceding feature map at time t-1 and

pixel j in the current feature map at time t. St (i, j) satisfies
∑

i St (i, j) = 1. Thus, the non-local method can be seen as

a special attention mechanism [39].

3.3. Two­stage Non­local Similarity Approximation

Directly computing St∈R
N×N and the warping oper-

ation will incur extremely high computation and memory

cost for high-resolution videos. Therefore, we propose a

two-stage non-local method to approximate Dt as D̂t and

F𝑡𝑝(𝑗) F𝑡F𝑡−1
𝐹𝑡−1The first stage

𝐹𝑡−1

𝐹𝑡−1
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𝑘𝑝2 × 𝑝2

ℋ𝑡−1

෡ℋ𝑡−1

F𝑡(𝑗)
𝑘𝑝2 × 𝑝2 Similarity matrix

1

3

2

4
top-k blocks in F𝑡−1top-k positions in ℋ𝑡−1

Figure 3. The workflow of two-stage similarity approximation. ①

finding the top-k most similar blocks in Ft−1 with respect to block

F
p
t (j) from Ft; ② extracting blocks in Ht−1 from the correspond-

ing positions of the top-k most similar blocks in Ft−1; ③ calculat-

ing pixel-wise similarity between the selected blocks from Ft−1

and F
p
t (j); ④ NLWarp operation for Ht.

St as Ŝt, which can reduce computation and memory while

maintaining accuracy. The key idea of our approximate

method is to pre-filter image blocks according to the deep

feature learned by the Encoder before calculating pixel-wise

similarity. The details are as follows:

In the 1st stage, we use average pooling to downsam-

ple the feature map from the Encoder and reduce the block

matching sensitivities of geometry transformations (shifts

and rotations). Denote the kernel size of the average pool-

ing as p and the downsampled feature map as F p
t . Then, the

resolution of the feature map is reduced to N/p2, i.e., 1/p2

of the original resolution. Each super-pixel in the downsam-

pled feature map F p
t corresponds to a block consisting of p2

pixels in the original feature map. Thus, the downsampled

distance matrix Dp
t ∈ R

(N/p2)2 can be calculated by

Dp
t (i, j) =

∥

∥F p
t−1 (i)− F p

t (j)
∥

∥

2
. (5)

For each pixel in any block bt of F p
t , we consider only k×p2

pixels in the k blocks of F p
t−1 that are nearest to bt.

In the 2nd stage, we compute and store the similarities

between each pixel of Ft and the corresponding k×p2 pix-

els of Ft−1. While for the other pixels in the preceding

frame, the elements of D̂t and Ŝt are set to +∞ and 0 re-

spectively. As similar pixels are sparse and a pixel can be

represented by a few pixels from the neighboring frame,

the quality loss of top-k blocks approximation is negligi-

ble. Fig. 3 illustrates the workflow of two-stage similarity

approximation. The NLWarp operation for Ct is similar to

that of Ht. We show only the operation for Ht in Fig. 3 for

simplicity.

Complexity analysis. Tab. 1 compares the complex-
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ity of our approximate method with that of the original

method. Since log k ≪ C in our experiments, we can ne-

glect the item related to searching the top-k nearest blocks

in Tab. 1 for simplicity. We denote the complexity of

the original non-local method as ψ, and the complexity

of our approximate method as φ, which can be rewritten

to O((N/p2)2C + 2kNCp2). By properly choosing the

values of k and p so that kp2 ≪ N , we have φ/ψ =
1/(2p4) + kp2/N ≪ 1, which means that our method

dramatically reduces the computation cost of the original

method. And for a given k, φ/ψ achieves the minimum

1.5(k/N)2/3 with p=(N/k)1/6. Similar conclusion can be

drawn for memory cost. More specifically, by setting p=10,

k=4, C=64, and f=41, φ is close to (O(NC2f2)), which is

the computational complexity of a convolutional layer with

a f×f kernel.

Non-local operation vs. motion compensation. There

are similarities and differences between the two opera-

tions. Similarities: 1) Both can be adopted to capture spa-

tiotemporal relationships and motion patterns in consecu-

tive frames. 2) Both can be seen as an attention mechanism.

In non-local operation, the warped state Ĥt−1 is calculated

with the states of all pixels in Ht−1 in a weighted sum form;

while in motion compensation, each pixel in Ĥt−1 is evalu-

ated by interpolation with some neighboring pixels in Ht−1,

also in a weighted sum form. Differences: 1) In non-local

operation, each pixel is warped from multiple positions in

Ht−1, and the motion is not restricted by a fixed flow mag-

nitude, which is different from motion compensation where

a fixed flow magnitude has to be set. Thus, non-local op-

eration can capture global motion patterns more effectively.

2) In non-local operation, the similarity is determined once

the feature is extracted; while in motion compensation, we

need to train additional layers for motion field generation.

3.4. Implementation Details

In our implementation, following existing methods [26,

45], we use L2 norm as the loss function:

l (Xt, Yt) =
∥

∥

∥
Ŷt − Yt

∥

∥

∥

2
. (6)

Due to the advantage of NL-ConvLSTM, global motion

can be captured with a small kernel in ConvLSTM. So our

NL-ConvLSTMs is implemented with a 3 × 3 kernel. For

all datasets, the networks are trained using the ADAM [20]

optimizer with an initial learning rate of 10−4 and a mini-

batch size of 32. In training, raw and compressed sequences

are sampled with a patch size of 80×80 for NL-ConvLSTM.

In contrast, the full resolution video sequences are fed into

our model during testing. We use k=4 and p=10 in all ex-

periments for balancing efficiency and effectiveness, and set

T=3 for all datasets.

1f is the kernel size of a convolutional layer

Table 1. Complexity comparison of the original non-local ap-

proach and ours. Here, N and C are the numbers of positions

and channels, k and p are the number of pre-filtered blocks and

the downsampling scale. By setting k=4 and p=10, our method

cuts the time and space to about 1/1000 of that consumed by the

original non-local method in 1080P videos.

Original non-local NL-ConvLSTM

Time O(2N2C) O((N/p2)2(C + log k) + 2kNCp2)
Space O(2N2) O((N/p2)2 + kN/p2 + 2kNp2)

To further accelerate the non-local operator, vectoriza-

tion is adopted in calculating distance matrix Dt. Although

vectorization does not reduce the number of floating-point

operations, it enables acceleration via parallel computing.

By expanding Dt in Equ. (4), we have

Dt
2 =

Cf
∑

F 2
t−1 · 1

⊤ + 1 ·

Cf
∑

F 2
t
⊤
− 2F⊤

t−1 · Ft,
(7)

where 1 ∈ R
N×1 is a vector whose elements are 1. We

adopt Equ. (7) for calculating Dp
t in the 1st stage, and im-

plement a sparse version of Equ. (7) to compute distances

between each pixel in the current frame and k × p2 pre-

filtered pixels in the preceding frame.

4. Performance Evaluation

To evaluate our method, we conduct extensive experi-

ments on two datasets: Vimeo-90K [42] and Yang et al.’s

dataset [45]. Our evaluation consists of five parts: 1) Ab-

lation study; 2) Quantitative evaluation with two perfor-

mance metrics (PSNR and SSIM); 3) Qualitative evalua-

tion by comparing the visual effect of compression artifact

reduction of different methods; 4) Run time comparison;

5) Checking the effectiveness of our method on videos com-

pressed by another algorithm.

4.1. Datasets and Settings

Vimeo-90K. It is a recently-built large-scale video

dataset for low-level video processing. All frames are re-

sized to a fixed resolution 448×256. We follow the settings

in [26] and refer the interested readers to [26] for details. In

short, compressed clips are generated by x265 in FFmpeg

with quantization parameter QP=32 and 37. Loop filter,

SAO [34] and B-frames are disabled in codec. We follow

[26] and only evaluate the 4th frame of each clip.

Yang et al.’s dataset. It consists of 70 video sequences

selected from the datasets of Xiph.org2 and JCT-VC [2].

Resolutions of these video sequences vary from 352 × 240
to 2, 560 × 1, 600. For a fair comparison, we follow the

settings in [45]: 60 sequences are taken for training and

the remaining 10 for testing. All sequences are encoded in

HEVC LDP mode, using HM 16.0 with QP=37 and 42.

2https://media.xiph.org/video/derf/
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a) b)
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Figure 4. Examples of blocks after pre-filtering in the first stage of our method. Images are from Yang et al.’s dataset. The red blocks are

the top-4 most similar blocks with respect to the yellow block in another frame.

Table 2. Ablation study of the proposed NL-ConvLSTM on Yang

et al.’s dataset with QP=37. The results of PSNR improvement

∆PSNR (db) are reported in the 1st row. The results of SSIM

improvement ∆SSIM (×10−2) are listed in the 2nd row.

Encoder-Decoder ConvLSTM ME-ConvLSTM Our method

with 1 frame with 7 frames with 7 frames with 7 frames

∆PSNR 0.395 0.456 0.503 0.601

∆SSIM 0.684 0.723 0.827 0.897

4.2. Ablation Study

Effect of multiple frames. Here we evaluate the effec-

tiveness of utilizing multiple frames. First, we compare the

performance between Encoder-Decoder (using 1 frame) and

ConvLSTM (using 7 frames). The results of the 2nd and

3rd columns in Table 2 show that utilizing multiple frames

in ConvLSTM obviously boosts performance. Then, we

further verify the effectiveness of our method using more

frames as input on Yang et al.’s dataset with QP=37. Each

of the input clips consists of 20 consecutive frames: the tar-

get frame, 15 preceding frames and 4 following frames. We

use the pre-trained model on the same settings with T=3,

and then fine-tune the model on 20-frame inputs using al-

most similar training settings, except for a smaller batch

size. We find that our model tuned on longer sequences

gets 0.604dB/0.00923 of ∆PSNR/∆SSIM, which are better

than the results of the 5th column in Table 2. The results

above indicate that multiple frames and longer sequences

do improve artifact reduction performance.

Effect of the non-local mechanism. Here we investi-

gate the effectiveness of non-local mechanism. The non-

local module aims to learn spatiotemporal dependency be-

tween two consecutive frames. Usually, motion estimation

and compensation module can do such a role. Thus, we use

a motion estimation and compensation module to replace

the non-local module, and name such a method as ME-

ConvLSTM. We follow the motion generation architecture

in [33]. The results on Yang et al.’s dataset with QP=37

are listed in the 4th column of Table 2. Compared with ME-

ConvLSTM, our method performs better, 19.48% higher in

terms of ∆PSNR and 8.46% higher in terms of ∆SSIM,

which demonstrates that ConvLSTM with non-local mech-

anism utilizes temporal information better.

Effect of the Two-Stage Non-local Method. We pro-

pose a two-stage non-local method to learn the spatiotem-

poral dependency between two neighboring frames. In the

first stage, it tries to find the top-k most similar blocks in

F p
t−1 for each block of F p

t . This pre-filtering impacts spa-

tiotemporal dependency learning. Here, we visualize some

pre-filtering results in the first stage to show that our NL-

ConvLSTM method can learn the spatiotemporal depen-

dency among consecutive frames.

Fig. 4 shows some examples of blocks after pre-filtering.

The red blocks are the top-4 most similar blocks in a frame

after pre-filtering with respect to the yellow block in an-

other frame. In Fig. 4(a) and Fig. 4(b), these blocks are

enlarged, bounded with white boxes, and shown in the full

image. Fig. 4(a) shows two consecutive frames. The yellow

block in the right frame contains the daughter’s ear. Our

method finds the daughter’s ear and her mother’s ear in the

left frame. This shows that our method can capture simi-

lar patterns at various locations, which could provide addi-

tional information for enhancement. In Fig. 4(b), we manu-

ally construct a 3-frame sequence with a large time gap. It

is difficult for motion estimation based methods to handle

such large motion. However, our method can still capture

the spatiotemporal dependency of basketball. In Fig. 4(c),

we thread the top-1 block of each frame from the yellow

block in the right-most frame to left iteratively. Such a path

reflects the robust spatiotemporal relationship built among

frames by our method.
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Table 3. Average PSNR/SSIM on Vimeo-90K.

QP 32 37

HEVC [34] 34.19 / 0.950 31.98 / 0.923

ARCNN [11] 34.87 / 0.954 32.54 / 0.930

DnCNN [49] 35.58 / 0.961 33.01 / 0.936

DSCNN [44] 35.61 / 0.960 32.99 / 0.938

DKFN [26] 35.81 / 0.962 33.23 / 0.939

3D CNN 35.81 / 0.961 33.25 / 0.938

Our method 35.95 / 0.965 33.39 / 0.943

Table 4. Average ∆PSNR (dB) and ∆SSIM (×10−2) on Yang et

al.’s dataset.
QP Seq. ARCNN [11] DnCNN [49] DSCNN [44] MFQE [45] Our method

37

1 0.241 / 0.51 0.448 / 0.83 0.492 / 0.87 0.772 / 1.15 0.827 / 1.21

2 0.115 / 0.30 0.439 / 0.52 0.458 / 0.58 0.604 / 0.63 0.971 / 0.92

3 0.161 / 0.49 0.276 / 0.76 0.271 / 0.74 0.472 / 0.91 0.483 / 0.99

4 0.183 / 0.35 0.377 / 0.55 0.393 / 0.54 0.438 / 0.48 0.576 / 0.66

5 0.150 / 0.30 0.333 / 0.48 0.356 / 0.53 0.550 / 0.52 0.598 / 0.74

6 0.161 / 0.23 0.415 / 0.50 0.435 / 0.49 0.598 / 0.51 0.658 / 0.67

7 0.128 / 0.29 0.284 / 0.44 0.277 / 0.45 0.390 / 0.45 0.394 / 0.58

8 0.125 / 0.37 0.276 / 0.61 0.230 / 0.63 0.484 / 1.01 0.563 / 1.18

9 0.149 / 0.38 0.299 / 0.71 0.271 / 0.66 0.394 / 0.92 0.439 / 1.03

10 0.146 / 0.24 0.289 / 0.58 0.274 / 0.54 0.402 / 0.80 0.501 / 0.99

Ave. 0.156 / 0.35 0.344 / 0.59 0.346 / 0.60 0.510 / 0.74 0.601 / 0.90

42 Ave. 0.252 / 0.83 0.301 / 0.96 0.364 / 1.06 0.461 / — 0.614 / 1.47

1: PeopleOnStreet 2: TunnelFlag 3: Kimono 4: BarScene 5: Vidyo1

6: Vidyo3 7: Vidyo4 8: BasketballPass 9: RaceHorses 10: MaD

4.3. Quantitative Comparison

For a fair comparison, we use the same data process-

ing method and training data. Thus, to demonstrate the

advantage of our method, we compare it with five exist-

ing methods: ARCNN [11], DnCNN [49], DSCNN [44],

DKFN [26] and MFQE [45]. For ARCNN, DnCNN and

DSCNN, we get better results after they were retrained

on Yang et al.’s dataset than that reported in [45]. For

DKFN [26], we directly cite performance results from the

original paper where it was evaluated only on Vimeo-90K.

For MFQE [45], we cite the results of PSNR improvement,

and compute SSIM improvement via our manually labeled

PQFs and its published model3. Besides, considering that

3D CNN is able to capture spatiotemporal information from

video frames, we also implement it for performance com-

parison by adopting the same architecture as [17] that aims

at video super-resolution. Due to its large memory cost, we

train and evaluate it only on Vimeo-90K.

Quality enhancement. Results of PSNR/SSIM on two

datasets are in Table 3 and Table 4 respectively. In Table 3,

we use HEVC with loop filters [34] as the baseline. From

Table 3, we can see that our method outperforms the 2nd

best methods (DKFN and 3D CNN) by about 0.14 dB in

terms of PSNR and 25% improvement on ∆SSIM. These

methods that utilize spatiotemporal information, including

ours, DKFN and 3D CNN, all achieve better performance

3[45] only publishes the model with QP=37.

Figure 5. PSNR/SSIM curves of HEVC baseline, MFQE and NL-

ConvLSTM on the sequence TunnelFlag with QP=37.

Table 5. Run-time (ms per frame) comparison among six methods.
Resolution 180x180 416x240 640x360 1280x720 1920x1080

ARCNN [11] 1.73 4.58 9.19 36.06 80.70

DnCNN [49] 6.30 15.84 35.51 139.77 315.83

DSCNN [44] 15.26 36.88 82.31 322.92 731.21

MFQE4 [45] 20.28+ 51.01+ 112.87+ 443.82+ 1009.00+

original NL 4391.75 - - - -

ours 102.13 304.11 621.94 2607.60 6738.00

than the remaining methods.

Yang et al.’s dataset has less training data than Vimeo-

90K, and these two datasets are processed with different

compression settings. All methods perform a little worse

on Yang et al.’s dataset than on Vimeo-90K. However, from

Table 4 we can still get similar conclusion: methods ex-

ploiting spatiotemporal information of neighboring frames

perform better than these do not exploit. Our method out-

performs all the other methods on all test sequences, and

on average its PSNR/SSIM improvement is 17.8%/21.6%
higher than that of MFQE. Specifically, for QP=37, our

method achieves the highest PSNR/SSIM improvement on

the 2nd sequence, which is 60.7% / 46% higher than that of

MFQE. For QP=42, our method gets 33.19% and 68.68%
increase of ∆PSNR over MFQE and DSCNN, respectively.

Quality fluctuation. Quality fluctuation is an index to

evaluate the quality of a whole video [13, 45]. Drastic qual-

ity fluctuation often leads to severe temporal inconsistency

and degradation of QoE. We evaluate fluctuation by Stan-

dard Deviation (STD) and Peak-Valley Difference (PVD)5

of the PSNR/SSIM curves for each sequence as in [13, 45].

Here, we present only the STDs and PVDs of HEVC base-

line, MFQE and our method for simplicity. For PSNR, the

STD values of HEVC baseline, MFQE and our method are

1.130dB, 1.055dB and 1.036dB, and their PVD values are

1.558dB, 1.109dB, and 1.038dB, respectively. For SSIM,

we notice similar trends. Fig. 5 shows the PSNR curves

of HEVC baseline, MFQE and NL-ConvLSTM on the se-

quence TunnelFlag. In Fig. 5, comparing with MFQE, our

method gets similar improvement on PQFs, but achieves

much higher PSNR and SSIM improvement on non-PQFs.

All these results show that our method performs more stably

4time for detecting PQFs are not included
5PVD calculates the average difference between peak values and their

preceding/following nearest valley values
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Compressed ARCNN DnCNN DS-CNN MFQE DKFN Ours Raw patch Full frame

Figure 6. Comparison of reduction effect on four kinds of compression artifacts.

than the baseline and MFQE.

4.4. Qualitative Comparison

Fig. 6 compares the reduction effect of different methods

on four kinds of compression artifacts happened to images

from Vimeo-90K with qp=37. The four artifacts are block-

ing, color bleeding, mosquito noise and ringing [48]. Each

row stands for an image with a kind of compression arti-

facts. Concretely, in the 1st row, the cup edge is blurred due

to blocking artifacts; and in the 2nd row, black color of hair

overlapping the face results in a black stripe on the face.

Words in the 3rd image are surrounded by mosquito noise,

and the 4th image suffers from a silhouette-like shade par-

allel to the outline of the person. The last column shows the

original frames, and the 8th column presents a cropped part

from each original frame. The 1st column lists the com-

pressed image of each cropped part. From the 2nd column

to the 7th column, the cropped parts after artifact reduction

by different methods are illustrated. Checking the images

in Fig. 6, we can see that the cropped images after artifact

reduction by our method (in the 7th column) have higher

quality than these processed by the other methods, and are

more similar to the original images (the 8th column). This

means that our method can handle these distortions better

than the five existing methods.

4.5. Run Time Comparison

In Tab. 5 we present run-time comparison results. As

our method has to process more frames, it consumes more

time than the other methods. However, the run-time of our

method is acceptable, and our method uses much less time

than the original NL method (the NL-ConvLSTM without

the approximation mechanism). Here, we give only the

original NL’s run-time at resolution 180×180 (for higher

resolutions, it consumes too much time and GPU-memory).

Our method can be further sped up by cudnn-accelerated

ConvLSTM and highly-tuned implementation.

4.6. Applying to Other Compression Standard

Finally, we check whether our method is effective for

compressed video sequences generated by other compres-

sion algorithms, such as H.264. The models are ini-

tialized with the corresponding models trained on video

clips compressed by HEVC, and then are fine-tuned on

video clips compressed by x264 in FFmpeg with QP=37.

The resulting PSNR/SSIM improvements of our method

on Vimeo-90K and Yang et al.’s dataset are 1.43dB/0.011

and 0.693dB/0.0085. The enhancement performance of our

method on H.264 compressed videos is comparable to that

on HEVC compressed videos. These results indicate that

our method is also effective for H.264 compressed videos.

5. Conclusion

In this paper, we propose a novel end-to-end non-local

ConvLSTM for video compression artifact removal by

modeling spatial deformations and temporal variations si-

multaneously. Experiments on two datasets show that our

method can enhance the quality of compressed videos con-

siderably, remove artifacts effectively and outperform the

existing methods. In the future, we plan to extend our

method to other low-level video enhancement tasks, such as

video super-resolution, interpolation and frame prediction.
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