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Abstract

Synthesizing novel views from a 2D image requires to in-

fer 3D structure and project it back to 2D from a new view-

point. In this paper, we propose an encoder-decoder based

generative adversarial network VI-GAN to tackle this prob-

lem. Our method is to let the network, after seeing many

images of objects belonging to the same category in differ-

ent views, obtain essential knowledge of intrinsic properties

of the objects. To this end, an encoder is designed to extract

view-independent feature that characterizes intrinsic prop-

erties of the input image, which includes 3D structure, color,

texture etc. We also make the decoder hallucinate the im-

age of a novel view based on the extracted feature and an

arbitrary user-specific camera pose. Extensive experiments

demonstrate that our model can synthesize high-quality im-

ages in different views with continuous camera poses, and

is general for various applications.

1. Introduction

We tackle the problem of novel view synthesis – given

a single 2D image of objects, we aim to synthesize a new

one captured from an arbitrary viewpoint. This potentially

benefits a large variety of applications in computer vision

and robotics. For instance, multiple synthesized 2D views

form an efficient 3D representation as a collection of images

[4]. In robotics, able to see objects in various viewpoints is

helpful for planing [19].

Existing methods for novel view synthesis fall into two

categories – geometry- and learning-based ones. Given a

2D image, geometry-based methods [16, 27] first estimate

its 3D representation, and project it back to 2D space based

on the target view. By directly building 3D models, these

methods allow synthesizing 2D new images from arbitrary

viewpoints. However, estimating the 3D structure from a

single 2D image is intrinsically ill-posed. If not restricted

to specific scenarios, e.g., faces [1], 3D models cannot be

accurately generated.

On the other hand, with powerful convolutional neural

networks (CNN), learning-based methods [28, 34, 29, 30]

directly produce the final image in the target view, without

explicitly estimating its 3D structure. View synthesis is thus

implemented with a mapping function between the source

and target views associated with their camera poses [34]. As

estimation of 3D models is not needed, it is applicable to a

wider range of scenarios. The limitation is that directly pro-

ducing a 2D image without considering 3D structure does

not generalize well. To address this issue, method of [24]

incorporates extra 3D information, which is however not

considered in this paper since we do not think 3D informa-

tion is always accessible in practice and instead propose a

more general solution for novel view synthesis.

Recently, generative adversarial networks (GAN) [8, 26]

were applied to multi-view synthesis. Current GAN-based

approaches usually discretize camera parameters into a

fixed-length vector to improve performance [29, 30]. Nev-

ertheless, 3D-related information contained in camera poses

is inevitably damaged with such setting.

In this paper, we propose a method to benefit from both

learning- and geometry-based methods while ameliorating

their drawback. Our method is essentially learned-based,

and yet still infers 3D knowledge implicitly. The key idea

is based on the fact that any 2D image is a projection of the

3D world. If a certain feature is invariant with viewpoints,

it depicts important intrinsic property of the 3D world. By

specifying the camera pose, we reconstruct the 2D image

according to the view independent “3D” feature.

It follows a virtual camera system – that is, all intrinsic

information like shape, color, texture, and illumination, is

first estimated. Then a 2D image is rendered based on the

3D information as well as the visual camera. Our system,

which is called View Independent Generative Adversarial

Network (VI-GAN), simulates such a pipeline. We first infer

knowledge that characterizes the 3D world based on a 2D

image. Then with user specified camera pose, we project

this 3D world back to image space to synthesize a new view.

This is the first attempt to take this strategy. It is noteworthy

that this setting naturally leads to an encoder-decoder archi-

tecture where the encoder embeds the 2D image to a latent

3D feature, and the decoder renders a novel image based on

the learned 3D feature and target camera pose.
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Inferring the 3D information from a single 2D image is

inherently ill-posed since there exist an infinite number of

solutions that produce the same 2D image. To constrain

the problem, we additionally incorporate camera pose and

location information of the 2D image where camera pose

can be inferred from a single RGB image accurately [15].

Further, two discriminators are introduced to promote

the realism and pose accuracy of generated results. These

discriminators are trained with two objectives separately,

i.e., classifying the real and generated images and predict-

ing the pose of input images. By adapting these discrimina-

tors, our model generates realistic results of a given camera

pose. Our total contribution lies in the following ways.

• We propose a novel view synthesis framework to syn-

thesize new images in arbitrary views with weakly su-

pervised 2D training data.

• Our model extracts view-independent features to im-

plicitly describe the properties of 3D world, making

our model generalize well for unseen viewpoints.

• Extensive experiments demonstrate that our model

generates high quality images and can be used in a

wide range of tasks.

2. Related Work

Existing methods of novel view synthesis can be divided

into two categories of geometry- and learning-based ones.

Geometry-based approaches explicitly learn the 3D struc-

ture from the input 2D image. This allows synthesizing im-

ages of an arbitrary novel view. Learning-based approaches

directly map the image of a certain view to another, without

inferring 3D information.

Geometry-based Methods Lin et al. [20] and Pontes et al.

[25] explicitly estimated the point cloud and mesh based on

the input image. However, the estimated structures are often

not dense enough, especially when handling complicated

texture [25]. Garg et al. [7] and Xie et al. [33] estimated the

depth instead, which is also related to 3D structure. Never-

theless, they are designed for binocular situations only.

Rematas et al. [27] and Kholgade et al. [16] proposed

exemplar-based models that utilize large-scale collections

of 3D models. Given an input image, these approaches first

identify the most similar 3D model in the database and fit

it to the input. The 3D information is then utilized to syn-

thesize novel views. It is clear that the accuracy of these

methods depends on variation and complexity of 3D mod-

els. 3D Morphable Model (3DMM) [1] and its variant [6]

allow generating a high quality 3D model by fitting the 3D

structure and texture map from precomputed results learned

from accurate 3D models. They are only applicable to faces.

Learning-based Methods Recently, convolutional neural

networks are introduced for novel view synthesis [5, 28, 34,

24, 34, 24, 34, 28, 29, 30, 2]. Early methods [5, 28] di-

rectly mapped input images to another view with an encode-

decoder architecture. Note that these solutions are hard to

disentangle pose-invariant factors from a single view. To

improve result quality, Zhou et al. [34] predicted appear-

ance flow instead of synthesizing pixels from scratch. It

does not deal with areas whose pixels are not contained in

input [24]. Park et al. [24] concatenated another generator

behind such a network for enhancement. It needs 3D anno-

tation for training, which is however not considered in our

setting.

To improve the realism of synthesized images, in [29,

30, 2], generative adversarial networks (GAN) [8] are used.

GAN-based methods have a discriminator to distinguish be-

tween real and generated images. With a generator to test

the discriminator, missing pixels are hallucinated and the

output becomes realistic. We note all these methods es-

sentially learn mapping between images of different camera

poses without inferring the 3D structure. This impedes the

generalization capacity for unseen viewpoints. As a result,

these methods can only synthesize decent results in several

preset views. In contrast, our method can synthesize novel

viewpoints even if they never appear in the training set. It

is a learning based approach and implicitly infers the 3D

structure in the latent space.

3. Proposed Method

In this section, we explain the motivation, as well as

each component in our network. The overall framework is

shown as Fig. 1, which is trained with weakly-supervised

2D image pairs. A virtual camera system aims at control-

ling the camera to display the view of a 3D object. Since

the structure is supposedly independent of camera poses, it

can be represented by features that are only related to in-

trinsic properties of the object. Thus the key to novel view

synthesis is to separate the intrinsic feature of objects from

the camera pose. By achieving this, we re-render the object

by combining the intrinsic features with a new camera pose.

In our model, we use an encoder for the disentangling task

and a decoder for the rendering task.

3.1. Network Architecture

Encoder Given a 2D image IA, the encoder E is respon-

sible for extracting view-independent features FA. Ideally,

such features should include all intrinsic properties of the

objects presented in IA, and be also irrelevant to the camera

pose, of which IA is taken. This seems impossible at the

first glance, since some parts are invisible in IA. Analogy

to human ability to accomplish this task by searching simi-

lar scenes in memory, we train the encoder with data from

different viewpoints.
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Figure 1. Overall structure of VI-GAN. The encoder extracts the view-independent feature, which is the implicit representation of the 3D

world. The decoder utilizes the extracted features and new camera pose parameters to synthesize novel views. Two discriminators are set

to predict the realism of input and pose information respectively. Our system is trained without 3D supervised data.

To reduce the difficulty of training, the camera pose

is also incorporated as extra information into the encoder.

This operation is practical since directly computing precise

camera pose from a single RGB view is realizable [15].

Specifically, the camera pose can be parameterized by a ro-

tation matrix R ∈ R
3×3 and a shifting vector T ∈ R

3×1.

We reshape R to 9×1 and concatenate it with T , leading to

a 12× 1 camera pose feature PA. So FA is produced by

FA = E(IA ⊕ PA), (1)

where PA is employed as a global feature to be concate-

nated with IA. ⊕ is the concatenation operation. This

concatenation operation provides the camera pose for each

pixel to help 3D inference since 3D coordinates can be com-

puted by combining the camera pose and the corresponding

location on the image plane.

To infer 3D related knowledge based on 2D images, the

encoder E needs to implicitly register the 2D image to the

latent 3D model. In this regard, the location information

of the 2D image is fatal. However, CNN only perceives

local regions without considering location due to the spatial

invariance property. The work of [22] remedies this issues

by concatenating the pixel location as two extra channels

to the feature maps, known as the CoordConv operation.

In our model all standard convolutional layers in the image

generator are substituted with CoordConv.

Decoder With the extracted pose-independent features

FA and a target pose PB , the decoder functions as a ren-

derer to convert them back to the image space. More specif-

ically, we use an embedding network MD to accommodate

the channel numbers of PB and FA, then concatenate FA

and MD(PB) to form the input to the decoder. This is for-

mulated as

IA→B = D(FA ⊕MD(PB)), (2)

where D denotes the decoder.

In principle, the architecture of the decoder reverses en-

coder. Yet we also discover that replacing instance normal-

ization with Adaptive Instance Normalization (AdaIN) [12]

in the residual blocks of the decoder boosts performance.

Specifically, the mean µ(x) and variance σ(x) of the in-

stance normalization layer are inferred by the target pose

PB instead of the feature map itself. This makes objects

with similar pose share feature statistics, easier for the de-

coder to render results of the target pose. In addition, both

MD and the computation of AdaIN parameters are imple-

mented by simple multilayer perceptron networks that adapt

the pose information as input.

3.2. Learning 3D Related Knowledge

In general, training of our model includes a view-

independent loss term, a series of image-reconstruction loss

terms, a GAN loss term and a pose prediction loss term.

View-independent Loss The view-independent loss aims

to impose the pose-independent property for the latent fea-

ture. Let FA, derived from equation (1), be the latent feature

of IA captured with camera pose PA. We first randomly

choose another pose PB and render the target view IA→B

by Eq. (2). Then another latent feature corresponding to
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IA→B is obtained by FB = E(IA→B ⊕ PB). If FA is

identical to FB , they can be regarded as view-independent.

Therefore, this loss is formulated as

LV I = E(‖FA − FB‖), (3)

where E refers to computing the expectation value.

Image-reconstruction Loss The first term of the image-

reconstruction loss derives from generation of target view

IB . To guarantee precision of the synthesized view, we use

pixel-level and perceptive loss jointly to facilitate mapping

latent features back to the image space. As shown in [14, 18,

31], jointly using both of them could result in high-quality

synthesis. This is shown as

Lpixel = E(‖IA→B − IB‖),

Lper = E((V(IA→B)− V(IB))
2),

(4)

where Lpixel is the pixel-level loss and Lper is the percep-

tive loss. V includes features extracted from the VGG16

network. Meanwhile, the decoder should also have the abil-

ity of reconstructing the input view upon feeding its camera

parameters. To this end, we set an input reconstruction loss

term as

Lrec = E(‖IA − IA→A‖), (5)

where IA→A = D(FA ⊕MD(PA)) is the reconstruction of

input view IA.

To further promote the precision and realism of syn-

thesized images, cycle restriction is also adopted, which

makes generated images transform back to the original view

[21, 13, 35]. This cycle loss term is explicitly computed at

pixel and perceptive levels as

IA→B→A = D(E(IA→B ⊕ PB)⊕MD(PA)),

Lcyc = E(‖IA→B→A − IA‖),

Lcycper = E((V(IA→B→A)− V(IA))
2).

(6)

GAN Loss The inferred view-independent representation

contains features of other views. The decoder is also re-

quired to hallucinate possibly missing parts, especially the

area of occlusion that is not viewed in input. We use an

auxiliary network as a discriminator to achieve this goal.

With objective to improve the realism of synthesized im-

ages, the discriminator aims to identify realistic character-

istic of input. This loss term is implemented by Wasser-

stein GAN-Gradient Penalty (WGAN-GP) [10]. We train an

essential D to maximize the Wasserstein distance between

real samples and synthesized ones. If we denote distribu-

tions of real images as Pr and synthesized images as Pf ,

the loss term for D and generator G, which includes E and

D, is written as

LGAND
= EPf

[D(IA→B)]− EPr
[D(IB)] + λgpLgp,

LGANG
= EPr

[D(IB)]− EPf
[D(IA→B)],

(7)

where D(X ) is the output of D with input X , Lgp is the

gradient penalty term defined in [10]. λgp is the weight set

to 10 during training.

Pose Prediction Loss To boost accuracy of synthesis in

term of camera poses, another discriminator, denoted as

DP , is employed. A pose prediction loss is adopted in

this network to ensure the generated images to be consis-

tent with their target poses. Specifically, instead of distin-

guishing between real and fake samples, this discriminator

is trained to predict the camera pose of a given image. Our

generator, on the other hand, pushes the discriminator to

output the target pose for the synthesized sample. This loss

term is formulated as

LGANDP
= EPr

((DP(IB)− PB)
2),

LGANGP
= EPf

((DP(IA→B)− PB)
2),

(8)

where DP(X ) is the output of DP with input X . LGANDP

and LGANGP
are the loss terms for discriminator and gen-

erator respectively. Further, DP enables our system to han-

dle the situation where input camera pose is not accessible,

since users can use DP to estimate the corresponding pa-

rameters of a given real image.

In summary, the overall loss terms for the encoder, de-

coder and discriminators in VI-GAN are defined as

LE,D = λ1LV I + λ2Lpixel + λ3Lper + λ4Lrec+

λ5Lcyc + λ6Lcycper + λ7LGANG
+ λ8LGANGP

,
(9)

LD = λ9LGAND
+ λ10LGANDP

. (10)

In our experiments, the values from λ1 to λ10 are set

to make loss not far away from each other. The detailed

structure of VI-GAN is given in the supplementary material.

4. Experiments

We evaluate VI-GAN on a wide range of datasets in-

cluding ShapeNet [3], Multi-PIE [9] and 300W-LP [36].

ShapeNet [3] contains a large number of 3D models be-

longing to various categories. Images rendered by [4] from

this dataset are employed, whose camera poses are continu-

ous. We utilize this dataset to analyze the function of each

component in our method and evaluate the applicability of

VI-GAN on general objects. Especially, for each category,

we use 80% models for training and 20% for testing.

Multi-PIE [9] is a dataset, which contains images of

persons under 13 camera-poses with 15◦ intervals at head

height. We use 250 subjects from the first session of this
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(a) (b) (c) (d) (e) (f) (g)

Figure 2. Results of ablation experiments. (a) is the input and (g)

is the ground truth. (b)-(f) are synthesized by VI-GAN (w/o VI),

VI-GAN (w/o Pose), VI-GAN (w/o Coord), VI-GAN (w/o AdaIN)

and VI-GAN respectively. The images are with size 128 × 128.

Please zoom in to see details.

Setting L1 SSIM

VI-GAN(w/o VI) 16.43 0.82

VI-GAN(w/o Pose) 16.81 0.80

VI-GAN(w/o Coord) 14.35 0.85

VI-GAN(w/o AdaIN) 14.02 0.84

VI-GAN 12.56 0.87

Table 1. Mean pixel-wise L1 error (lower is better) and SSIM

(higher is better) between ground truth and predictions generated

by different settings in ablation experiments. When computing the

L1 error, pixel values are in range of [0, 255].

dataset where the first 200 subjects are for training and the

rest 50 are for testing. This dataset is employed to analyze

the sensitivity of camera poses and is utilized in comparison

with existing GAN-based methods, since the camera poses

of these images are discrete.

300W-LP [36] has various face images with continuous

camera poses and 3DMM parameters. We use 80% identi-

ties for training and 20% for testing.

4.1. Effectiveness of Each Part

The view-independent loss, pose prediction loss, Coord-

Conv operation, and AdaIN contribute to the quality of final

synthesis. In this section, we disable each of them sepa-

rately to show their respective necessity. Moreover, the ex-

periments are conducted on the “chair” category from the

ShapeNet dataset [3]. During testing, the mean pixel-wise

L1 error and the structural similarity index measure (SSIM)

[32, 23] are computed between synthesized results and the

ground truth.

Contribution of View-independent Loss Fig. 2(b)

shows samples output by the model without the loss defined

in Eq. (3), which is called “VI-GAN (w/o VI)”. It is distinct

since the results are either vague or lacking pose accuracy.

Its L1 error increases largely while SSIM score reduces a
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(b) Pose Sensibility Analysis of Decoder

Figure 3. Pose sensibility analysis for the encoder and decoder.

lot. This is because the model cannot infer accurate 3D in-

formation without this basic constraint.

Contribution of Pose Prediction Loss Fig. 2(c) shows

several results without the pose prediction loss define in Eq.

(8) and this model is named “VI-GAN (w/o Pose)”. As

shown in this figure, without this loss, the model does not

ensure an accurate pose. Also, the generated image tends to

be more blurry. As shown in Table 1, without this term, the

L1 error increases a lot, while the SSIM drops from 0.87 to

0.80. Such degeneration is caused by the fact that this loss

enables the generator to be aware of relation between the

camera poses and view-independent features.

Contribution of CoordConv We demonstrate the func-

tion of CoordConv by setting the generator of VI-GAN as

traditional convolution that is named “VI-GAN (w/o Co-

ord)”. We observe from Fig. 2(d) and (f) that the quality

and pose accuracy of generated images are heavily damaged

without the CoordConv. Results in Table 1 also confirm this

conclusion. It is because coordinate information is crucial

for 3D feature learning. Therefore, the CoordConv in gen-

erator is conducive for novel view synthesis.

Contribution of AdaIN We explain the role of AdaIN

by setting another model, which is called “VI-GAN (w/o

AdaIN)”, with instance normalization in the residual blocks

of the decoder instead. The comparison with VI-GAN is

given in Fig. 2(e)-(f) where the artifacts are observed. The

quantitative errors in Table 1 indicate that AdaIN can refine

the output.

4.2. Sensitive Analysis of Camera Pose

We also provide analysis on conditioned pose informa-

tion. Our experiments are conducted on Multi-PIE [9],

since the camera movement in this dataset only has one de-

gree of freedom.
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Sensitivity of Pose A Note that the input camera pose PA

provides additional information for the encoder, which can

be obtained by the method of [15]. We analyze how qual-

ity of the results changes with varying pose accuracy. As

shown in Fig. 3(a), the input camera pose of encoder is

influential in synthesis while its effect is stable within a

certain perturbation range. Besides, this stable range sur-

passes the deviation margin of modern camera pose evalu-

ation methods [15], which is roughly ±10◦. Thus normal

pose perturbation does not impede our method in practice.

Sensitivity of Pose B The target camera pose PB is deter-

mined by users. Note that the distance between PA and PB

also influences the synthesis quality. Fig. 3(b) shows the

mean L1 error versus the difference between PA and PB .

The error remains small within 90 degrees, but rises over

90 degrees. This confirms our intuition – if PB is very dif-

ferent with PA, it is hard to synthesize the target because

more information is missing.

4.3. Latent Feature Encodes 3D Information?

It is noted that by imposing view-independent constraint,

our encoder implicitly captures 3D structure of objects. To

demonstrate this, we show that a learned encoder can help

learning of 3D tasks. Two schemes for 3D face landmark es-

timation are adopted with the same network. This network

consists of two parts where the encoder is identical with

the encoder in VI-GAN and Multilayer Perceptron (MLP)

is with 2-layers for estimating the coordinate of landmarks

based on features extracted by the encoder.

These two schemes are designed with the following pro-

cedures: (1) The overall network is trained from scratch to

learn 3D features directly. (2) The encoder is pre-trained by

VI-GAN with the view-independent constraint. 3D super-

vised data is then used to train the overall network.

We use 300W-LP [36] as training data whose 3D land-

marks are obtained by utilizing their 3DMM parameters.

Besides, the mean Normalized Mean Error (NME) [36] is

employed for evaluation. The testing data includes 2,000

images from AFLW2000-3D [17], and each image contains

68 landmarks. When the train loss of both settings no longer

changes, we report their results where the mean NMEs of

setting (1) and (2) are 12.7% and 6.8% respectively. This

demonstrates that the feature learned by the encoder of VI-

GAN is 3D-related. It gives a good initialization for the 3D

learning tasks. In the future, we plan to explore more 3D

tasks with VI-GAN.

5. Applications
As a general framework, our model does not need much

task-specific knowledge, and thus is applicable to various

applications. In the following, we take face and object

rotation as applications to demonstrate the effectiveness

of our approach. All the models of VI-GAN in experi-

ments are trained with Adam optimizer with β1 = 0.5 and

β2 = 0.999. The learning rate is 10−4. The batch size is set

as 24. In each training epoch, we train one step for the gen-

erator and one step for the discriminators. The image size is

128 × 128 for each dataset. Experiments are all conducted

on one TITAN V GPU.

5.1. Face Rotation

Discrete Face Rotation Face rotation aims to synthesize

a human face of another view. As indicated in Section 4,

Multi-PIE [9] contains 13 view points at head height, and

thus is suitable for this task. We evaluate our approach in

the aligned and unaligned settings. For the aligned setting,

all faces are aligned and only the face region is used for both

training and testing. This reduces variation of images, and

makes the method focus on the face part. The unaligned

setting means all images are not cropped, which is more

challenging.

We compare our approach with CR-GAN [29] and DR-

GAN [30]. CR-GAN utilizes two learning pathways in

GAN to improve synthesis; DR-GAN disentangles iden-

tity representation from other face variations to synthesize

identity-preserving faces at target poses. Results of these

settings are shown in Figs. 4 and 5.

Our method outperforms CR-GAN and DR-GAN in both

aligned and unaligned settings. DR-GAN may generate im-

ages without correct lighting. Although CR-GAN generates

better results, the synthesized images could be less natural

as shown in the red border of Fig. 5.

The Frechet Inception Distance (FID) [11] is commonly

employed to measure the quality of generated images. The

lower FID is, the closer distance the domains of real and

generated images have. The FID of aligned and unaligned

settings are shown in Table 2, which manifest decent per-

formance of our system. Besides, the L1 error and SSIM

are calculated, which also support this conclusion.

Continuous Face Rotation Note that both CR-GAN and

DR-GAN can only synthesize face images of discrete view-

points. To evaluate our approach in a continuous setting, we

additionally conduct experiments on 300W-LP [36] dataset,

whose images contain continuous camera poses. In this set-

ting, PRNet [6] is used for comparison. PRNet [6] uses the

UV position map in 3DMM to record 3D coordinates and

trains CNN to regress them from single views.

Fig. 6 qualitatively compares our method with PRNet

[6]. The PRNet model is also trained on 300W-LP with

publicly available implementation. As illustrated, PRNet

[6] may introduce artifacts when information of certain re-

gions is missing. This issue is severe when turning a profile

into a frontal face. In contrast, our model produces more

realistic images from different viewpoints.
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Figure 4. Comparison on aligned Multi-PIE. For each image, the top row is the ground truth while the second row is generated by VI-

GAN. The third and fourth rows are the output of CR-GAN [29] and DR-GAN [30] respectively. Obviously, DR-GAN cannot handle the

pose-irrelevant factors, such as lighting.

Figure 5. Comparison on unaligned Multi-PIE. For each image, the top row is the ground truth. The other rows are synthesized by VI-GAN,

CR-GAN [29] and DR-GAN [30] from top to bottom. The images in red box on the right are obtained by zooming into the front face in

red box on the left. Though CR-GAN can generate multiple views, the synthesized faces are blurry.

Method Aligned Unaligned

FID L1 SSIM FID L1 SSIM

CR-GAN 8.76 10.17 0.76 13.92 15.45 0.68

DR-GAN 107.5 31.92 0.36 151.1 43.11 0.23

VI-GAN 6.51 5.86 0.88 9.05 9.73 0.80
Table 2. FID, mean pixel-wise L1 error, and SSIM of different

methods with respect to aligned and unaligned situations. For FID

and L1 error, the lower the better; for SSIM, the higher the better.

We also build a quantitative evaluation scheme when

turning into frontal faces. Given a synthesized frontal im-

age, it is aligned to its ground truth followed by cropping

into facial area. Its ground truth is also cropped in the same

fashion. L1 error and SSIM are calculated between two fa-

cial areas. For PRNet, the L1 error is 22.65 and SSIM is

0.65; For VI-GAN, the L1 error is 15.32 and SSIM is 0.73.

Hence, VI-GAN yields higher precision.

Method Chair Sofa Bench

L1 SSIM L1 SSIM L1 SSIM

MV3D 24.25 0.76 20.24 0.75 17.52 0.73

AF 18.44 0.82 14.42 0.85 13.26 0.77

VI-GAN 12.56 0.87 11.52 0.88 10.13 0.83
Table 3. Mean pixel-wise L1 error and SSIM between the ground

truth and predictions given by different methods.

5.2. Object Rotation
Object rotation aims at synthesizing novel views for cer-

tain objects. Compared with faces, rotation of general ob-

jects is more challenging, as different objects may have di-

verse structure and appearance. To show the capacity of our

model, we evaluate our model on the ShapeNet [3] dataset

using samples of “chair”, “bench” and “sofa”. Results are

illustrated in Figs. 7, 8 and 9 respectively. Results on more

categories are included in supplementary material.
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Figure 6. Comparison between VI-GAN and PRNet [6]. For each image, the top, second and the third rows are images of ground truth,

VI-GAN and PRNet respectively. PRNet does not handle profile cases well while our output matches ground truth better.

(a) Input (b) MV3D (c) AF (d) Ours (e) GT

Figure 7. Results in “chair” category. (a) is the 2D input view.

(b) and (c) are generated by MV3D [28] and AF [34] respectively.

(d) is the result synthesized by our system while (e) is the ground

truth. The images are with size of 128 × 128. It is clear that

VI-GAN outperforms both MV3D and AF.

MV3D [28] and Appearance-Flow (AF) [34] are two

methods that perform well on this dataset. They deal with

continuous camera poses by taking the difference between

the 3 × 4 transformation matrices of the input and target

views as the pose vector. We compare our model with them

both qualitatively and quantitatively. As shown in Figs. 7, 8

and 9, MV3D [28] and AF [34] miss small parts, while our

results are closer to the ground truth. Table 3 shows that our

model achieves the lowest L1 error and the highest SSIM.

6. Conclusion

We have proposed a novel 3D view synthesis network,

called VI-GAN, which can generate target views from a

singe RGB image with continuous camera parameters. Our

system combines benefit of current learning and geometry-

based methods by inferring view-independent latent repre-

sentation. Our experiments demonstrate that our method

(a) Input (b) MV3D (c) AF (d) Ours (e) GT

Figure 8. Results in “bench” category. Order of each column is the

same as that of Fig. 7.

(a) Input (b) MV3D (c) AF (d) Ours (e) GT

Figure 9. Results in “sofa” category. Order of each column is the

same as that of Fig. 7.

outperforms existing techniques on a wide range of datasets.

VI-GAN is trained with weakly supervised 2D data, while

learned features are beneficial to 3D-related learning tasks.
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