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Abstract

We present a deep-learning architecture for multi-view

stereo with conditional random fields (MVSCRF). Given an

arbitrary number of input images, we first use a U-shape

neural network to extract deep features incorporating both

global and local information, and then build a 3D cost vol-

ume for the reference camera. Unlike previous learning-

based methods, we explicitly constraint the smoothness of

depth maps by using conditional random fields (CRFs) af-

ter the stage of cost volume regularization. The CRFs mod-

ule is implemented as recurrent neural networks so that

the whole pipeline can be trained end-to-end. Our re-

sults show that the proposed pipeline outperforms previ-

ous state-of-the-arts on large-scale DTU dataset. We also

achieve comparable results with state-of-the-art learning-

based methods on outdoor Tanks and Temples dataset

without fine-tuning, which demonstrates our method’s gen-

eralization ability.

1. Introduction

In a multi-view stereo (MVS) system, images of the

same scene or object taken from different views are pro-

cessed to reconstruct the 3D model. Traditional MVS

methods formulate the task as an optimization problem by

utilizing the projection relationship among multiple views

[21][22]. Recent success of deep learning has inspired re-

searchers to exploit learning-based MVS methods. Some

research exploit the volumetric representation of 3D mod-

els, and regress each voxel’s occupancy with deep convo-

lutional neural networks (CNNs) [13][14][6]. However, re-

stricted by its huge memory consumption, volumetric rep-

resentation cannot be scaled up and thus leads to very low

resolution of the reconstructed space. Another approach to

reconstruct a 3D scene is to first estimate depth map per

view, and then fuse depth maps to form the point cloud. Re-

cent work [29][30][10][5] based on depth map estimation
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Figure 1. Qualitative comparison between MVSNet (top) and

the proposed MVSCRF (bottom) on two selected scenes of the

Tanks and Temples dataset. The visual results of MVSNet are

directly cited from the original paper [29].

have achieved excellent results on public MVS benchmarks

such as DTU [12] and Tanks and Temples [15], demon-

strating the effectiveness of using depth maps as intermedi-

ate representations in MVS.

A commonly used pipeline in binocular stereo was ex-

tended to deep learning based MVS in [29], in which Yao

et al. proposed an end-to-end architecture MVSNet. The

MVSNet first extracts deep features of input images, then

builds a 3D cost volume for the reference camera using

differentiable homography warping, and finally regularizes

the cost volume to regress the depth map. The MVSNet

achieves comparable or even better performance compared

to optimization based traditional methods on public bench-

marks. Recently, Yao et al. further proposed the R-MVSNet

[30] which essentially reduces the inference memory re-

quirement by re-designing the cost volume regularization of

MVSNet as recurrent neural networks. As such, depth sam-

pling rate can be significantly increased, leading to preciser

3D predictions as expected.

Another way to improve the performance of depth es-

timation, which may be orthogonal to that used in R-

MVSNet, is to further exploit the intrinsic characteristics

of depth maps of natural scenes. Inspired by semantic seg-
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mentation [4], which is also a pixel-wise prediction task, we

argue that the combination of local and global features may

be effective in depth map estimation. On the one hand, rich

local information helps to localize a pixel precisely. On the

other hand, pixels in texture-less or reflective regions rely

more on global information for their reconstruction. In both

MVSNet and R-MVSNet, a sequential stack of convolu-

tional layers is implemented to extract deep features, which

cannot effectively incorporate semantic cues from different

scales. To solve this problem, Huang et al. proposed to

combine semantic features extracted by a pretrained VGG-

19 [23] network with features extracted by a UNet-like

structure in DeepMVS [10]. However, since DeepMVS is

based on sequential processing of image patches, it can-

not exploit the information of the whole image. We there-

fore propose to use a six-scale U-shape structure to extract

deep features from the original input images. The encoder-

decoder structure provides large receptive fields to extract

global information, and the skip connections from shallow

layers to deep layers help to merge rich local information

with global semantic cues.

More importantly, the depth values of neighboring pix-

els are usually highly correlated. In the inner area of an

object, depth values tend to be continuous. While on the

borders of an instance, depth values usually vary drastically.

In MVSNet, a 3D UNet is implemented to aggregate neigh-

boring information. However, no explicit constraint is im-

posed on the smoothness property of depth maps. Deep-

MVS uses Dense-CRF [16] in post-processing to refine the

depth map with smoothness constraints explicitly. We ar-

gue that an more effective way is to incorporate the smooth-

ness constraint in an end to end trainable style in MVS. We

therefore propose to use the output of the cost volume reg-

ularization as the input of multi-scale conditional random

fields (MSCRFs), which are implemented as recurrent neu-

ral networks so that the whole pipeline can be trained end-

to-end. The end-to-end training encourages the feature ex-

tractor and the cost volume regularizer to produce output

which complies with the smoothness constraints of depth

maps, leading to more smooth as well as complete depth

estimation results as is shown in Fig. 1.

2. Related work

Traditional MVS methods optimize the depth value of

each pixel by using projection relationship among multi-

ple views. Schonberger et al. presented Colmap [21][22],

which uses hand-crafted features in patch matching and

optimizes the depth value pixel-by-pixel. Colmap per-

forms well on diverse scenarios including public multi-

view benchmarks and internet photos. However, traditional

methods like Colmap are time-consuming because they op-

timize depth values of pixels one-by-one which is hard to

be implemented in parallel. Besides, deep image features

extracted by CNNs have been proved to be more expres-

sive and informative than hand-crafted ones in many vision

tasks such as image classification [25] and semantic seg-

mentation [4]. Recent learning-based methods[10][29][30]

outperform traditional methods on public benchmarks and

greatly reduce the time consumption for more than 10 times.

There are mainly two different kinds of approaches

for the learning-based MVS. One is based on voxels and

the other uses depth maps as intermediate representations.

Voxels-based methods split the space into regular grids and

directly estimate the occupancy of each grid. Choy et al.

proposed 3D-R2N2 [6], an end-to-end pipeline which re-

gards the 323 voxels as hidden variables of a convolutional

LSTM [9], and feeds in image features as input. Kar et

al. proposed to use differentiable projection to build fea-

ture volumes from image features, which explicitly incor-

porates geometry prior defined by projections [14]. Voxel

based methods usually suffer from huge memory require-

ment caused by volumetric representations, thus the space

resolution of their reconstructed models is usually no more

than 2563. To enlarge space resolution, Ji et al. proposed

to split the whole space into smaller Colored Voxel Cubes

(CVCs) and regress the surface identity cube-by-cube [13].

However, this leads to high time complexity.

Compared to voxel cubes, depth maps are two-

dimensional representations which consume much less

memory during computation. In binocular stereo, a vision

task highly related to MVS, disparity map between a pair of

images is used as the intermediate represent, which is basi-

cally a form of depth estimation. Learning-based binocular

stereo methods commonly build cost volume for a pair of

images to estimate the disparity map. Inspired by this, MVS

methods such as [29], [10] and [5] use CNNs to extract im-

age features, build 3D cost volume with images from mul-

tiple views and regress the depth maps for each view. To

extend from the pair-wise cost volume building to a multi-

view setting, MVS methods usually select one image as the

reference image once and the other input images are called

the source images. For each pair of the reference image

and one of its source images, a cost volume is built. Choi

et al. proposed to compute the weighted sum of these cost

volumes as the final cost volume for the reference image

[5]. Huang et al. proposed to use a max operation to merge

the cost volumes [10]. Yao et al. proposed to compute the

variance of cost volumes alternatively [29].

UNet was initially proposed to deal with medical image

segmentation [20]. By modifying the fully convolutional

neural network (FCN) [17], UNet uses a down-sampling

path followed by a symmetric up-sampling path to produce

per-pixel segmentation results. The down-and-up architec-

ture and its skip connections between shallow layers and

deep layers have been widely used in different segmenta-

tion networks. Considering that depth estimation is in na-
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Figure 2. The overall architecture of MVSCRF.

ture similar to segmentation, we adopt the U-shape structure

and skip connections to form our feature extractor.

Conditional random fields (CRFs) [2] are a kind of prob-

ability graph model. Pixels in an image have some rela-

tionship that cannot be automatically modeled by neural

networks. CRFs can serve as human priors by constrain-

ing the output of pixel-wise predictions explicitly. Segmen-

tation research usually use CRFs to model relationship of

labels among different pixels [31]. Ristovski et al. pro-

posed to model an image as a fully connected graph to solve

problems of image denoising in remote sensing [19]. In

the area of monocular depth estimation, Xu et al. imple-

mented CRFs as sequential deep networks so that the whole

pipeline can be trained end-to-end [27]. Huang et al. used

Dense-CRF in the post-processing of the estimated depth

map in MVS [10]. The vanilla CRFs are optimization-

based, so it cannot be jointly trained with nerual networks

directly. Zheng et al. provided a way to model CRFs as

recurrent neural networks for segmentation tasks so that the

CRFs module can be trained end-to-end with neural net-

works [31]. Different from segmentation task, the number

of depth samples, whose counterparts are the semantic la-

bels in segmentation task, is expected to be flexible for dif-

ferent scenarios. We therefore re-design the RNN-formed

CRFs module so that the model parameters are independent

of the number of depth samples.

3. MVSCRF

We adopt MVSNet as the baseline architecture to which

modifications are mainly made in the stages of feature ex-

traction and cost volume regularization as shown in Fig. 2.

3.1. Revisiting MVSNet

The MVSNet pipeline can be divided into five stages:

pre-processing, feature extraction, cost volume building,

cost volume regularization and post-processing. In fact, this

is the de facto standard pipeline for most depth map based

MVS such as DeepMVS, and more recently, R-MVSNet.

In the pre-processing step,the camera’s intrinsics and ex-

trinsics, the depth range and the selection of source images

are determined by using Colmap or other traditional method

like OpenMVG[18] for sparse reconstruction. Then the fea-

ture extractor extracts deep features from the reference im-

age and its source images.

Next, a cost volume is built upon the reference camera’s

frustum by warping a source image’s feature map to some

depth hypotheses of the reference image. All the cost vol-

umes for a single reference image are merged by computing

the variance among them. After that, the merged cost vol-

ume is fed in into a regularizer which is a 3D UNet in MVS-

Net and convolutional gated recurrent units in R-MVSNet

to produce the initial depth map. MVSNet presents a re-

finement module after the initial output of the regularizer

and finally, the depth maps from different views are merged

together to produce the point cloud.

3.2. The U­shape feature extractor

We use a six-scale U-shape structure to extract deep fea-

tures, as shown in Fig. 3. The down-sampling path consists

of six different scales, each of which is two times smaller

than the higher one. Hence, the smallest feature map is 32
times smaller than the original input. The up-sampling path

is designed to be exactly symmetric to the down-sampling

part. Two more convolutional layers are implemented be-

tween these two parts. In each scale of the networks, a

convolutional (or deconvolutional) layer with stride 2 is de-

signed to down-sample (or up-sample) the feature map in-

stead of pooling layers according to [24]. After each con-

volutional (or deconvolutional) layer with stride 2, a con-

volutional layer with stride 1 is implemented to extract fea-

tures at this scale. The original UNet concatenates two fea-

ture maps from the same scale of the down-sampling path

and the up-sampling path to implement skip connections.

In order to save memory, our feature extractor is designed

to directly add two feature maps. After the U-shape struc-

ture, the feature maps are down-sampled by two convolu-

tional layers with stride 2, each of which is followed by a
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Figure 3. The architecture of the U-shape feature extractor.

convolutional layer with stride 1. Except for the last layer,

batch-normalization [11] operation and ReLU activation are

implemented for each layer. The final output of the feature

extractor is of the size H/4 ∗W/4 ∗ 32.

The U-shape structure provides features of different

scales of resolution. And with 32 times down-sampling,

the receptive fields are much larger than the original MVS-

Net, so the features contain more global information. Mean-

while, the skip connections from shallow layers to deep lay-

ers help to retain rich local information to facilitate precise

localization. Experiments show that the proposed feature

extractor helps improve the performance of depth estima-

tion significantly.

3.3. Conditional random fields

Formally, the depth estimation can be considered as a

multi-label classification problem and each depth hypoth-

esis corresponds to a different label. Our intuition is that

nearby pixels in the inner area of an object tend to have

similar labels (depth hypotheses), and pixels near borders

or edges may have significantly different labels. We regard

a depth map as fully connected pairwise conditional random

fields conditioned on the corresponding image I, in which

each pixel is to be assigned with a depth label.

Let x = {x1, x2, ..., xN} be the label vector of N pix-

els in a depth map. Component xi belongs to {1, 2, ..., D}
where D is the number of depth samples. The probability

of the label assignment is defined in the form of Gibbs dis-

tribution as P (x|I) = 1
Z
exp(−E(x|I)), where E(x) is the

energy function which describes the cost of label assign-

ing, and Z is a normalization factor. For convenience we

drop the notation of condition I from now on. Following

the formulation in [31], the energy function defined in (1)

includes a unary term and a pairwise term, where ψu de-

fines the self-energy of assigning label xi, and ψp defines

the mutual-energy of a pair of labels.

E(x) =

N∑

i=1

ψu(xi) +
∑

i<j

ψp(xi, xj) (1)

The output C of the cost volume regularizer provides a

convenient measurement of the cost of labeling a pixel. We

defines Ci as the cost vector of the i-th pixel, and ψu(xi) is

set to be Ci(xi). In this way, the influence of the CNNs is

embedded into the probability distribution of the depth map.

As is suggested in [31], the mutual-energy term is defined in

(2), where µ(xi, xj) is a symmetric distance measurement

between two labels. In (2), ω(1), ω(2) are two weights for

two different Gaussian kernels k(1) and k(2), and f
(m)
i de-

notes the feature describing the i-th pixel in the four times

down-sampled input image, for instance the coordinates or

the RGB values of the pixel. We adopt the same features

and gaussian kernels as in [31]. Till now, the joint probabil-

ity distribution of label assignment is completely defined.

The distribution combines information extracted from neu-

ral networks and smoothness constraints reflecting the in-

trinsic characteristics of depth maps.

ψp(xi, xj) = µ(xi, xj)

2∑

m=1

ω(m)k(m)(f
(m)
i , f

(m)
j ) (2)

Generally speaking, the exact maximization of the origi-

nal probability distribution is intractable. To approximate

the distribution, P (x) is usually decoupled into products

of distributions of each pixel as
∏N

i=1Qi(xi). As such, it

can be solved in an iterative manner using mean-field in-

ference, which is shown in Alg. 1 in detail. Zheng et al.

implemented the mean-field inference as recurrent neural

networks so that the CRFs module can be trained with the

whole pipeline in an end-to-end manner [31]. In brief, the

Gaussian filtering is modeled as convolutional layers, the

normalization operation is modeled as soft-max operation,

and the weights µ(xi, xj) are modeled as parameters of 1∗1
convolutions. The recurrent neural networks iterate for T it-

erations for a forwarding-pass.

Algorithm 1 Mean-field inference

Qi(l) =
1
Zi

exp(Ci(l)), for i = 1, 2, . . . , N
for t = 1 : T

Q̃
(m)
i (l) =

∑
j 6=i k

(m)(fi, fj)Qj(l),

Q̌i(l) =
∑2

m=1 ω
(m)Q̃

(m)
i (l),

Q̂i(l) =
∑D

l
′=1 µ(l, l

′

)Q̌i(l),

Q̆i(l) = Ci(l)− Q̂i(l),
Qi(l) =

1
Zi

exp(Q̆i(l))
end

Different from the semantic segmentation task in which

the number of labels (object classes) are usually fixed, the

number of depth samples may need to be changed for dif-

ferent scenarios. Therefore, the parameters µ(xi, xj) are

better to be independent to the depth number D. In [31],

the parameters µ(xi, xj) are learned during training, and

the learned results show that the matrix converges to be
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close to a diagonal-like matrix with small values lying on

the diagonal line and large values in other positions. Based

on this observation, we simplify the distance measurement

of different depth hypotheses to a dualistic problem, as is

shown in (3) where µ0 and µ1 are two learnable scalars. In

this way, since the matrix µ(i, j) only contains two scalar

parameters, it is completely decoupled with the number of

depth samples D.

µ(i, j) =

{
µ0 |i− j| ≤ 1
µ1 otherwise

(3)

To further utilize information from different resolutions,

we add two branches of convolutional layers following the

two lower scales of the 3D UNet as shown in Fig. 1. Each

branch outputs a cost volume containing information of its

scale. Denote them as C1 and C2, and re-denote the origi-

nal output C of cost volume regularization as C3, then we

replace the unary term of CRFs with
∑3

i=1 αi ∗C
i to build

the multi-scale CRFs. The weights αi are learnable param-

eters and we constraint
∑3

i αi = 1. The multi-scale ver-

sion of CRFs incorporates more global information from

the lower scales of the 3D UNet. The output of our pro-

posed CRFs module takes the role of the softmax of −C
in original MVSNet. And the following architecture of the

pipeline remains unchanged to MVSNet.

3.4. Post­processing

Similar to the geometric filtering criteria in MVSNet,

we use the re-projection error to measure the confidence

of depth estimation. In MVSNet, the output depth map is

also filtered by a photometric confidence map computed

from the probability distribution. In our implementation,

the CRFs module changes the property of probability distri-

bution of depth and the method to generate confidence map

is no longer suitable. Nevertheless, experiments show that

the geometric filtering itself is already good enough for fil-

tering depth maps and is even not that necessary for simple

scenarios such as scenes in the DTU dataset [12].

4. Experiments

4.1. Datasets

Experiments in this work are carried out on two pub-

lic datasets: the indoor DTU dataset [12] and the out-

door Tanks and Temples dataset [15]. DTU dataset

contains more than 100 scenes captured on an experimen-

tal platform. Each scene has 49 or 64 images of differ-

ent views under 7 different lighting conditions. The image

is of size 1600 ∗ 1200, and the depth range of a scene is

between 425mm and 935mm. Point clouds with normal

information are provided so that ground truth depth maps

can be generated. Tanks and Temples dataset contains

two sets of scenes, the intermediate one and the advanced

one. We only use the intermediate set for evaluation. In

the intermediate set, there are 8 different scenes, each of

which corresponds to a short video. A set of 2148 pre-

selected images are provided as inputs. DTU dataset was

collected in well-controlled laboratory conditions, while

Tanks and Temples dataset was collected in real out-

door scenarios, which is much more complex than that of

DTU . The area of the scenes varies from 5m2 to more than

100m2, and the natural lighting conditions are also very dif-

ferent from the well-controlled experimental setups.

4.2. Training

MVSNet provides the pre-processed training data of

DTU dataset. For fair comparison, we trained our model

on DTU dataset following the training configurations of

MVSNet[29]. The input images are resized to 640 ∗ 512.

For each reference image, two source images are selected

accordingly. The whole dataset is split into a training set,

a validation set and an evaluation set. The training set con-

sists of 27097 training samples with each image being used

as the reference image. The depth hypotheses are uniformly

sampled between 425mm to 935mm. The number of depth

samples D is set to 256 in MVSNet. However, we find that

there is very little difference of performance when our pro-

posed model is trained with D = 128. To speed up the

training process, our models are all trained with 128 depth

samples. The CRFs module in our model is trained together

with the whole networks in an end-to-end manner. The it-

eration number T for the recurrent networks is set to be 5.

All other parameters in the model are to be learned during

training.

4.3. Testing on DTU dataset

The evaluation set of DTU contains 22 different scenes.

We use our proposed model to generate depth maps for

each image, and then merge them into point clouds by us-

ing fusibile [8]. For DTU dataset, the backgrounds are

clear, so there is no need to filter the depth maps before

point clouds merge. Following MVSNet, the input image

is of size 1600 ∗ 1184, the number of input views is 5, and

the number of depth samples for inference is 256. We cal-

culate accuracy (acc.) and completeness (comp.) using

the official code provided by DTU dataset. Also, a per-

centage measurement [15] is computed. Table 1 shows the

quantitative results of our method. Our method generally

outperforms previous methods including MVSNet and its

recent extension R-MVSNet.

Qualitative comparisons on DTU are shown in Fig. 4.

More visual results are presented in the supplementary ma-

terial. As is shown in the red/orange boxes, MVSCRF re-

duces the outliers compared to R-MVSNet, leading to the

reduction of accuracy distance. It may due to more global

semantic cues incorporated by our U-shape feature extrac-
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Mean distance(mm) Percentage(< 1mm) Percentage(< 2mm)

acc. comp. overall acc. comp. f -score acc. comp. f -score
Camp*[3] 0.835 0.554 0.695 71.75 64.94 66.31 84.83 67.82 73.02

Furu*[7] 0.613 0.941 0.777 69.55 61.52 63.26 78.99 67.88 70.93

Tola*[26] 0.342 1.19 0.766 90.49 57.83 68.07 93.94 63.88 73.61

Gipuma*[8] 0.283 0.873 0.578 94.65 59.93 70.64 96.42 63.81 74.16

Colmap*[22] 0.400 0.664 0.532 - - - - - -

SurfaceNet[13] 0.450 1.04 0.745 83.8 63.38 69.95 87.15 67.99 74.4

MVSNet[29](D = 256) 0.396 0.527 0.462 86.46 71.13 75.69 91.06 75.31 80.25

R-MVSNet[30](D = 512) 0.383 0.452 0.417 - - - - - -

MVSCRF 0.371 0.426 0.398 83.82 78.49 80.02 87.64 82.03 83.84

Table 1. Quantitative results on DTU . Our overall mean distance (smaller is better) and f -scores (larger is better) are the best among all

methods including learning-based methods and traditional methods(*). Noted that although R-MVSNet samples more depth hypotheses,

our method still outperforms it both in accuracy and completeness.

(a) R-MVSNet (b) MVSCRF (c) Ground Truth

Figure 4. Qualitative comparison on DTU dataset. From the top to the bottom are respectively scan48, scan32 and scan4. It is noted that,

the results of our method are more complete in texture-less area and have cleaner boundaries compared to results of R-MVSNet.

tor. Guided by semantic information, the network refines

the depth estimation of pixels which are not effectively de-

scribed by local features. Also, reconstructed models of our

proposed MVSCRF are more complete in continuous re-

gions, as indicated by the orange/green boxes. We believe

that the completeness improvement is mainly contributed

by the CRFs module, since these continuous surfaces com-

ply to the smoothness hypothesis well which is explicitly

modeled by CRFs. We further experiment with differ-

ent settings to verify our analysis. According to Table 3,

with the U-shape feature extractor only, the accuracy dis-

tance reduces significantly by 0.045mm. The experiment
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method rank mean Family Francis Horse Lighthouse M60 Panther Playground Train

ACMH*[28] 3.00 54.82 69.99 49.45 45.12 59.04 52.64 52.37 58.34 51.61

MVSCRF 7.88 45.73 59.83 30.60 29.93 51.15 50.61 51.45 52.60 39.68

R-MVSNet[30] 8.38 48.40 69.96 46.65 32.59 42.95 51.88 48.80 52.00 42.38

Pix4D†[1] 12.25 43.24 64.45 31.91 26.43 54.41 50.58 35.37 47.78 34.96

MVSNet[29] 12.38 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69

Colmap*[22] 12.38 42.14 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04

Table 2. Quantitative results on Tanks and Temples. Our result is better than MVSNet. ACMH [28] and Colmap [22] are optimization-

based traditional methods(*) . Pix4D[1] is a commercial software(†).

Figure 5. Qualitative results of Tanks and Temples dataset.

acc. comp. overall
baseline(MVSNet) 0.396 0.527 0.462

+U-extractor 0.351 0.513 0.432

+U-extractor+MSCRFs 0.371 0.426 0.398

Table 3. Quantitative evaluation of each component. Baseline

refers to the MVSNet pipeline. U-extractor refers to the U-shape

feature extractor. MSCRFs refers to the multi-scale CRFs module.

demonstrates that the fusion of global features and local

features contributes to the reconstruction, especially for the

accuracy. Further, the multi-scale CRFs module reduces

the completeness distance from 0.513mm to 0.426mm.

Conclusions can be made that the completeness improve-

ment mainly originates from the explicit smoothness con-

straints imposed by the CRFs module. Fig. 6 shows

the qualitative comparison. It can be noticed that depth

maps produced with the U-shape feature extractor and the

CRFs module are smoother in inner area and have clearer

edges. Noted that R-MVSNet implements 512 depth sam-

ples which double our setting. It is always expected that

denser depth sampling are effective in producing preciser

predictions. However, the DTU scenes are generally of

limited depth range, and the shapes of objects are relatively

regular. Therefore for this kind of scenarios, our proposal

seems to be more effective than increasing depth samples.

4.4. Testing on Tanks and Temples dataset

Tanks and Temples dataset is more challenging and

we evaluate our method on it without any fine-tuning to

demonstrate our method’s generalization ability. In outdoor

situations, images contain a lot of objects far outside the es-

timated depth range. Thus, the depth predictions of these

background pixels are unreliable. We use the geometric cri-

teria mentioned in Section 3.4 to filter the depth maps be-

fore merging them into point clouds. We follow the setups

in MVSNet, with the input size being 1920 ∗ 1056, 5 input

views and 256 depth samples.

Tanks and Temples benchmark measures the over-

all quality of reconstructed point clouds by using a metric

called f -score. Briefly speaking, the f -score is a combi-

nation of accuracy and completeness. Table 2 shows the

quantitative results of our method and other published state-

of-the-arts. Our method outperforms MVSNet obviously

on 7 out 8 scenes. Fig. 5 shows the reconstructed mod-

els for the 8 scenes. We achieve comparable results with

R-MVSNet in terms of rank, but for scenes Family and

Francis, R-MVSNet produces much better results than
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(a) reference image (b) baseline (c) baseline+U (d) baseline+U+MSCRFs

Figure 6. Qualitative evaluation of each component. We use the codes and the trained model provided by Yao et al [29].

ours. Take scene Francis for example, it consists of thin

structure including a delicate spire, four pillars and a statue

in it, which do not comply to our smoothness hypothesis. R-

MVSNet uses an average of 898 depth samples to achieve

its results while we only sample 256 depth hypotheses. On

the contrary, for scene Lighthouse, our method’s perfor-

mance is obviously better. It may be explained that the

scene Lighthouse contains planes such as roofs and walls,

which are suitable for our intuitions.

Our results on two different datasets show that, in scenes

having restricted depth range and relatively smaller local

depth changes, such as DTU scenes or some scenes in

Tanks and Temples, incorporating priors of depth maps

has even larger influence on the quality of reconstructed

models than increasing the sampling rate. But for those del-

icate models with thin structure, denser samplers are more

favorable. Our proposal of utilizing depth maps’ priors may

be combined with denser samplers to achieve better results.

4.5. Discussion

Complexity:The time/memory consumption are evaluated

using DTU validation settings: H ∗W = 512 ∗ 640,D =
256.In terms of parameter counts and run time, MVSCRF

is between MVSNet and R-MVSNet as is shown in Table 4.

MVSCRF consumes slightly more memory than MVSNet

because of the UNet and CRF module, however the space

complexity of MVSCRF and MVSNet is the same.

Param. Time Memory Complexity

MVSCRF 571K 1.8s 5.43GB O(H ×W ×D)
MVSNet 363K 0.9s 5.28GB O(H ×W ×D)
R-MVSNet 812K 2.2s 4.39GB O(H ×W )

Table 4. Comparison of computational efficiency.

Post-processing:For fair comparison, we reproduce MVS-

Net with our post-processing step as well as the fusibile
depth fusion, and achieve a mean distance of 0.462mm
which is close to that of MVSNet(0.460mm).

multi-scale single scale MVSNet

mean f-score 45.73% 44.00% 43.48%

Table 5. Performance comparison using different CRF settings.

CRF settings:In multi-scale CRF, matching results of

multi-level image features are used to generate a more accu-

rate self-energy term, leading to more appropriate smooth-

ness constraints. Table 5 shows that this is critical in

producing high quality depth map, especially for com-

plicate scenes containing structures of different scales in

Tanks and Temples. For simple scenes like those in

DTU , however, the performance gain of multi-scale CRF

is very marginal (f-score: 79.77% → 80.02%).

5. Conclusions

We present an end-to-end pipeline for multi-view stereo

with conditional random fields (MVSCRF). Following the

basic architecture of MVSNet, we incorporate priors of

depth maps into the network design. A U-shape feature ex-

tractor is designed to extract informative deep features com-

bining both local and global information. And conditional

random fields are implemented as the form of recurrent neu-

ral networks to explicitly define the smoothness constraints

on depth maps. Quantitative and qualitative results on pub-

lic datasetDTU and Tanks and Temples demonstrate the

effectiveness of our method.
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