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Abstract

Resembling the rapid learning capability of human, low-

shot learning empowers vision systems to understand new

concepts by training with few samples. Leading approaches

derived from meta-learning on images with a single visual

object. Obfuscated by a complex background and multiple

objects in one image, they are hard to promote the research

of low-shot object detection/segmentation. In this work, we

present a flexible and general methodology to achieve these

tasks. Our work extends Faster /Mask R-CNN by propos-

ing meta-learning over RoI (Region-of-Interest) features in-

stead of a full image feature. This simple spirit disentan-

gles multi-object information merged with the background,

without bells and whistles, enabling Faster /Mask R-CNN

turn into a meta-learner to achieve the tasks. Specifically,

we introduce a Predictor-head Remodeling Network (PRN)

that shares its main backbone with Faster /Mask R-CNN.

PRN receives images containing low-shot objects with their

bounding boxes or masks to infer their class attentive vec-

tors. The vectors take channel-wise soft-attention on RoI

features, remodeling those R-CNN predictor heads to de-

tect or segment the objects consistent with the classes these

vectors represent. In our experiments, Meta R-CNN yields

the new state of the art in low-shot object detection and im-

proves low-shot object segmentation by Mask R-CNN.Code:

https://yanxp.github.io/metarcnn.html.

1. Introduction
Deep learning frameworks dominate the vision commu-

nity to date, due to their human-level achievements in su-

pervised training regimes with a large amount of data. But

distinguished with human that excel in rapidly understand-

ing visual characteristics with few demonstrations, deep
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Figure 1. The illustration of labeled training images in low-shot se-

tups for visual object recognition and class-aware object structure

(bounding-boxs or masks) prediction. Compared with recognition,

novel-class few objects in low-shot object detection/ segmentation

blend with other objects in diverse backgrounds, yet requiring a

low-shot learner to predict their classes and structure labels.

neural networks significantly suffer performance drop when

training data are scarce in a class. The exposed bottleneck

triggers many researches that rethink the generalization of

deep learning [46, 11], among which low(few)-shot learn-

ing [26] is a popular and very promising direction. Provided

with very few labeled data (1∼10 shots) in novel classes,

low-shot learners are trained to recognize the data-starve-

class objects by the aid of base classes with sufficient la-

beled data (See Fig 1.a). Its industrial potential increas-

ingly drives the emergence of solution, falling under the

umbrellas of Bayesian approaches [10, 26], similarity learn-

ing [25, 36] and meta-learning [40, 42, 41, 37].

However, recognizinga single object inan image is solely

a tip of the iceberg in real-world visual understanding. In

terms of instance-level learning tasks, e.g., object detection

[35, 33]/ segmentation [2], prior works in low-shot learning

contexts remain rarely explored (See Fig 1.b). Since learn-

ing the instance-level tasks requires bounding-box or masks

(structure labels) consuming more labors than image-level

annotations, it would be practically impactful if the novel

classes, object bounding boxes and segmentation masks can

be synchronously predicted by a low-shot learner. Unfortu-
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nately, these tasks in object-starve conditions become much

tougher, as a learner needs to locate or segment the novel-

class number-rare objects beside of classifying them. More-

over, due to multiple objects in one image, novel-class ob-

jects might blend with the objects in other classes, further

obfuscating the information to predict their structure labels.

Given this, researchers might expect a complicated solution,

as what were done to solve low-shot recognition [10, 26].

Beyondtheirexpectation,wepresent an intuitive and gen-

eral methodology to achieve low-shot object detection and

segmentation : we propose a novel meta-learning paradigm

based on the RoI (Region-of-Interest) features produced by

Faster/Mask R-CNN [35, 17]. Faster /Mask R-CNN should

be trained with considerable labeled objects and unsuited

in low-shot object detection. Existing meta-learning tech-

niques are powerful in low-shot recognition, whereas their

successes are mostly based on recognizing a single object.

Given an image with multi-object information merged in

background, they almost fail as the meta-optimization could

not disentangle this complex information. But interestingly,

we found that the blended undiscovered objects could be

“pre-processed” via the RoI features produced by the first-

stage inference in Faster /Mask R-CNNs. Each RoI feature

refers to a single object or background, so Faster /Mask R-

CNN may disentangle the complex information that most

meta-learners suffer from.

Our observation motivates the marriage between Faster

/Mask R-CNN and meta-learning. Concretely, we extend

Faster /Mask R-CNN by introducing a Predictor-head Re-

modeling Network (PRN). PRN is fully-convoluted and

shares the main backbone’s parameters with Faster /Mask

R-CNN. Distinct from the R-CNN counterpart, PRN re-

ceives low-shot objects drawn from base and novel classes

with their bboxes or masks, inferring class-attentive vectors,

corresponding to the classes that low-shot input objects be-

long to. Each vector takes channel-wise attention to all RoI

features, inducing the detection or segmentation prediction

for the classes. To this end, a Faster /Mask R-CNN predictor

head has been remodeled to detect or segment the objects

that refer to the PRN’s inputs, including the category, po-

sition, and structure information of low-shot objects. Our

framework exactly boils down to a typical meta-learning

paradigm, encouraging the name Meta R-CNN.

Meta R-CNN is general (available in diverse backbones

in Faster/Mask R-CNN), simple (a lightweight PRN) yet

effective (a huge performance gain in low-shot object de-

tection/ segmentation) and remains fast inference (class-

attentive vectors could be pre-processed before testing). We

conduct the experiments across 3 benchmarks, 3 backbones

for low-shot object detection/ segmentation. Meta R-CNN

has achieved the new state of the art in low-shot novel-class

object detection/ segmentation, and more importantly, kept

competitive performance to detect base-class objects. It ver-

ifies Meta R-CNN significantly improve the generalization

capability of Faster/ Mask R-CNN.

2. Related Work
Low-shot object recognition aims to recognize novel

visual objects given very few corresponding labeled train-

ing examples. Recent studies in vision are mainly classed

into three streams based on Bayesian approaches, met-

ric learning and meta-learning, respectively. Bayesian ap-

proaches [10, 26] presume a mutual organization rule be-

hind the objects, and design probabilistic model to discover

the information among latent variables. Similarity learn-

ing [25, 36, 38] tend to consider the same-category exam-

ples’s features should be more similar than those between

different classes. Distinct from them, meta-learning [40,

37, 12, 32, 3, 16, 43, 11] designs to learn a meta-learner

to parametrize the optimization algorithm or predict the pa-

rameters of a classifier, so-called “learning-to-learn”. Re-

cent theories [1, 23] show that meta-learner achieves a gen-

eralization guarantee, attracting tremendous studies to solve

low-shot problems by meta-learning techniques. However,

most existing methods focus on single-object recognition.

Object detection based on neural network is mainly re-

solved by two solver branches: one-stage / two-stage detec-

tors. One-stage detectors attempt to predict bounding boxes

and detection confidences of object categories directly, in-

cluding YOLO [33], SSD [28] and the variants. R-CNN

[14] series [18, 13, 35, 8] fall into the second stream. The

methods apply covnets to classify and regress the location

by the region proposals generated by different algorithms

[39, 35]. More recently, low-shot object detection has been

extended from recognition [4, 22, 21]. [21] follows full-

image meta-learning principle to address this problem. In-

stead, we discuss the similarity and difference between low-

shot object recognition and detection in Sec 3, to reasonably

motivate our RoI meta-learning approach.

Object segmentation is expected to pixel-wise segment

the objects of interest in an image. Leading methods are cat-

egorized into image-based and proposal-based. Proposal-

based methods [30, 31, 7, 6] predict object masks based

on the generated region proposals while image-based meth-

ods [47, 48, 44, 2] produce a pixel-level segmentation map

over the image to identify object instance. The relevant re-

searches in few-shot setup remain absent.

3. Tasks and Motivation
Before introducing Meta R-CNN, we consider low-shot

object detection /segmentation tasks it aims to achieve. The

tasks could be derived from low-shot object recognition in

terms of meta-learning methods that motivate our method.

3.1. Preliminary: low­shot visual object recognition
by meta­learning

In low-shot object recognition, a learner h(;θ) receives

training data from base classes Cbase and novel classes
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Figure 2. Our Meta R-CNN consists of 1)

Faster/ Mask R-CNN; 2) Predictor-head Re-

modeling Network (PRN). Faster/ Mask R-

CNN (module) receives an image to produce

RoI features, by taking RoIAlign on the im-

age region proposals extracted by RPN. In

parallel, our PRN receives K-shot-m-class

resized images with their structure labels

(bounding boxes/segmentaion masks) to infer

m class-attentive vectors. Given a class at-

tentive vector representing class c, it takes a

channel-wise soft-attention on each RoI fea-

ture, encouraging the Faster/ Mask R-CNN

predictor heads to detect or segment class-c

objects based on the RoI features in the im-

age. As the class c is dynamically determined

by the inputs of PRN, Meta R-CNN is a meta-

learner.

Cnovel. So the data can be divided into two groups: Dbase =
{(xbase

i , ybasei )}n1

i=1 ∼ Pbase contains sufficient samples in

each base class; Dnovel = {(xnovel
i , ynoveli )}n2

i=1 ∼ Pnovel

contains very few samples in each novel class. h(;θ) aims

to classify test samples drawn from Pnovel. Notably, train-

ing h(;θ) with small dataset Dnovel to identify Cnovel suf-

fers model overfitting, whereas training h(;θ) with Dbase∪
Dnovel still fails, due to the extreme data quantity imbalance

between Dbase and Dnovel (n2 << n1).

Recent wisdoms tend to address this problem by recast-

ing it into a meta-learning paradigm [40, 41] to encour-

age a fast model adaptation (generalization) to novel tasks,

e.g., classifying objects in Cnovel. In each iteration, the

meta-learning paradigm draws a subset of classes Cmeta ∼
Cbase∪Cnovel and thus, uses the images belonging to Cmeta

to construct two batches: a training mini-batch Dtrain and a

small-size meta(reference)-set Dmeta (low-shot samples in

each class). Given this, a meta-learner h(xi, Dmeta;θ) si-

multaneously receives an image xi ∼ Dtrain and the entire

Dmeta and then, is trained to classify Dtrain into Cmeta
1.

By replacing Dmeta with Dnovel, recent theories [1, 23]

present generalization bounds to the meta-learner, enabling

h(, Dnovel;θ) to correctly recognize the objects ∼ Pnovel.

3.2. Low­shot object detection / segmentation

From visual recognition to detection /segmentation, low-

shot learning on objects becomes more complex: An image

xi might contain ni objects {zi,j}
ni

j=1 in diverse classes, po-

sitions and shapes. Therefore the low-shot learners need to

identify novel-class objects z
novel
i,j from other objects and

background, and then, predict their classes ynoveli,j and struc-

ture labels snoveli,j (bounding-boxes or masks). Most exist-

ing detection/ segmentation baselines address the problems

1In a normal setup, meta-learning includes two phases, meta-train and

meta-test. The first phase only use a subset of Cbase to train a meta-learner.

by modeling h(xi;θ), performing poorly in a low-shot sce-

nario. However, meta-predictor h(xi, Dmeta;θ) is also un-

suitable, since xi contains multi-object complex informa-

tion merged in diverse backgrounds.

Motivation. The real goal of meta-learning for low-shot

object detection/ segmentation is to model h(zi,j , Dmeta;θ)
rather than h(xi, Dmeta;θ). Since visual objects {zi,j}

ni

j=1

are blended with each other and merge with the background

in xi, meta-learning with {zi,j}
ni

j=1 is prevented. Howbeit

in two-stage detection models, e.g., Faster/ Mask R-CNNs,

multi-object and their background information can be dis-

entangled into RoI (Region-of-Interest) features {ẑi,j}
n̂i

j=1,

which are produced by taking RoIAlign on the image region

proposals extracted by the region proposal network (RPN).

These RoI features are fed into the second-stage predic-

tor head to achieve RoI-based object classification, position

location and silhouette segmentation for {zi,j}
ni

j=1. Given

this, it is preferable to remodel the R-CNN predictor head

into h(ẑi,j , Dmeta;θ) to classify, locate and segment the ob-

ject zi,j behind each region of interest (RoI) feature ẑi,j .

4. Meta R-CNN
Aiming at meta-learning over regions of interest (RoIs),

Meta R-CNN is conceptually simple: its pipeline consists of

1). Faster/ Mask R-CNN; 2). Predictor-head Remodeling

Network (PRN). Faster/ Mask R-CNN produces object pro-

posals {ẑi,j}
ni

j=1 by their region proposal networks (RPN).

Then each ẑi,j combines with class-attentive vectors in-

ferred by our PRN, which plays the role of h(, Dmeta;θ)
to detect or segment the novel-class objects. The Meta R-

CNN framework is illustrated in Fig 2 and we elaborate it

by starting from Faster/ Mask R-CNN.

4.1. Review the R­CNN family

Faster R-CNN system is known as a two-stage pipeline.

The first stage is a region proposal network (RPN), receiv-
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ing an image xi to produce the candidate object bounding-

boxes (so-called object region proposals) in this image. The

second stage, i.e., Fast R-CNN [13], shares the RPN back-

bone to extract RoI (Region-of-Interest) features {ẑi,j}
n̂i

j=1

from n̂i object region proposals after RoIAlign 2 , enabling

its predictor head h(ẑi,j ,θ) to classify and locate the object

zi,j behind the RoI feature ẑi,j of xi. Mask R-CNN acti-

vates the segmentation ability in Faster R-CNN by adding

a parallel mask branch in the predictor head h(·,θ). Due to

our identical technique applied in Faster/ Mask R-CNN, we

unify their predictor heads by h(·,θ).

As previously discussed, predictor head h(·,θ) in Faster/

Mask R-CNN is inappropriate to make low-shot object de-

tection/ segmentation. To this we propose PRN that remod-

els h(·,θ) into a meta-predictor head h(·, Dmeta;θ).

4.2. Predictor­head Remodeling Network (PRN)

A straightforward approach to design h(·, Dmeta;θ) is

to learn θ to predict the optimal parameter w.r.t. an arbi-

trary meta-set Dmeta like [42]. Such explicit “learning-to-

learn” manner is sensitive to the architectures and h(·,θ) in

Faster/ Mask R-CNN is abandoned. Instead, our work is in-

spired by the concise spirit of SNAIL [29], thus, incorporat-

ing class-specific soft-attention vectors to achieve channel-

wise feature selection on each RoI feature in {zi,j}
n̂i

j=1 [5].

This soft-attention mechanism is implemented by the class-

attentive vectors vmeta inferred from the objects in a meta-

set Dmeta via PRN. In particular, suppose that PRN denotes

as v
meta = f(Dmeta;φ), given each RoI feature ẑi,j that

belongs to image xi, it holds

h(ẑi,j , Dmeta;θ
′) = h(ẑi,j ⊗ v

meta,θ)

= h(ẑi,j ⊗ f(Dmeta;φ),θ)
(1)

where θ, φ denote the parameters of Faster/Mask R-CNN

and our PRN (most of them are shared, θ′ = {θ,φ}); ⊗ in-

dicates the channel-wise multiplication operator. Eq 1 im-

plies that PRN remodels h(·,θ) into h(·, Dmeta;θ) in prin-

ciples. It is intuitive, flexibly-applied and allows end-to-end

joint training with its Faster/ Mask R-CNN counterpart.

Suppose xi as the image Meta R-CNN aiming to detect.

After RoIAlign in its R-CNN module, it turns to a set of RoI

features {ẑ}n̂i

i,j . Here we explain how PRN acts on them.

Infer class-attentive vectors. As can be observed, PRN

f(Dmeta;φ) receives all objects in meta-set Dmeta as input.

In the context of object detection/ segmentation, Dmeta de-

notes a series of objects distributed across images, whose

classes belong to Cmeta and there exist K objects per class

(K-shot setup). Each object in Dmeta presents a 4-channel

input, i.e., an RGB image x with the same-spatial-size fore-

ground structure label s that are combined to represent this

2RoIAlign operation is first introduced by Mask R-CNN yet can be

used by Faster R-CNN. Faster R-CNNs in our work are based on RoIAlign.

object (s is a binary mask derived from the object bounding-

box or segmentation mask). Hence given m as the size of

Cmeta, PRN receives mK 4-channel object inputs in each

inference process. To ease the computation burden, we stan-

dardize the spatial size of object inputs into 224×224. Dur-

ing inference, after passing the first convolution layer of our

PRN, each object feature would be fed into the second layer

of its R-CNN counterpart, undergoing the shared backbone

before RoIAlign. Instead of accepting RoIAlign, the fea-

ture passes a channel-wise soft-attention layer to produce

its object attentive vector v. To this end, PRN encodes mK

objects in Dmeta into mK object attentive vectors and then,

applies average pooling to obtain the class-attentive vectors

v
meta
c , i.e., vmeta

c = 1
K

∑K
j=1 v

(c)
k , (∀c ∈ Cmeta, v

(c)
k rep-

resents an object attentive vector inferred from a class-c ob-

ject and there are K objects per class).

Remodel R-CNN predictor heads. After obtaining the

class-attentive vectors v
meta
c (∀c ∈ Cmeta), PRN applies

them to make channel-wise soft-attention on each RoI fea-

ture zi,j . Suppose that Ẑi = [ẑi,1; · · · ; ẑi,128] ∈ R
2048×128

denotes the RoI feature matrix generated from xi (128 de-

notes the number of RoI). PRN replaces Ẑi by Ẑi⊗v
meta
c =

[ẑi,1⊗v
meta
c ; · · · ; ẑi,128⊗v

meta
c ] to feed the primitive pre-

dictor heads in Faster /Mask R-CNNs. The refinement leads

to detecting or segmenting all class-c objects in the image

xi. In this spirit, each RoI feature ẑi,j produces m binary

detection outcomes that refers to the classes in Cmeta. To

this Meta R-CNN categorizes ẑi,j into the class c∗ with the

highest confidence score and use the branch ẑi,j ⊗v
meta
c∗ to

locate or segment the object. But if the highest confidence

score is lower than the objectness threshold, this RoI would

be treated as background and discarded.

5. Implementation
Meta R-CNN is trained under a meta-learning paradigm.

Our implementation based on Faster/ Mask R-CNN, whose

hyper-parameters follow their original report.

Mini-batch construction. Simulating the meta-learning

paradigm we have discussed, a training mini-batch in Meta

R-CNN is comprised of m classes Cmeta ∼ Cbase∪Cnovel,

a K-shot m-class meta-set Dmeta and m-class training set

Dtrain (classes in Dmeta, Dtrain consistent with Cmeta). In

our implementation, Dtrain represent the objects in the in-

put x of Faster/ Mask R-CNNs. To keep the class consis-

tency, we choose Cmeta as the object classes image x refers

to, and only uses the attentive vectors inferred from the ob-

jects belonging to the classes in Cmeta. Therefore, if the

R-CNN module receives an image input x that contains ob-

jects in m classes, a mini-batch consists of x (Dtrain) and

mK resized images with their structure label masks.

Channel-wise soft-attention layer. This layer receives

the features induced from the main backbone of the R-CNN

counterpart. It performs a spatial pooling to align the object

features maintaining the identical size of RoI features. Then
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the features undergo an element-wise sigmoid to produce

attentive vectors (the size is 2048×1 in our experiment).

Meta-loss. Given an RoI feature ẑi,j , to avoid the pre-

diction ambiguity after soft-attention, attentive vectors from

different-class objects should lead to diverse feature selec-

tion effects on ẑi,j . To this we propose a simple meta-

loss L(φ)meta to diversify the inferred object attentive vec-

tors in meta-learning. It is implemented by a cross-entropy

loss encouraging the object attentive vectors to fall in the

class each object belongs to. This auxiliary loss powerfully

boosts Meta R-CNN performance (see Table 6 Ablation 2).

RoI meta-learning. Following the typical optimization

routines in [40, 37, 41], meta-learning Meta R-CNN is di-

vided into two phases. In the first phase (so-called meta-

train), we solely consider base-class objects to construct

Dmeta and Dtrain in per iter. In the case that an image si-

multaneously includes base-class and novel-class objects,

we ignore the novel-class objects in meta-train. In the sec-

ond phase (so-called meta-test), objects in base and novel

classes are both considered. The objective is formulated as

min
θ, φ

L(θ,φ)cls + L(θ,φ)reg + λL(θ,φ)mask
︸ ︷︷ ︸

Losses derived from Faster/Mask R−CNN

+L(φ)meta

(2)

where λ = {0, 1} indicates the activator of mask branch.

The illustration of meta-learning for Meta R-CNN is below:

Figure 3. The illustrative instance of RoI meta-learning process in

Meta R-CNN. Suppose the image Faster/ Mask R-CNN receiving

contains objects in “person”, “horse”. Then Cmeta = ( “person”,

“horse” ) and Dmeta includes K-shot “person” and ”horse” im-

ages with their structure labels, respectively. As the training image

iteratively changes, Cmeta and Dmeta would adaptively change.

Inference. Meta R-CNN entails two inference processes

based on Faster/Mask R-CNN module and PRN. In training,

the object attentive vectors inferred from Dmeta would re-

place the class-attentive vectors to take soft-attention effects

on Ẑi and produce the object detection/ segmentation losses

in Eq 2. In testing, we choose Cmeta = Cbase ∪Cnovel. It is

because that unknown objects in a test image may cover all

possible categories. PRN receives K-shot visual objects in

all classes to produce class-attentive vectors to achieve low-

shot object detection/ segmentation. Note that, no matter of

object or class attentive vectors, they can be pre-processed

before testing, and parallelly take soft-attention on RoI fea-

ture matrices. It promises the fast inference of Faster/ Mask

R-CNN will not be decelerated: In our experiment (using a

single GTX TITAN XP), if shot is 3, the inference speed of

Faster R-CNN is 83.0 ms/im; Meta R-CNN is 84.2ms/im;

if shot is 10, the speed of Meta R-CNN is 85.4ms/im.

6. Experiments
In this section, we propose thorough experiments to eval-

uate Meta R-CNN on low-shot object detection, the related

ablation, and low-shot object segmentation.

6.1. Low­shot object detection

In low-shot object detection, we employ a Faster R-CNN

[35] with ResNet-101 [17] backbone as the R-CNN module

in our Meta R-CNN framework.

Benchmarks and setups. Our low-shot object detection

experiment follows the setup [21]. Concretely, we evaluate

all baselines on the generic object detection tracks of PAS-

CAL VOC 2007 [9], 2012 [9], and MS-COCO [27] bench-

marks. We adopt the PASCAL Challenge protocol that a

correct prediction should have more than 0.5 IoU with the

ground truth and set the evaluation metric to the mean Aver-

age Precision (mAP). Among these benchmarks, VOC 2007

and 2012 consists of images covering 20 object categories

for training, validation and testing sets. To create a low-

shot learning setup, we consider three different novel/base-

class split settings, i.e., (“bird”, “bus”, “cow”, “mbike”,

“sofa”/ rest); (“aero”, “bottle”,“cow”,“horse”,“sofa” / rest)

and (“boat”, “cat”, “mbike”,“sheep”, “sofa”/ rest). During

the first phase of meta-learning, only base-class objects are

considered. In the second phase, there are K-shot annotated

bounding boxes for objects in each novel class and 3K an-

notated bounding boxes for objects in each base class for

training, where K is set 1, 2, 3, 5 and 10. We also evaluate

our method on COCO benchmark with 80 object categories

including the 20 categories in PASCAL VOC. In this ex-

periment, we set the 20 classes included in PASCAL VOC

as the novel classes, then the rest 60 classes in COCO as

base classes. The union of 80k train images and a 35k sub-

set of validation images (trainval35k) are used for training,

and our evaluation is based on the remaining 5k val images

(minival). Finally, we consider the cross-benchmark trans-

fer setup of low-shot object detection from COCO to PAS-

CAL [21], which leverages 60 base classes of COCO to

learn knowledge representations and the evaluation is based

on 20 novel classes of PASCAL VOC.

Baselines. In methodology, Meta R-CNN can be treated

as the meta-learning extension of Faster R-CNN (FRCN)

[35] in the background of low-shot object detection. To this

a question about detector generalization is probably raised:

Does Meta R-CNN help to improve the generalization

capability of Faster R-CNN?

To answer this question, we compare our Meta R-CNN

with its base FRCN. This detector is derived into three base-
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Table 1. Low-shot detection mAP on VOC2007 test set in novel classes. We evaluate the baselines

under three different splits of novel classes. RED and BLUE indicate state-of-the-art (SOTA) and

the second best. (Best viewd in color)

Novel-class Setup 1 Novel-class Setup 2 Novel-class Setup 3

Method/Shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

YOLO-Low-shot [21] 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 39.2 19.2 21.7 25.7 40.6 41.3

FRCN+joint 2.7 3.1 4.3 11.8 29.0 1.9 2.6 8.1 9.9 12.6 5.2 7.5 6.4 6.4 6.4

FRCN+ft 11.9 16.4 29.0 36.9 36.9 5.9 8.5 23.4 29.1 28.8 5.0 9.6 18.1 30.8 43.4

FRCN+ft-full 13.8 19.6 32.8 41.5 45.6 7.9 15.3 26.2 31.6 39.1 9.8 11.3 19.1 35.0 45.1

Meta R-CNN (ours) 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1

Table 2. The ablation study of back-

bones (mAP on VOC2007 testset in

novel classes and base classes of the

first base/novel split based on FRCN).

Shot Baselines Base Novel

3

ResNet-34+ft-full 57.9 19.6

ResNet-34+Ours 57.6 25.3

ResNet-101+ft-full 63.6 32.8

ResNet-101+Ours 64.8 35.0

10

ResNet-34+ft-full 61.1 40.2

ResNet-34+Ours 61.3 44.5

ResNet-101+ft-full 61.3 45.6

ResNet-101+Ours 67.9 51.5

Table 3. AP and mAP on VOC2007 test set for novel classes and base classes of the first base/novel split. We evaluate the performance for

3/10-shot novel-class examples with FRCN under ResNet-101. RED/BLUE indicate the SOTA/the second best. (Best viewd in color)

Novel classes Base classes
mAP

Shot Baselines bird bus cow mbike sofa mean aero bike boat bottle car cat chair table dog horse person plant sheep train tv mean

3

YOLO-Low-shot [21] 26.1 19.1 40.7 20.4 27.1 26.7 73.6 73.1 56.7 41.6 76.1 78.7 42.6 66.8 72.0 77.7 68.5 42.0 57.1 74.7 70.7 64.8 55.2

FRCN+joint 13.7 0.4 6.4 0.8 0.2 4.3 75.9 80.0 65.9 61.3 85.5 86.1 54.1 68.4 83.3 79.1 78.8 43.7 72.8 80.8 74.7 72.7 55.6

FRCN+ft 31.1 24.9 51.7 23.5 13.6 29.0 65.4 56.4 46.5 41.5 73.3 84.0 40.2 55.9 72.1 75.6 74.8 32.7 60.4 71.2 71.2 61.4 53.3

FRCN+ft-full 29.1 34.1 55.9 28.6 16.1 32.8 67.4 62.0 54.3 48.5 74.0 85.8 42.2 58.1 72.0 77.8 75.8 32.3 61.0 73.7 68.6 63.6 55.9

Meta R-CNN (ours) 30.1 44.6 50.8 38.8 10.7 35.0 67.6 70.5 59.8 50.0 75.7 81.4 44.9 57.7 76.3 74.9 76.9 34.7 58.7 74.7 67.8 64.8 57.3

10

YOLO-Low-shot [21] 30.0 62.7 43.2 60.6 39.6 47.2 65.3 73.5 54.7 39.5 75.7 81.1 35.3 62.5 72.8 78.8 68.6 41.5 59.2 76.2 69.2 63.6 59.5

FRCN+joint 14.6 20.3 19.2 24.3 2.2 16.1 78.1 80.0 65.9 64.1 86.0 87.1 56.9 69.7 84.1 80.0 78.4 44.8 74.6 82.7 74.1 73.8 59.4

FRCN+ft 31.3 36.5 54.1 26.5 36.2 36.9 68.4 75.2 59.2 54.8 74.1 80.8 42.8 56.0 68.9 77.8 75.5 34.7 66.1 71.2 66.2 64.8 57.8

FRCN+ft-full 40.1 47.8 45.5 47.5 47.0 45.6 65.7 69.2 52.6 46.5 74.6 73.6 40.7 55.0 69.3 73.5 73.2 33.8 56.5 69.8 65.1 61.3 57.4

Meta R-CNN (ours) 52.5 55.9 52.7 54.6 41.6 51.5 68.1 73.9 59.8 54.2 80.1 82.9 48.8 62.8 80.1 81.4 77.2 37.2 65.7 75.8 70.6 67.9 63.8

lines according to the different training strategies they use.

Specifically, FRCN+joint is to jointly train the FRCN de-

tector with base-class and novel-class objects. The iden-

tical number of iteration is used for training this baseline

and our Meta R-CNN. FRCN+ft takes a similar two-phase

training strategy in Meta R-CNN: it only uses base-class

objects (with bounding boxes) to train FRCN in the first

phase, then use the combination of base-class and novel-

class objects to fine-tune the network. For a fair compari-

son, the objects in images used to train FRCN+ft is identical

to Meta R-CNN, and FRCN+ft also takes the same number

of iteration (in both training phases) of Meta R-CNN. Fi-

nally, FRCN+ft-full employ the same training strategy of

FRCN+ft in the first phase, yet train the detector to fully

converge in the second phase. Beyond these baselines, Meta

R-CNN is also compared with the state-of-the-art low-shot

object detector [21] modified from YOLOv2 [34] (YOLO-

Low-shot). Note that, YOLO-Low-shot also employs meta-

learning, whereas distinct from Meta R-CNN based on RoI

features, it is based on a full image. Their comparison re-

veals whether the motivation of Meta R-CNN is reasonable.

PASCAL VOC. The experimental evaluation are shown

in Table 1. The K-shot object detection is performed based

on K = (1, 2, 3, 5, 10) across three novel/base class splits.

As can be observed, Meta R-CNN consistently outperforms

the three FRCN baselines by a large margin across splits.

It uncovers the generalization weakness of FRCN: without

adequate number of bounding-box annotations, FRCN per-

forms poorly to detect novel-class objects, and this weak-

ness could not be overcome by changing the training strate-

gies. In a comparison, by simply deploying a lightweight

PRN, FRCN turns into Meta R-CNN and significantly im-

prove the performance on novel-class object detection. It

implies that our approach endows FRCN with the general-

ization ability in low-shot learning.

Besides, Meta R-CNN outperforms YOLO-Low-shot in

the majority of the cases (except for 1/2-shot in the third

split). Since the YOLO-Low-shot results are borrowed from

their report, the 1/2-shot objects are probably different from

what we use. Extremely-low-shot setups are sensitive to

the change of the low-shot object selection and thus, hard

to reveal the superiority of low-shot learning algorithms.

In the more robust 5/10-shot setups, Meta R-CNN signif-

icantly exceeds YOLO-Low-shot (+11.8% in the 5-shot of

the first split; +6.8 in the 10-shot of the third split.)

Let’s consider detailed evaluation in Table 3 based on the

first base/novel-class split. Note that, FRCN+joint achieved

SOTA in base classes, however, at the price of the perfor-

mance disaster in novel classes (72.7 in base classes yet 4.3
in novel classes given K=3). This sharp contrast caused by

the extreme object quantity imbalance in the low-shot setup,

further reveal the fragility of FRCN in the generalization

problem. On the other hand, we find that Meta R-CNN out-

performs YOLO-Low-shot both in base classes and novel
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Figure 4. The visualization of novel-class objects detected by FRCN+ft-full and Meta R-CNN. Compared with Meta R-CNN, FRCN+ft-full

is inferior: bboxes in the first two columns are missed; in the middle column is duplicate and the classes are wrong in the last two columns.

Table 4. Low-shot detection performance on COCO minival set for novel classes. We evaluate the performance for different shot examples

of novel classes under FRCN pipeline with ResNet-50. RED/BLUE indicate the SOTA/the second best. (Best viewd in color)

Shot Baselines AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

10

YOLO-Low-shot [21] 5.6 12.3 4.6 0.9 3.5 10.5 10.1 14.3 14.4 1.5 8.4 28.2

FRCN+ft 1.3 4.2 0.4 0.4 0.9 2.1 5.5 8.0 8.0 2.4 6.4 13.0

FRCN+ft-full 6.5 13.4 5.9 1.8 5.3 11.3 12.6 17.7 17.8 6.5 14.4 28.6

Meta R-CNN (ours) 8.7+2.2 19.1+5.7 6.6+0.7 2.3+0.5 7.7+2.4 14.0+2.7 12.6+0 17.8+0.1 17.9+0.1 7.8+1.3 15.6+1.2 27.2−1.4

30

YOLO-Low-shot [21] 9.1 19.0 7.6 0.8 4.9 16.8 13.2 17.7 17.8 1.5 10.4 33.5

FRCN+ft 1.5 4.8 0.5 0.3 1.8 2.0 7.0 10.1 10.1 5.8 8.3 13.5

FRCN+ft-full 11.1 21.6 10.3 2.9 8.8 18.9 15.0 21.1 21.3 10.1 17.9 33.2

Meta R-CNN (ours) 12.4+1.3 25.3+4.3 10.8+0.5 2.8−0.1 11.6+2.8 19.0+1.0 15.0+0 21.4+0.3 21.7+0.4 8.6−1.5 20.0+2.1 32.1−1.4

Table 5. The ablation of image-level and RoI-level meta-learning

shot Ablation Base Novel

3
full-image meta-learning 43.4 8.1

RoI meta-learning 64.8 35.0

10
full-image meta-learning 61.2 32.0

RoI meta-learning 67.9 51.5

Table 6. Ablation studies of (1) meta-learning and (2) meta-loss

(mAP on VOC2007 test set for novel classes and base classes of

the first base/novel split under FRCN pipeline with ResNet-101) .

shot Ablation (1) Base Novel Ablation (2) Base Novel

3
meta-learning (w/o) 38.5 9.0 meta-loss (w/o) 24.2 57.7

meta-learning (w) 64.8 35.0 meta-loss (w) 35.0 64.8

10
meta-learning (w/o) 56.9 40.5 meta-loss (w/o) 46.6 64.3

meta-learning (w) 67.9 51.5 meta-loss (w) 51.5 67.9

classes, which means that Meta R-CNN is the SOTA low-

shot detector. Finally, Meta R-CNN outperforms all other

baselines in mAP. This observation is significant: Meta

R-CNN would not sacrifice the overall performance to

make low-shot learning. In Fig 4, we visualize some com-

parison between FRCN+ft+full and Meta R-CNN on detect-

ing novel-class objects.

MS COCO. We evaluate 10-shot /30-shot setups on MS

COCO [27] benchmark and report the standard COCO met-

rics. The results on novel classes are presented in Table 4.

It shows that Meta R-CNN significantly outperforms other

baselines and YOLO-Low-shot. Note that, the performance

gain is obtained by our method compared to YOLO-Low-

shot (12.4% vs. 11.1%). The improvement is lower than

those on PASCAL VOC, since MS COCO is more challeng-

ing with more complex scenarios such as occlusion, ambi-

guities and small objects.

MS COCO to PASCAL. In this cross-dataset low-shot

object detection setup, all the baselines are trained with 10-

shot objects in novel classes on MS COCO while they are

evaluated on PASCAL VOC2007 test set. Distinct from

the previous experiments that focus on evaluating cross-

category model generalization, this setup further to re-

veal the cross-domain generalization ability. FRCN+ft and

FRCN+ft-full get the detection performances of 19.2% and

31.2% respectively. The low-shot object detector YOLO-

Low-shot obtains 32.3%. Instead, Meta R-CNN achieves

37.4%, reaping a significant performance gain (approxi-

mately 5% mAP) against the second best.

6.2. Ablation

Here we conduct comprehensive ablation studies to un-

cover Meta R-CNN. These ablations are based on 3/10-shot

object detection performances on PASCAL VOC in the first

base/novel split setup.

Backbone. We ablate the backbone (i.e. ResNet-34 [17]

and ResNet-101 [17]) of Meta R-CNN to observe the ob-

ject detection performances in base and novel classes (Ta-

ble 2). It’s observed that our framework significantly out-

performs the FRCN-ft-full on base and novel classes across
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Table 7. Low-shot detection and instance segmentation performance on COCO minival set for novel classes under Mask R-CNN with

ResNet-50. The evaluation based on 5/10/20-shot-object in novel classes (More comprehensive results see our supplementary material).

Box Mask

shot method AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

5
MRCN+ft-full 1.3 3.0 1.1 0.3 1.1 2.4 1.3 2.7 1.1 0.3 0.6 2.2

Meta R-CNN (ours) 3.5+2.2 9.9+6.9 1.2+0.1 1.2+0.9 3.9+2.8 5.8+3.4 2.8+1.5 6.9+4.2 1.7+0.6 0.3+0.0 2.3+1.7 4.7+2.5

10
MRCN+ft-full 2.5 5.7 1.9 2.0 2.7 3.9 1.9 4.7 1.3 0.2 1.4 3.2

Meta R-CNN (ours) 5.6+3.1 14.2+8.5 3.0+1.1 2.0+0.0 6.6+3.9 8.8+4.9 4.4+2.5 10.6+5.9 3.3+2.0 0.5+0.3 3.6+2.2 7.2+4.0

20
MRCN+ft-full 4.5 9.8 3.4 2.0 4.6 6.2 3.7 8.5 2.9 0.3 2.5 5.8

Meta R-CNN (ours) 6.2+1.7 16.6+6.8 2.5−0.9 1.7−0.3 6.7+2.1 9.6+3.4 6.4+2.7 14.8+6.3 4.4+1.5 0.7+0.4 4.9+2.4 9.3+3.5

different backbones (large margins of 35.0% vs. 32.8% with

ResNet-34 and 51.5% vs. 45.6% with ResNet-101 on novel

classes). These verify the potential of Meta R-CNN that can

be flexibly-deployed across different backbones and consis-

tently outperforms the baseline methods.

RoI meta-learning. Since Meta R-CNN is formally de-

vised as a meta-learner, it would be important to observe

whether it is truly improved by RoI meta-learning. To ver-

ify our claim, we ablate Meta R-CNN from two aspects:

1). using meta-learning or not (Ablation 1 in Table 6); 2).

meta-learning on full-image or RoI features (Table 5). As

illustrated in Table 6 (Ablation 1), meta-learning signifi-

cantly boosts Meta R-CNN performance by clear large mar-

gins both in novel classes (35.0% vs.9.0% in 3-shot; 51.5%

vs.40.5% in 10-shot) and in base classes (38.5% vs.64.8%

in 3-shot; 67.9% vs.56.9% in 10-shot). As K decreases, the

improvement will be more significant. In Table 5, we have

observed that full-image meta-learning suffers heavy per-

formance drop compared with RoI meta-learning and more-

over, it even performs worse than the Faster R-CNN trained

without meta-strategy. It shows that RoI meta-learning in-

deed encourages the generalization of the R-CNN family.

Meta-loss Lmeta(φ). Meta R-CNN takes the control of

Faster R-CNN by way of class attentive vectors. Their rea-

sonable diversity would lead to the performance improve-

ment when detecting the objects in different classes. To

verify our claim, we ablate the meta-loss Lmeta(φ) used

to increase the diversity of class-attentive vectors. The ab-

lation is shown in Table 6 Ablation 2. Obviously, the Meta

R-CNN performances in base and novel classes are signifi-

cantly improved by adding the meta-loss.

6.3. Low­shot object segmentation
As we demonstrated in our methodology, Meta R-CNN

is a versatile meta-learning framework to achieve low-shot

object structure prediction, especially, not just limited in the

object detection task. To verify our claim, we deploy PRN

to change a Mask R-CNN [17] (MRCN) into its Meta R-

CNN version. This Meta R-CNN using ResNet-50 [19] as

its backbone, would be evaluated on the instance-level ob-

ject segmentation track on MS COCO benchmark. We re-

port the standard COCO metrics based on object detection

and segmentation. Noted that, AP in object segmentation

is evaluated by using mask IoU. We use the trainval35k im-

ages for training and val5k for testing where the 20 classes

in PASCAL VOC [9] as novel classes and the remaining 60

categories in COCO [27] as base classes. Base classes have

abundant labeled samples with instance segmentation while

novel classes only have K-shot annotated bounding boxes

and instance segmentation masks. K is set to 5,10 and 20 in

our object segmentation experiments.

Results. Due to the relatively competitive performances

of FRCN+ft+full shown in low-shot object detection, we

adopt the same-style training strategy for MRCN, leading

to MRCN+ft+full on object detection and instance-level

object segmentation results in Table. 7. It could be ob-

served that our proposed Meta R-CNN is consistently su-

perior to MRCN+ft+full across 5,10,20-shot settings with

significant margins in low-shot object segmentation tasks.

For instance, Meta R-CNN achieves a 1.7% performance

improvement (6.2% vs.4.5%) on object detection and 2.7%

performance improvement (6.4% vs.3.7%) on instance seg-

mentation. These evidences further demonstrate the superi-

ority and universality of our Meta R-CNN presenting. Com-

prehensive results are found in our supplementary material.

7. Discussion and Future Work

Low-shot object detection/ segmentation are very valu-

able as their successes would lead to an extensive variety of

visual tasks generalizing to newly-emerged concepts with-

out heavily consuming labor annotation. Our work takes an

insightful step towards the successes by proposing a flexi-

ble and simple yet effective framework, e.g., Meta R-CNN.

Standing on the shoulders of Faster/ Mask R-CNN, Meta

R-CNN overcomes the shared weakness of existing meta-

learning algorithms that almost disable to recognize the se-

mantic information entangled with multiple objects. Simul-

taneously, it endows traditional Faster/ Mask R-CNN with

the generalization capability in front of low-shot objects in

novel classes. It is lightweight, plug-and-play, and performs

impressively in low-shot object detection/ segmentation. It

is worth noting that, as Meta R-CNN solely remodels the

predictor branches into a meta-learner, it potentially can be

extended to a broad range of models [15, 20, 24, 45] in the

entire R-CNN family. To this Meta R-CNN might enable

visual structure prediction in the more challenging low-shot

conditions, e.g., low-shot relationship detection and others.
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