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Abstract

Subspace clustering is the problem of partitioning data

drawn from a union of multiple subspaces. The most pop-

ular subspace clustering framework in recent years is the

graph clustering-based approach, which performs subspace

clustering in two steps: graph construction and graph clus-

tering. Although both steps are equally important for ac-

curate clustering, the vast majority of work has focused

on improving the graph construction step rather than the

graph clustering step. In this paper, we propose a novel

graph clustering framework for robust subspace clustering.

By incorporating a geometry-aware term with the spectral

clustering objective, we encourage our framework to be ro-

bust to noise and outliers in given affinity matrices. We also

develop an efficient expectation-maximization-based algo-

rithm for optimization. Through extensive experiments on

four real-world datasets, we demonstrate that the proposed

method outperforms existing methods.

1. Introduction

In many practical scenarios, high dimensional data of-

ten live in a union of low-dimensional linear subspaces.

The problem of partitioning such data so that each cluster

consists of all the data belonging to one subspace is called

Subspace Clustering. Subspace clustering has greatly at-

tracted attention as it has important and wide-ranging appli-

cations in various fields such as computer vision [44, 28],

data mining [2, 35], network analysis [12, 8], system iden-

tification [46, 3], and biology [21, 29].

Over the past few decades, many subspace clustering

methods have been proposed, including algebraic meth-

ods [5, 9, 14, 20, 45, 30, 19], iterative methods [6, 41, 1, 52],

statistical methods [38, 37, 50, 36], and graph clustering-

based methods [49, 7, 10, 11, 25, 47, 27, 26, 43, 15, 22].

Ever since the celebrated self-representation based ap-

proach [10, 11] was proposed, many recent efforts have fo-

cused on graph clustering-based methods, because they of-

ten outperform the other methods in practical settings. Most

graph clustering-based methods are performed in two steps.

The first step, graph construction, is to compute an affin-

ity matrix wherein a pair of data points belonging to the

same subspace has higher affinity than those in different

subspaces. The second step, graph clustering, is to cluster

data by applying a graph clustering method (e.g., spectral

clustering) to that affinity matrix.

Although both graph construction and graph clustering

are important for achieving accurate clustering, most pre-

vious work has focused on improving graph construction.

In fact, data can be correctly clustered by standard graph

clustering methods if one can obtain an affinity matrix M

that satisfies certain conditions (e.g., Mij > 0 if the ith and

jth data points belong to the same subspace and otherwise

Mij = 0), hence pursuing a better method for computing

an affinity matrix is important for correctly clustering data.

However, in practical settings, data contain noise and out-

liers, so no method will not always provide an affinity ma-

trix that satisfies such conditions. To accurately cluster data,

it is equally important to improve the graph clustering step.

In the past decade, spectral clustering [32] has been the

de facto standard method for the graph clustering step. Al-

though its effectiveness in the graph clustering-based sub-

space clustering methods has been empirically validated, its

performance deteriorates quickly as the intensity of noise in

the affinity matrix increases, since spectral clustering clus-

ters data based on only a given affinity matrix. One way to

mitigate this problem is to use not only an affinity matrix

but also the data’s geometric structure in the ambient space

for graph clustering. However, to the best of our knowl-

edge, no graph clustering method has considered the data’s

geometric structure in the ambient space for subspace clus-

tering.

To accurately conduct subspace clustering, we pro-

pose a geometry-aware graph clustering method for graph

clustering-based subspace clustering. More specifically, we

propose a novel graph clustering objective that consists of

the spectral clustering objective and a new geometry-aware

term that encourages data in each cluster to lie in the same

low-dimensional subspace. We note that maximization of

the proposed objective can be interpreted as maximum a

posteriori (MAP) estimation problem of a variant of the
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Gaussian mixture model (GMM), and hence we employ

the expectation-maximization (EM) algorithm for solving

the objective. Through extensive experiments on four real-

world datasets, we demonstrate that the proposed method

outperforms existing methods. Moreover, we also demon-

strate that our method is also effective for frameworks that

unify graph construction and clustering steps [24].

The contributions of this paper are as follows:

• We propose a novel graph clustering approach for

graph clustering-based subspace clustering, which

clusters data based not only on a given affinity matrix

but also on the data’s geometric structure in the ambi-

ent space.

• We provide results of experiments on four real-world

datasets, which show the effectiveness of our ap-

proach.

2. Preliminary

2.1. Problem Formulation

Subspace clustering is the problem of clustering N D-

dimensional data points X = [x1, ...,xN ]
T ∈ R

N×D that

live in (or near) a union of K low-dimensional linear sub-

spaces U = U1 ∪ U2 ∪ ... ∪ UK so that each cluster con-

sists of all the data belonging to one subspace. Specifi-

cally, the problem is to find an assignment matrix G =
[g1, ..., gK ] ∈ {0, 1}N×K that satisfies G1K = 1N and

xi ∈ Uj if Gij = 1.

2.2. K­subspaces

K-subspaces [41, 1] minimizes the following objective

by updating an assignment matrix G and a set of orthonor-

mal basis {Ui}Ki=1 alternately:

min
{yi}N

i
,{Ui}K

i

K∑

k

N∑

i

Gij ||xi − UT
k Ukyi||22 (1)

Furthermore, by replacing the squared distance terms in

Eq. (1) with the negative log-likelihood terms of the proba-

bilistic principle component analysis (PPCA), K-subspaces

can be naturally extended to be its probabilistic version,

called mixtures of PPCA (MPPCA) [39]. Although both

K-subspaces and MPPCA are practical, they have some dis-

advantages such as that they tend to converge to a local min-

imum [42].

2.3. Graph Clustering­based Approach

The graph clustering-based subspace clustering ap-

proach first computes an affinity matrix wherein a pair of

data points belonging in the same subspace has higher affin-

ity than those in different subspaces, and then applies a

graph clustering method to that affinity matrix.

Graph construction: Various approaches [49, 7, 10, 11,

25, 47, 27, 26, 43, 15, 22, 17] have been proposed for

computing an affinity matrix. For example, the self-

representation-based approach, the most representative one

among them, first builds a self-representation matrix Z∗

that is computed by representing each data point by a lin-

ear combination of the others and then computes an affinity

matrix M using Z∗ (e.g., Mij = |Z∗
ij | + |Z∗T

ij |). To com-

pute the self-representation matrix Z∗, most methods first

solve the following problem:

min
Z∈C

h(E) + ηr(Z), s.t. X = XZ + E, (2)

where h(E) is the loss function for reconstruction error E

(e.g., h(E) = ||E||2F ), r(Z) is a regularizer for a self-

representation matrix Z (e.g., r(Z) = ||E||1), and C is a

constraint set for Z (e.g., C = {Z|Z ∈ R
N×N , Zii = 0}).

It has been proven that affinity matrices computed by some

methods, e.g., sparse subspace clustering (SSC) [10, 11],

satisfy the self-expressiveness property (i.e., Mij > 0 if ith

and jth data points belong to the same subspace and other-

wise Mij = 0) under certain conditions. In such a case, we

can get correct clustering results by simply applying spec-

tral clustering, or much simpler methods such as depth-first

search. However, in practical settings, those conditions do

not usually hold due to noise and outliers, and the clustering

performance highly depends on the robustness of the subse-

quent graph clustering method.

Graph clustering: After the graph construction step, data

are clustered by applying a graph clustering method to a

computed affinity matrix. Typical graph clustering methods

cluster data by finding an assignment matrix G that maxi-

mizes some objectives, ϵ(G,M), as follows:

max
G

ϵ(G,M) subject to G ∈ G, (3)

where G = {G|G ∈ {0, 1}N×K , G1K = 1N}.
In subspace clustering, spectral clustering is used for

graph clustering. Spectral clustering uses the following ob-

jective:

ϵ(G,M) =
K∑

l=1

gT
l Mgl

gT
l Dgl

, (4)

where D is a degree matrix, which satisfies (D)ij = 0 if

i ̸= j; otherwise; (D)ii =
∑

j Mij . Since computing

the optimal assignment matrix G is NP-hard, it is approxi-

mately solved via continuous relaxation. For more details,

see [51].

One drawback of using typical graph clustering meth-

ods for subspace clustering is that their performance dete-

riorates quickly as the intensity of the noise in an affinity

matrix increases, since they cluster data based on only a
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given affinity matrix. One way to mitigate this problem

is to use not only a given affinity matrix, but the data’s

geometric structure for graph clustering. Although Nie et

al. [34] proposed a graph clustering method that considers

data as well as an affinity matrix, their method is not spe-

cialized for subspace clustering. Some prior work [24, 48]

proposed subspace clustering frameworks that unify both

graph construction and graph clustering into a single opti-

mization problem. However, their methods internally use

spectral clustering as is; hence, their methods are still frag-

ile to the noise in a given affinity matrix.

3. Subspace Structure-aware Spectral Cluster-

ing

To improve the robustness of spectral clustering in the

subspace clustering problem, we consider using the data’s

geometric structure in the ambient space for graph clus-

tering. More specifically, we propose to use the follow-

ing objective, which consists of the spectral clustering ob-

jective ϵ(G,M) and a new geometry-aware term r(G,X)
that encourages data in each cluster to lie in the same low-

dimensional subspace:

max
G

(1− η)ϵ(G,M) + ηr(G,X) subject to G ∈ G, (5)

where η is a hyper-parameter.

The most important key is how to define the geometry-

aware term r(G,X) in Eq. (5). A naïve idea is to use sum-

mation of rank of each cluster’s data matrix as follows:

r(G,X) = −
K∑

k

rank(Diag(gk)X)

= −
K∑

k

D∑

d

|λkd|0
(6)

where λkd is the kth singular value of Diag(gk)X . The ad-

vantage of using Eq. (6) for the geometry-aware term is that

it can directly encourage to decrease the number of intrin-

sic dimensions of the subspace spanned by each cluster’s

data. However, due to its discontinuity, solving Eq. (5) is

intractable when using Eq. (6) for r(G,X). Moreover, Eq.

(6) is extremely sensitive to noise in each cluster’s data.

Another idea is to use the objective of K-subspaces for

r(G,X) as follows:

r(G,X) = − min
{yi}N

i
,{Ui}K

i

N∑

i

K∑

k

Gij ||xi − UT
k Ukyi||22,

(7)

where yi ∈ Rdi and Ui ∈ Rdi×D. However, when using

Eq. (7), one has to set the number of dimensions d, which

is often unknown in advance.

Alternatively, inspired by the probabilistic version of K-

subspaces, i.e., MPPCA [39], we consider replacing the

squared norm of Eq. (7) with the likelihood of the zero-

mean Gaussian distribution as follows:

r(G,X) = max
Σ1,...,ΣK∈⪰0

N∑

i

log
K∑

k

GikN (xi; 0,Σk + σI),

(8)

where σI is a term to avoid degeneration of the covariance

matrix (we set σ = 1e − 6 in this paper). When using Eq.

(8) for r(G,X), one no longer has to set the number of di-

mensions d, unlike Eq. (7). In addition, more interestingly,

it can be shown that Eq. (8) works as a smooth surrogate of

the rank function.

3.1. Log­likelihood for Gaussian as Surrogate for
Rank

In the following, we show that Eq. (8) works as a smooth

approximation of the rank function. First, Eq. (8) can be

represented as follows:

r(G,X) = max
Σ1,...,ΣK∈S

N∑

i

log
K∑

k

GikN (xi; 0,Σk), (9)

where S = {Σ|Σ ∈ RD×D and Σ ⪰ σI}. Let Σ̂1, ..., Σ̂K

be the maximizers of Eq. (9), which can be analytically

solved as follows:

Σ̂k = UkDiag(max(dk, σ1D))UT
k , (10)

where 1∑
i
Gik

∑
i Gikxix

T
i = UkDiag(dk)U

T
k (see sup-

plementary material for derivation of this). Moreover, by

substituting Eq. (10) into Eq. (9), r(G,X) can be repre-

sented as follows:

r(G,X)

=−
K∑

k

D∑

d

ρ2k
σ

logmax(1,
λkd

ρk
) +

ρ2k
2σ

min(1,
λ2
kd

ρ2k
) + const.

=−
K∑

k

D∑

d

fρk,σ(λkd) + const.

(11)

where ρk =
√
mkσ, mk is the number of data belonging to

kth cluster and fρ,σ(λ) =
ρ2

σ
logmax(1, λ

ρ
)+ ρ2

2σmin(1, λ2

ρ2 )
(see supplementary material for derivation of this). From

Eq. (11), we can see that r(G,X) can be represented as

summation of the function of each singular value.

2Interestingly, fρ,σ(λ) is also similar to the objective of agglomerative

lossy compression (ALC) [28, 36]. It is worth noting that the objective of

ALC is derived from the viewpoint of data compression, whereas Eq. (11)
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Figure 1. Comparison of |λ|0, |λ|1, and fρ,σ(λ) =
ρ2

σ
logmax(1, λ

ρ
) + ρ2

2σ
min(1, λ2

ρ2
) (in this figure we set

ρ =
√
σ = 3). From this graph, we can observe that Eq. (11)

is similar to |λ|0 yet also smooth, and small input values are

suppressed2.

In Fig. 3, we show comparison of (1) the L0 norm

|λ|0, which corresponds to the rank function rank(λ), (2)

the nuclear norm |λ|1, which can be considered convex re-

laxation of the rank function, and (3) the derived function

fρ,σ(λ) =
ρ2

σ
logmax(1, λ

ρ
) + ρ2

2σmin(1, λ2

ρ2 ). From Fig. 3,

we can observe that the rank function is extremely sensitive

to noise at λ = 0, whereas nuclear norm overestimates a

large input value, compared to the rank function. On the

other hand, we can observe that the function fρ,σ(λ) is sim-

ilar to the rank function, yet it can suppress small input val-

ues and also avoid overestimation of a large input value.

Moreover, since the function fρ,σ(λ) is smooth, it is much

easier to optimize than the rank function. For the above

reasons, we employ Eq. (9) for the geometry-aware term

r(G,X).

4. Optimization

As with the original spectral clustering problem, it is

hard to directly solve Eq. (5). Therefore, following the

standard spectral clustering algorithms, we relax the assign-

ment matrix Z from the discrete domain to the continuous

domain. More specifically, we relax Eq. (5) as follows:

max
G

(1− η)ϵ(G,M) + ηr(G,X) subject to G ∈ H,
(12)

is derived from K-subspaces and its probabilistic interpretation, which is

more intuitive for subspace clustering than data compression. Moreover,

their algorithm is based on the greedy algorithm, whereas our algorithm is

based on continuous optimization problem, which tends to result in better

solutions than the greedy algorithm.

N

K

!"# $# %#

&#

N

K

$# %#

&#

!
(a) (b) 

Figure 2. Comparison of two mixture models. (a) The directed

graphical model corresponding to the zero-mean Gaussian mix-

ture model. (b) The directed graphical model corresponding to the

probabilistic model p(xi) =
∑K

k
GikN (xi; 0,Σk).

where H = {G|G ∈ RN×K , 0 ≤ Gij ≤ 1, G1K = 1N}3.

Since standard algorithms for spectral clustering can no

longer be used to solve Eq. (12) due to the geometry-aware

term r(G,X), we propose a new algorithm for this problem.

First, we rewrite Eq. (12) as follows:

max
G∈H

(1− η)ϵ(G,M) + ηr(G,X)

=max
G∈H

(1− η)ϵ(G,M)+

max
Σ1,...,ΣK∈S

η

N∑

i

log

K∑

k

GikN (xi; 0,Σk)

= max
G∈H

Σ1,...,ΣK∈S

(1− η)ϵ(G,M) + η

N∑

i

log

K∑

k

GikN (xi; 0,Σk),

(13)

Note that the second term in Eq. (13) can be inter-

preted as a log-likelihood of a variant of the GMM, in which

the mixing coefficient vector is independently defined for

each sample (i.e., the ith sample’s coefficient vector ĝi is

ĝi = [Gi1, ..., GiK ]T ). To clarify the difference between

the GMM and that mixture model, we show comparison of

those directed graphical models in Fig. 2. In addition, the

first term can be interpreted as a regularizer for the mixing

coefficient matrix, i.e., G. From this observation, solving

Eq. (13) can be interpreted as solving the maximum a pos-

teriori (MAP) estimation problem of G (and Σ1, ...,ΣK) on

this mixture model. To solve this MAP estimation problem,

we propose a novel EM-based algorithm.

4.1. EM algorithm

Before introducing the proposed algorithm, we first re-

view the EM algorithm. Given a mixture model p(x|θ) =∑
z p(x, z|θ), where x is a data point and z is a hard assign-

ment, we have:

3Note that we restrict each sample’s assignment vector [G
·1, . . . , G·K ]

in the (K−1)-simplex. This corresponds to the problem of computing the

samples’ soft assignment vectors, which are also useful in some situations

(e.g., semi-supervised learning), though our main focus is to obtain the

discrete solution.
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log p(x|θ) = log
∑

z

p(x, z|θ)

= log
∑

z

q(z)
p(x, z|θ)
q(z)

≥
∑

z

q(z) log
p(x, z|θ)
q(z)

= L(q, θ),

(14)

where L(q, θ) and q(Z) are known as the evidence lower

bound (ELBO) and the variational distribution, respectively.

The EM algorithm solves the maximum likelihood (or

MAP) estimation problem for p(x|θ) by maximizing ELBO

(plus log-likelihood of the parameters θ on their prior p(θ),
i.e., log p(θ)) via alternately iterating the (E)xpectation step

and (M)aximization step, which updates q(z) and θ, respec-

tively. In the E-step, given the parameters θ̂, the optimal

variational distribution q(z) is p(z|X, θ̂). In the M-step,

given the variational distribution q̂(z), the optimal param-

eters θ is computed by solving max
θ̂

∑
z q̂(z) log p(x, z|θ̂)

(or max
θ̂

∑
z q̂(z) log p(x, z|θ̂)+log p(θ̂) if the parameters’

prior p(θ) is given). For more detail, see [4].

4.2. Proposed algorithm

We next introduce our algorithm for solving Eq. (13).

The overall algorithm is shown in Algorithm 1. Since we

follow the standard EM algorithm, which alternately iter-

ates the E-step and M-step, we explain those two steps in

the following.

[E-step] Updating q(Z): Given the parameters Σ1, ...,ΣK

and G, the optimal variational distribution q(Z) can be ob-

tained as follows:

q(Zij = 1) =
GijN (xi; 0,Σj)∑K
k GikN (xi; 0,Σk)

(15)

[M-step] Updating Σ1, ...,ΣK and G: Given the varia-

tional distribution q(Z), we want to solve the following

problem:

max
G∈H

Σ1,...,ΣK∈S

log p(G) +
∑

Z

q(Z) log p(X,Z|G,Σ1, ...,ΣK)

= max
G∈H

Σ1,...,ΣK∈S

1− η

η
ϵ(G,M)+

∑

Z

q(Z)
N∑

i

log
K∑

k

ZikGikN (xi; 0,Σk)

= max
G∈H

Σ1,...,ΣK∈S

1− η

η
ϵ(G,M)+

N∑

i

K∑

k

q(Zik = 1)(logGik + logN (xi; 0,Σk))

(16)

Following the standard EM algorithm for updating the

Gaussian mixture model’s parameters, we update covari-

ance matrices Σ1, ...,ΣK , then update mixing coefficients

G, and proceed to the E-step. When G is fixed, the optimal

Σ1, ...,ΣK can be obtained as (see the supplementary for

the derivation of this):

Σ̂k = UkDiag(max(dk, σ1D))UT
k , (17)

where 1∑
N
i

q(Zik=1)

∑N
i q(Zik = 1)xix

T
i =

UkDiag(dk)U
T
k . When Σ1, ...,ΣK are fixed, we ob-

tain the optimal parameters G by solving the following

problem:

max
G∈H

1− η

η
ϵ(G,M) +

N∑

i

K∑

k

q(Zik = 1) logGik

= max
G∈RN×D

1− η

η
ϵ(G,M)+

N∑

i

K∑

k

q(Zik = 1) logGik − ιH(G)

(18)

where ιH(G) is an indicator function defined as ιH(G) = 0
if G ∈ H; otherwise, ιH(G) = ∞. To solve this problem,

we employ the proximal gradient descent (PGD) method,

which iteratively updates G as follows:

Gnew = proxγ,ιH(G+ γ(
1− η

η

∂ϵ(G,M)

∂G
+QZ ⊘G)),

(19)

where QZ is a matrix such that (QZ)ij = q(Zij = 1), ⊘ is

the element-wise division operator and

proxγ,ιH(G†) = arg min
Ĝ

1

2γ
||G† − Ĝ||2F + ιH(Ĝ). (20)

Eq. (20) corresponds to the operator that projects each sam-

ple’s assignment vector [G·1, . . . , G·K ] to its closest point

in the (K − 1)-simplex. Eq. (20) can be efficiently com-

puted by some existing algorithms, e.g., [33].

Initialization: Similar to the standard EM algorithms, our

algorithm tends to lead a poor local minimum with random

initialization. Fortunately, we empirically found that our

algorithm tends to find a better local minimum by initializ-

ing q(Z) with the assignment matrix obtained by the stan-

dard spectral clustering algorithm (i.e., q(Zij = 1) = Gij).

From this observation, we initialize q(Z) by spectral clus-

tering.

4.3. Discretization

We then discretize the result obtained via the relaxed

problem Eq. (12). Prior to explaining our discretization

approach, we introduce the following proposition (see the

supplementary for proof of this):
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Algorithm 1 Subspace structure-aware spectral clustering

Input: Data matrix X = [x1, ...,xN ]
T

and initial variational distribution

q(Z).

1: repeat

2: [M-step]

3: Update the parameters Σ1, ...,ΣK as follows:

4: Σk ← UkDiag(max(dk, σ1D))UT
k

5: Update the parameters G by solving the following

problem with PGD:

6: maxG∈RN×D
1−η
η

ϵ(G,M) +
∑N

i

∑K
k q(Zik =

1) logGik − ιH(G)
7: [E-step]

8: Update the variational distribution q(Z) as follows:

9: q(Zik = 1) = GikN (xi;0,Σk)∑
K
j

GijN (xi;0,Σj)

10: until convergence

11: Discretize G as follows:

12: G∗
ik =< k = arg max

k′∈{1,...,K}
Ĝik′ >

Output: G∗

Proposition 1. Suppose that η = 1, and Σ1, ...,ΣK are

fixed. If Ĝ ∈ H is (one of) the optimal solution(s) for Eq.

(13), G† ∈ H, defined as follows, is also (one of) its optimal

solution(s):

G
†
ij =< j = arg max

j′∈{1,...,K}
Ĝij′ >, (21)

where < · > is 1 if the argument is true and 0 otherwise.

This proposition suggests that the quality of the solution

is not significantly deteriorated by converting it to a new

discrete solution by Eq. (21) when η is sufficiently close to

one. Based on this observation, we convert the continuous

solution to the final assignment by Eq. (21).

5. Experiments

To validate the effectiveness of our method, we con-

ducted experiments on four real world applications: face

clustering, object image clustering, hand-written digit clus-

tering and motion clustering. To show the versatility

of our method, we adopted four methods for comput-

ing self-representation matrices: sparse subspace cluster-

ing (SSC), low-rank representation (LRR), least square re-

gression (LSR), and correlation-adaptive subspace segmen-

tation (CASS). We also adopted the heuristics used by El-

hamifar and Vidal [11] and Ji et al. [18] for converting self-

representation matrices into affinity matrices. To evaluate

each method’s performance, we use two metrics: the clus-

tering accuracy and normalized mutual information (NMI).

We compare our method with multiclass spectral cluster-

ing (MSC) and spectral embedding clustering (SEC). MSC
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Figure 3. Experimental results on the EYaleB dataset. Since NMI

computed with our method by setting 1−η

η
= 1000.0 are much

less than the others, they are not shown in this figure. Best viewed

in color.

approximately solves the maximization problem of Eq. (4).

SEC, as with our method, considers the geometrical infor-

mation in the ambient space as well as Eq. (4), but its ob-

jective is not specialized for subspace clustering. For image

datasets, we found that graph clustering methods result in

chance-level results with some affinity computation meth-

ods. To avoid this phenomenon, following Hu et al. [15], we

applied PCA to data and use top 20 components for exper-

iments. Hyper-parameters for SSC, LRR, LSR, and CASS

were chosen so that the best accuracy was achieved when

MSC was used. MSC has no hyper-parameters, whereas

SEC has two hyper-parameters, which are denoted as γ and

µ in their paper. In our experiments, following the exper-

iments by Nie et al., we set γ = 1. With regard to µ,

we examined the cases of setting µ = 0, 0.01, 0.1, 1, and

show the best score among them for each combination of

datasets, methods, and metrics4. Note that this experimen-

tal protocol leads SEC to overfitting of each setting. For our

method, we set 1−η
η

= 100.0 unless specified otherwise.

5.1. Face Image Clustering

Settings: We first conducted an experiment on the Ex-

tended Yale Face Database B (EYaleB) [23]. EYaleB is a

face image dataset, which consists of 2,432 facial images

of 38 subjects under various illumination conditions. Each

subject has 64 images. We used images resized to 48× 42,

which are provided by Elhamifar and Vidal [11]. We gen-

erated ten subsets by randomly choosing ten subjects and

used them to evaluate each method’s performance.

Results: Table 1 shows the clustering results on EYaleB. It

can be seen that, in all cases, our method outperforms the

other two methods. This suggests the effectiveness of our

method.

Parameter sensitivity: We also tested the performance of

our method by varying the parameter η. The results are

4Since the case of setting µ = 0 corresponds to MSC, its scores are

never less than MSC.
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SSC LRR LSR CASS

Method Accuracy NMI Accuracy NMI Accuracy NMI Accuracy NMI

MSC 0.625 0.572 0.632 0.575 0.646 0.593 0.735 0.658

SEB 0.631 0.583 0.645 0.598 0.646 0.595 0.735 0.658

ours 0.643 0.600 0.662 0.621 0.669 0.616 0.743 0.667
Table 1. Experimental results on the EYaleB dataset.

SSC LRR LSR CASS

Method Accuracy NMI Accuracy NMI Accuracy NMI Accuracy NMI

MSC 0.781 0.873 0.763 0.838 0.792 0.882 0.904 0.958

SEB 0.781 0.873 0.763 0.862 0.792 0.882 0.904 0.958

ours 0.788 0.885 0.781 0.861 0.797 0.891 0.904 0.958
Table 2. Experimental results on the COIL100 database.

shown in Fig. 3. In all cases, the peak of the metrics

is when 1−η
η

= 100.0, and the result gets worse when

η is larger or smaller than that. This suggests that both

the graph clustering term ϵ(G,M) and the geometry-aware

term r(G,X), rather than one or the other, should be con-

sidered for achieving better clustering results. In addition,

in all cases, we can observe that the clustering result is much

worse than its peak when 1−η
η

is too large. This is be-

cause, when η is close to zero, a continuous solution of Eq.

(12) is likely to be approximately factorized in the form of

G = 1NvT 5, where v is a vector in the (K − 1)-simplex,

and hence all the data points tend to be assigned to a sin-

gle cluster. Furthermore, our method tends to outperform

the MSC baseline even when 1−η
η

is much smaller than its

peak. Based on this observation, we suggest selecting small

η when it cannot be tuned (e.g., when a validation dataset is

not available).

5.2. Object Image Clustering

Settings: We next conducted an experiment on the

COIL100 database [31], which consists of 7200 images of

100 object categories such as a duck and a car. Each class

has 72 images, and each image has 32× 32 pixels. As with

the experiments on EYaleB, we generated ten subsets by

randomly choosing ten categories and used them to evalu-

ate each method’s performance.

Results: Table 2 shows the clustering results on COIL100.

It can be seen that, in most cases, our method outperforms

the other two methods. This also suggests the effectiveness

of our method.

5In particular, we can show that, when η = 0, an assignment matrix G

is always one of the optimal solutions of Eq. (12) if it can be factorized in

the form of G = 1Nv
T , where v is a vector in the (K − 1)-simplex and

satisfies vi > 0 for all i. For proof, see supplementary material.

5.3. Hand­written Digit Clustering

We next conducted an experiment on the USPS hand-

written digit dataset [16], which consists of ten digit cate-

gories. Each image has 16 × 16 pixels. We generated ten

subsets by randomly choosing 100 images from each cate-

gory and used them to evaluate each method’s performance.

Results: Table 3 shows the clustering results on COIL100.

It can be seen that, in most cases, our method outperforms

the other two methods. This also suggests the effectiveness

of our method.

5.4. Trajectory Clustering

We next conduct an experiment on the Hopkins 155

motion segmentation database (Hopkins155) [40]. Hop-

kins155 is a video dataset, which consists of 155 video se-

quences with multiple 2D trajectories. Each sequence con-

tains two or three motions. We used all 155 video sequences

to evaluate each method’s performance.

Results: Table 4 shows the clustering results on Hop-

kins155. It can be seen that, in most cases, our method

outperforms the other two methods. This also suggests the

effectiveness of our method.

5.5. Introducing Our Method into Structured
Sparse Subspace Clustering

Recently, subspace clustering frameworks have been

proposed that unify graph construction and graph cluster-

ing into a single optimization problem [13, 24, 48]. To

investigate whether our method is also effective for such

frameworks, we conducted experiments with a combina-

tion of our method and structured sparse subspace cluster-

ing (S3C) [24], one of the representative unified framework,

on the EYaleB dataset.
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SSC LRR LSR CASS

Method Accuracy NMI Accuracy NMI Accuracy NMI Accuracy NMI

MSC 0.749 0.617 0.765 0.773 0.766 0.768 0.784 0.789

SEB 0.749 0.677 0.771 0.784 0.766 0.768 0.784 0.799

ours 0.756 0.787 0.777 0.797 0.786 0.797 0.787 0.798
Table 3. Experimental results on the USPS dataset.

SSC LRR LSR CASS

Method Accuracy NMI Accuracy NMI Accuracy NMI Accuracy NMI

MSC 0.939 0.840 0.937 0.830 0.980 0.936 0.881 0.733

SEB 0.939 0.840 0.937 0.830 0.980 0.936 0.881 0.733

ours 0.947 0.860 0.947 0.861 0.979 0.936 0.894 0.767
Table 4. Experimental results on the Hopkins dataset.

S3C: S3C simultaneously optimizes a self-representation

matrix Z and an assignment matrix G by minimizing the

following objective:

min
Z∈{Z|Z∈RN×N ,Zii=0},G

||Z||1,G + τ ||X −XZ||2F , (22)

where ||Z||1,G =
∑

i,j |Zij |(1 + α
2 ||gi − gj ||22), and α is a

hyper-parameter. S3C solves this objective by alternately

updating Z and G while fixing the other. More specifi-

cally, alternating direction method of multipliers (ADMM)

is used for updating Z, whereas the two following methods

have been proposed for updating G:

• G is updated with a binary assignment matrix com-

puted by applying spectral clustering to the affinity

matrix M = |Z| + |ZT |. This method is called Hard-

S3C.

• G is updated with a real-valued assignment matrix

computed by concatenating each data point’s normal-

ized K-dimensional embedding, produced by apply-

ing spectral clustering to the affinity matrix M =
|Z| + |ZT | (i.e., before the k -means step). The final

(binary) assignment matrix G is computed by simply

applying spectral clustering to a final affinity matrix

M . This method is called Soft-S3C.

Experinmental settings: In this experiment, we investi-

gated whether the clustering results are consistently im-

proved by replacing spectral clustering in both Hard-S3C

and Soft-S3C with our method. More specifically, we com-

pared four methods: Hard-S3C, Hard-S3C with our method,

Soft-S3C and Soft-S3C with our method. Following Li et

al. [24], we set α = 0.1 and α = 1.0 for Hard-S3C and

Soft-S3C, respectively. We also set τ = 1.0. We iterated

updating Z and G ten times and compute performance at

1 2 3 4 5 6 7 8 9 10
Number of iterations

0.60

0.65

0.70

Ac
cu

ra
cy

Soft-S3C
Soft-S3C+ours

Hard-S3C
Hard-S3C+ours

1 2 3 4 5 6 7 8 9 10
Number of iterations

0.60

0.65

0.70

NM
I

Soft-S3C
Soft-S3C+ours

Hard-S3C
Hard-S3C+ours

Figure 4. Experimental results on the EYaleB dataset. For each

method, accuracy and NMI after each iteration are shown in this

figure. Best viewed in color.

the end of each iteration. Other experimental settings were

same as in the EYaleB experiments in the section 5.1.

Experimental results: The experimental results are shown

in Fig. 4. From these results, we can observe that the clus-

tering results are improved by introducing our method into

both Hard-S3C and Soft-S3C. These results indicate the ef-

fectiveness of using our method even for frameworks that

unify graph construction and graph clustering.

6. Conclusion

We proposed a novel graph clustering framework for

robust subspace clustering. By incorporating a novel

geometry-aware term with the spectral clustering objective,

we encourage our framework to be robust to noise and out-

liers in given affinity matrices. We also developed a novel

EM algorithm for optimization. Through extensive exper-

iments on four real-world datasets, we demonstrated that

the proposed method outperforms existing methods. More-

over, we also demonstrated that our method is also effective

for frameworks that unify graph construction and cluster-

ing steps. In the future, we will aim at providing a further

theoretical analysis of the proposed method.
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