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Abstract

In this paper, we propose a novel perspective-guided

convolution (PGC) for convolutional neural network (CNN)

based crowd counting (i.e. PGCNet), which aims to over-

come the dramatic intra-scene scale variations of people

due to the perspective effect. While most state-of-the-arts

adopt multi-scale or multi-column architectures to address

such issue, they generally fail in modeling continuous scale

variations since only discrete representative scales are con-

sidered. PGCNet, on the other hand, utilizes perspec-

tive information to guide the spatially variant smoothing

of feature maps before feeding them to the successive con-

volutions. An effective perspective estimation branch is

also introduced to PGCNet, which can be trained in ei-

ther supervised setting or weakly-supervised setting when

the branch has been pre-trained. Our PGCNet is single-

column with moderate increase in computation, and ex-

tensive experimental results on four benchmark datasets

show the improvements of our method against the state-

of-the-arts. Additionally, we also introduce Crowd Surveil-

lance, a large scale dataset for crowd counting that contains

13,000+ high-resolution images with challenging scenar-

ios. Code and pre-trained models are available at https:

//github.com/Zhaoyi-Yan/PGCNet.

1. Introduction

The growth of global population and urbanization has

been consistently promoting the frequency of crowd gather-

ing. In such scenarios, stampedes and crushes can be life

threatening and should always be prevented. Congested

scene analysis and understanding is thus essential to the

management, control, and security guarding of crowd gath-

ering in cities. Among the developments in congested scene

analysis, crowd counting [28, 10] is one of the fundamental
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Figure 1: Density map estimations by CSRNet [11] and our PGC-

Net. The MAE of our PGCNet is 2.8, much lower than that of

CSRNet (7.7). It is observed that PGCNet has consistent better

performances at either smaller or larger scales among the marked

regions.

tasks, and recently has drawn considerable attention from

the computer vision community.

Single image based crowd counting remains an active but

challenging topic due to the complex distribution of people,

non-uniform illumination, inter- and intra-scene scale vari-

ations, cluttering and occlusions, etc. Existing crowd count-

ing methods can be broadly classified into three categories,

i.e. detection-based [22, 14], regression-based [7, 27], and

CNN-based methods [11, 15]. Among them, CNN-based

methods have been studied in depth in the past few years,

and have achieved superior performances in terms of accu-

racy and robustness.

However, the dramatic intra-scene scale variations of

people due to the perspective effect forms a major chal-

lenge. Existing methods [6, 19, 23, 26, 29, 30] usually

adopt multi-scale or multi-column architectures to fuse the
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features of different scales. Yet, they suffer from several

limitations. Firstly, the multi-column architectures (e.g.

MCNN [30]) are ineffective to train. As shown in [11],

MCNN cannot even compete with a deeper CNN due to

the high correlation of the features learned by different

columns. Secondly, they only consider discrete scales,

which is limited when addressing continuous scale varia-

tions in practical scenarios. Thirdly, the computational cost

increases linearly with the growth of columns or scales.

In [11], a deeper CNN (CSRNet) with dilated convolu-

tions has achieved state-of-the-art performance. Neverthe-

less, it still delivers fixed receptive field for different scales

of people, thereby remaining vulnerable to the highly vari-

ant intra-scene scales. It is seen in Fig. 1(c) that CSRNet

performs well at intermediate scales, but behaves relatively

poor at smaller or larger scales. We thus take a step for-

ward to propose the perspective-guided convolutional net-

work (PGCNet), which is a single-column CNN that aims

to tackle the continuous scale variation issue with perspec-

tive information considered.

The perspective information encodes the distance be-

tween camera and a scene, which serves as a reasonable

scale estimation of people. We thus adopt it to allocate

spatially variant receptive fields, thereby conducting scale

adaptive density map estimation. To this end, we propose

a novel perspective-guided convolution (PGC), in which

the perspective information functions to guide the spatially

variant smoothing of feature maps before taking them to

the successive convolutions. As a result, larger (or smaller)

Gaussian kernels for feature smoothing are adopted for peo-

ple at larger (or smaller) scales. After such spatially variant

feature smoothing, the conventional spatially invariant con-

volution is appended, which forms a PGC block. It is worth

noting that PGC serves as an insertable module to existing

architectures, and our PGCNet is formulated by stacking

multiple PGC blocks upon a CNN backbone.

However, off-the-rack perspective annotations are sel-

dom available for existing datasets. We hence introduce

a perspective estimation branch to PGCNet, which can be

learned either in supervised or weakly-supervised setting

when the branch has been pre-trained.

Experimental results on benchmark datasets against the

state-of-the-arts show the favorable performance of our pro-

posed PGCNet in handling intra-scene scale variations. In

addition, we also introduce Crowd Surveillance, a large

scale dataset for crowd counting that contains 10,000+ high-

resolution images with complicated backgrounds and varied

crowd counts. This dataset will be released as a new bench-

mark to facilitate crowd counting researches. To sum up,

the main contribution of this work includes:

(1) The PGC, as an insertable module, is proposed to

handle the intra-scene scale variations of crowd counting;

(2) A perspective estimation branch is introduced, which

can be trained with or without perspective annotations;

(3) An end-to-end trainable PGCNet is formulated with

(1) and (2);

(4) A new large scale dataset is introduced;

(5) State-of-the-art performance is achieved by PGC-

Net on four benchmark datasets, e.g. 57.0 MAE on Shang-

haiTech Part A and 8.8 MAE on ShanghaiTech Part B.

2. Related Work

Crowd counting methods can be roughly categorized into

three subsets, i.e. detection-based, regression-based and

CNN-based methods. In this paper, we only review CNN-

based methods, which are the most related to our method.

Besides, the exploration on perspective normalization in

crowd counting is also surveyed.

2.1. CNNbased Methods

Benefited from the great success of CNN, many CNN-

based works of crowd counting have been proposed in re-

cent years. These methods usually focus on typical tech-

niques, including multi-scale [30, 23, 26, 16, 17, 24], con-

text [26], multi-task [29, 6, 15], and others [12, 13, 21]. Re-

cently, more methods have been proposed for handling the

scale variation issue. For instance, Zhang et al. [30] suggest

a multi-column architecture (MCNN) that combines fea-

tures with different sizes of receptive fields. In Switching-

CNN [23], one of the three regressors is assigned for an

input image in refer to its specific crowd density. CP-

CNN [26] incorporates MCNN with local and global con-

texts. SANet [2] employs scale aggregation modules for

multi-scale representation. And instead of multi-column ar-

chitecture, CSRNet [11] enlarges receptive fields by stack-

ing dilated convolutions.

Our proposed method differs from existing CNN-based

method in two aspects: firstly, our method is able to han-

dle continuous scale variations of each single pedestrian in

the image, instead of simply fusing the features of different

scales; secondly, the perspective information is taken into

account as a vital estimator of pedestrian scales.

2.2. Perspective Normalization

Perspective is originally adopted in the normalization of

extracted features from foreground objects in [3]. Later,

Lempitsky et al. [9] attempt to deal with perspective distor-

tion by optimizing the loss on the MESA-distance. Among

the CNN-based methods, the perspective information is

usually exploited as part of the pre-processing to generate

the density maps [29, 30, 23, 6], but is seldom directly en-

coded into the network architecture. One of the most rele-

vant work to our method is PACNN [17]. However, PACNN

is still based on the multi-column architecture with discrete

scales. In PACNN, two density maps are estimated from
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two columns based on VGG-16 [25] backbone. The two

predicted density maps are assigned weights generated by

the perspective map and later are combined together as the

final estimation. However, we argue that a better choice

would be an explicit perspective normalization during the

training of the network itself, which is able to tackle the

continuous scale variation issue, as illustrated in Sec. 3.1.

3. Proposed Method

In this section, we first describe the principles of PGC,

then introduce a perspective estimation branch for perspec-

tive map estimation, and finally provide the network archi-

tecture and learning objective of the complete PGCNet.

3.1. PerspectiveGuided Convolution

To handle the intra-scene scale variations mentioned in

Sec. 1, it is desirable to use a larger (or smaller) receptive

field for people at larger (or smaller) scales. Let x and p be

the feature map and perspective map of an image, respec-

tively. Without loss of generality, p is downsampled to the

same size h× w with x. A straightforward way is to apply

spatially variant convolutions by assigning scale-aware ker-

nel sizes based on the corresponding perspective values, i.e.

kernels with different sizes may be used at different loca-

tions of a feature map. However, several drawbacks hinder

such solution: (1) the discrete kernel sizes might be incom-

patible with the continuous perspective values, (2) arbitrary

spatially variant convolution is hard to implement and op-

timize, and (3) additional constraints are required to effec-

tively enforce the consistency among different scales [24].

To address the issues above, we propose perspective-

guided convolution (PGC), which functions in a two-stage

scheme: spatially variant Gaussian filtering (which smooths

the feature maps in a spatially variant way) and spatially in-

variant convolution (i.e. the conventional convolution). To

begin with, the perspective map p is normalized as,

p̃ = ζ (p) =
1

1 + e−α(p−β)
(1)

where ζ (x) is a sigmoid-like function, and α and β are two

parameters learned during training. We then define the blur

map as,

σ = max(a(p̃− p0), 0), (2)

where a and p0 are another two trainable parameters. Thus,

in the spatially variant Gaussian filtering, the smoothing re-

sult x̃i,j at (i, j) can be obtained by

x̃i,j =
∑

k

∑

l

xk,lGσi,j
(i, j, k, l), (3)

where Gσi,j
(i, j, k, l) is a Gaussian kernel with standard de-

viation σi,j centered at (i, j),

Gσi,j
(i, j, k, l)=

1√
2πσi,j

exp

(

−
(

(k−i)2+(l−j)2
)

2σ2

i,j

)

. (4)

The perspective-guided convolution can then be defined as,

y = WT x̃, (5)

where W denotes the spatially invariant convolution kernel.

However, Eqn. (3) is computationally heavy. We thus

present an efficient version for approximation. First, we

sample N candidate Gaussian filters with size K × K and

standard deviation in the pre-defined range [c, d]. After that,

principal component analysis (PCA) is performed on the

candidates to obtain the eigenvectors {Gq}
C
q=1 correspond-

ing to the C non-zero eigenvalues. For each Gq , we define

the coefficient map uq with its (i, j)-th element as,

uq(i, j) = 〈Gq, Gσi,j
〉, (6)

where 〈·, ·〉 denotes the inner product. With uq , spatially

variant Gaussian smoothing can then be approximated as,

x̃ =

C∑

q=1

uq ◦ (x ∗Gq), (7)

where ◦ denotes entry-wise product, and ∗ is convolution

operation. Due to the fact that Gaussian filter is isotropic,

C is generally smaller than (K + 1)/2. When N is large,

Eqn. (7) is guaranteed to be a good and efficient approxima-

tion. The efficiency is given more descriptions here. Take

the feature of size C ×H ×W as an example, Eqn. (3) has

to perform pixel-wise matrix multiplication (MM) for each

xk,l. In comparison, Eqn. (6) only need C × i times MM,

by the observation that Gσi,j
shares the same value for each

j. Finally, Eqn. (7) only takes about 1/10 the time com-

pared to Eqn. (6), making the acceleration up to ∼20 times

for most cases. For the degree of approximation, it is mea-

sured by the energy preserved. Please refer to Section. 5.1

for more details.

There are a few notes about PGC that are worthwhile

to mention. With the spatially variant Gaussian smoothing,

PGC can adaptively employ a larger (or smaller) receptive

field for people at larger (or smaller) scale, which handles

the continuous intra-scene scale variations flexibly. On the

other hand, to effectively enforce the consistency for han-

dling different scales, the conventional spatially invariant

convolution is appended in the second stage of PGC, as in-

dicated in Eqn. (5). Furthermore, it is seen from Eqns. (5)

and (7) that the complete set of parameters of PGC can be

trained end-to-end.

3.2. Perspective Estimation

Since perspective map annotations are seldom available,

we introduce a perspective estimation branch to learn the

perspective map of an image. Ideally, with the annotated

density map for crowd counting alone, the entire model (in-

cluding the perspective estimation branch) can be trained
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Figure 2: The architecture of the proposed PGCNet. The DMPNet takes the backbone features and the estimated perspective map from

PENet to generate the final density map estimation.

end-to-end. However, such strategy ignores the internal

structure of the perspective map and may result in very poor

results. Motivated by [18], we suggest a three-phase proce-

dure to train an auto-encoder.

In the first phase, we use perspective maps

from WorldExpo’10 [29] to train an auto-encoder

Dp(Ep(p; Θ
E
p ); Θ

D
p ), which takes a perspective map

p as input and reconstructs it. ΘE
p and ΘD

p denote

the model parameters of the encoder Ep and decoder

Dp, respectively. The objective is to minimize the ℓ2
reconstruction loss,

Lp2p =
1

2N

N∑

i=1

‖Dp(Ep(pi; Θ
E
p ); Θ

D
p )− pi‖

2
2, (8)

where N denotes the number of perspective maps. After

training, the latent code Ep(p; Θ
E
p ) can encode the internal

structure and contextual relationships of p, while the de-

coder Dp can accurately and robustly recover a high quality

perspective map from the latent code.

In the second phase, we use the image and perspective

map pairs in WorldExpo’10 to learn another auto-encoder

Dp(EI(I; Θ
E
I ); Θ

D
p ), which takes an image I as input to

predict its perspective map. Here, we adopt the decoder pa-

rameters ΘD
p from the first phase, and only train the encoder

parameters ΘE
I by minimizing the following loss,

LI2p =
1

2N

N∑

i=1

‖Dp(EI(Ii; Θ
E
I ); Θ

D
p )− pi‖

2
2. (9)

In the third phase, we further train the encoder with an-

other training set. The encoder is fine-tuned with the loss

of the density map if perspective maps are unavailable, and

can be optimized by both LI2p and density map loss if per-

spective maps are available. Benefited from the robustness

of the decoder, even if the encoder is not well trained, the

decoder can still recover a reasonable perspective map.

Based on the description above, for a new set of training

data, our perspective estimation branch can be trained even

without corresponding perspective annotations.

3.3. Network Architecture

Fig. 2 illustrates the architecture of our PGCNet, which

is comprised of three subnetworks, i.e. backbone, perspec-

tive estimation network (PENet), and density map predic-

tor network (DMPNet). We adopt CSRNet [11] as our

backbone, where the last convolution (i.e. conv1-1-1) is re-

moved. The PENet uses the encoder-decoder structure in

Sec. 3.2, which will be described in detail in supplemen-

tary material. As for the DMPNet, in each PGC module,

a dilated convolution with factor of 2 is exploited after the

spatially variant Gaussian smoothing. The PGC block is

then constructed by concatenating the features before / after

the PGC module. Finally, the outputs from the backbone

and PENet are fed to the DMPNet, which stacks five PGC

blocks for density map estimation.

4. The Crowd Surveillance Dataset

Limited by the annotation difficulty, most public datasets

for crowd counting are of relatively small size (as shown in

Table 1). Although larger datasets (i.e. WorldExpo’10 [29])

have been proposed, they are nevertheless of low resolution

and image quality. We hence introduce the Crowd Surveil-

lance dataset∗, which contains 13,945 high-resolution im-

ages (386,513 marked people). This means that Crowd

Surveillance is nearly 3× larger than the combination of

all the other four datasets in Table 1, leading to the largest

dataset with the highest average resolution for crowd count-

ing at present. Besides, we also provide regions of interest

(ROI) annotation for each image to mask out the regions

that are too blurry or ambiguous for training / testing.

We build our dataset by both online crawling with search

engines and real-life surveillance video acquisition from

∗https://ai.baidu.com/broad/subordinate?dataset=crowd surv
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Dataset #Train #Test Avg. Density Avg. Resolution

ShanghaiTech A 300 182 500 868×589

ShanghaiTech B 400 316 123 1,024×768

WorldExpo’10 3, 380 600 56 720×576

UCF CC 50 - 50 1,279 902×653

Crowd Surveillance 10,880 3,065 35 1,342×840

Table 1: Statistics of different crowd counting datasets.
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Figure 3: Statistical histogram of crowd counts on different

datasets. It is seen that our dataset exhibits high data volume and

crowd count variance.
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Figure 4: Qualitative comparison of crowd counting datasets. Our

dataset is seen to have more challenging scenarios and higher res-

olutions than existing datasets.

cooperative partners with necessary permissions. Fig. 3

provides the statistical histogram of crowd count on dif-

ferent datasets, among which Crowd Surveillance exhibits

remarkable high data volume and crowd count variances.

Fig. 4 shows the qualitative comparison between our dataset

and two most relevant benchmarks, ShanghaiTech Part

A [30] and WorldExpo’10 [29]. From Fig. 4 and Table 1,

it is seen that although our dataset is less crowded in av-

erage density, it provides the highest average resolution

(which ensures the image quality), and covers more chal-

lenging scenarios with complicated backgrounds and vary-

ing crowd count, which significantly increases the difficulty

of crowd density estimation. It is also worth noting that al-

though datasets with extremely high crowd densities (such

as UCF-QNRF [8]) have been proposed, they are less suit-

able for real-world surveillance scenarios, which usually

have moderate-to-low crowd density. Our dataset, on the

other hand, fits these practical applications well.

5. Experimental Results

In this section, we first present our implementation de-

tails, and then compare the proposed PGCNet with the

state-of-the-arts on four public datasets, namely Shang-

haiTech [30], WorldExpo’10 [29], UCF CC 50 [7] and our

proposed Crowd Surveillance. Extensive ablation study is

then conducted to reveal the contribution of each compo-

nent in PGCNet. We adopt mean absolute error (MAE) and

mean square error (MSE) as metrics for evaluating crowd

counting and perspective estimation.

5.1. Implementation Details

Denote by Θ the model parameters of the full PGCNet

Φ(I; Θ). Given the training data {(Ii, Yi)}, the network can

be trained by minimizing the following objective function,

L (Θ) =
1

2N

N∑

i=1

‖Φ(I; Θ)− Yi‖
2
2, (10)

where Yi is the ground-truth density map of Ii. If perspec-

tive map annotations are also available, we can further in-

corporate LI2p in Eqn. (9) for better training of the PENet.

To train PGCNet, we adopt stochastic gradient descent

(SGD) with fixed learning rate 10−7 and weight decay

5 × 10−4. The momentum is set to 0.95 and the batch size

is set to 1. PGCNet takes a whole image as input during

both training and testing. Suppose there is a dot annotation

of people head at location (xi, yi) represented by a delta

function δ(x − xi)δ(y − yi), the ground-truth density map

Y is obtained by convolving each annotation point with a

normalized Gaussian kernel Gσ: Y =
∑S

i δ(x− xi)δ(y −
yi) ∗Gσ , where S is the total number of dot annotations in

the image, and σ is set to fixed value 0.5.

To establish the baseline, we reimplement CSRNet [11]

on Pytorch [20] (denoted as CSRNet*) with the four

datasets adopted, which is expected to deliver comparable

performances against [11]. The weights of the PGC mod-

ules are initialized with Gaussian distribution of zero mean

and 0.01 standard deviation, while the other layers are ini-

tialized with the corresponding pre-trained weights from

CSRNet*. Random flipping is adopted for data augmen-

tation. For ShanghaiTech and WorldExpo’10, since their

ground-truth perspective maps are available, they are used

as the guidance of PGC directly, and our model is trained for

300 epochs without PENet. For the datasets without per-

spective annotations, the PENet is pre-trained for the first

two phases of Sec. 3.2, both 500 epochs; the backbone,

PENet and DMPNet are then trained together for another

300 epochs, as the third phase of Sec. 3.2.

The range of σ we sample is [1/4,K/4] with P{‖X −
µ‖ < 2σ} ≈ 0.95. We pre-define a group of Gaussian can-

didates Gσ of size K ×K with σ ranging in [1/4,K/4] on
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the step s. K is set to 7 by default, unless explicitly stated;

and s is set to 0.05 since no significant gain is observed

with denser steps. The total number of Gaussian candidates

is N = 30 with σ sampling in [1/4, 7/4] on step s = 0.05.

PCA is then applied on Gσ to get the (K+1)/2 eigenvectors

Gq in Eqn. (6). In this case, the original matrix is 30×7×7,

which will be reshaped to 30×49 and applied PCA to get the

approximate matrix 4×49. The energy preserved is 91.2%,

which is the ratio between the sum of singular values of ap-

proximated matrix against those of the original matrix. α
and β are initialized by normalizing the p in Eqn. (1) to

(0, 1), while p0 and a are empirically set to 0 and 1. All

the parameters above are differentiable and trainable. As

a tradeoff between efficiency and performance, our results

are achieved by stacking five PGC blocks for all datasets.

It takes about 2 days to train the network on WolrdExpo’10

with an NVIDIA Tesla P40 GPU.

5.2. Evaluations and Comparisons

Four datasets are adopted in our experiments, including

ShanghaiTech [30], WorldExpo’10 [29], UCF CC 50 [7]

and the proposed Crowd Surveillance. For the later two

that do not have perspective map annotations, we de-

note Ours A as directly adopting the estimated perspec-

tive maps (based on the PENet trained on perspective an-

notations from ShanghaiTech A) as ground-truth and feed

them to the training of PGC; while Ours B as the end-to-

end training without perspective map annotations described

in Sec. 3.2, where the backbone, PENet, and DMPNet are

jointly trained without any density map annotation. For the

estimated perspective maps of both Ours A and Ours B, we

use the mean of each line to replace the values of the whole

line, which forms the final estimated perspective map. For

Ours A, by following Sec. 3.2 with ShanghaiTech A, we get

0.020 MAE and 0.031 MSE for the first phase of perspec-

tive map estimation, and 0.101 MAE and 0.142 MSE for

the second phase. Visualization of perspective estimation

and more details of training of the PENet will be illustrated

in our supplementary materials.

ShanghaiTech contains 1,198 images with a total of

330,165 annotated people. The dataset is split into Part A

and Part B, with 482 and 716 images respectively.

We adopt the ground-truth perspective maps provided

by [17] as the guidance of DMPNet. The results are listed in

Table 2. It is seen that our method and SANet [2] dominate

the top ranks, where ours achieves the best result on Part

A w.r.t. both MAE and MSE with significant margins, and

is only slightly surpassed by SANet on Part B. Our method

also exhibits significant performance gain over the baseline

CSRNet*. Besides, some test cases can be found in Fig. 5,

clearly indicating that the superiority of PGCNet over CSR-

Net in estimating a better density map.

WorldExpo’10 contains 3,980 images from the 2010

Count:273.1 Count:342.5 Count:373.0

Count:220.6 Count:248.3 Count:265.0

Count:39.1 Count:57.8 Count:52.0

(a) Input (b) CSRNet (c) Ours (d) Ground-truth

Figure 5: Density maps estimated by CSRNet [11] and Ours.

Method
Part A Part B

MAE MSE MAE MSE

Zhang et al. [29] 181.8 277.7 32.0 49.8

MCNN [30] 110.2 173.2 26.4 41.3

Cascaded-MTL [1] 101.3 152.4 20.0 31.1

Switching-CNN [23] 90.4 135.0 21.6 33.4

CP-CNN [26] 73.6 106.4 20.1 30.1

PACNN [17] 84.5 132.5 14.2 24.1

DecideNet [12] - - 20.8 29.4

SANet [2] 67.0 104.5 8.4 13.6

CSRNet [11] 68.2 115.0 10.6 16.0

CSRNet* 67.5 103.1 10.7 16.4

Ours 57.0 86.0 8.8 13.7

Table 2: Comparisons on ShanghaiTech dataset [30].

Shanghai WorldExpo. The training set contains 3,380 im-

ages, while the test set is divided into five different scenes

with 120 images each. ROIs are provided to indicate the

target regions for training / testing. Following [11], each

image and its ground-truth density map are masked with the

ROI in preprocessing. We use the official ground-truth per-

spective map to guide the processing of PGC. The results

are shown in Table 3, where our method achieves the best

8.1 average MAE against other methods.

Method Sce.1 Sce.2 Sce.3 Sce.4 Sce.5 Avg.

Zhang et al. [29] 9.6 14.1 14.3 22.2 3.7 12.9

MCNN [30] 3.4 20.6 12.9 13.0 8.1 11.6

Switching-CNN [23] 4.4 15.7 10.0 11.0 5.9 9.4

CP-CNN [26] 2.9 14.7 10.5 10.4 5.8 8.9

PACNN [17] 2.6 15.4 10.6 10.0 4.8 8.7

DecideNet [12] 2.0 13.1 8.9 17.4 4.8 9.2

SANet [2] 2.6 13.2 9.0 13.3 3.0 8.2

CSRNet [11] 2.9 11.5 8.6 16.6 3.4 8.6

CSRNet* 2.4 15.1 7.9 15.6 2.7 8.7

Ours 2.5 12.7 8.4 13.7 3.2 8.1

Table 3: Comparisons on WorldExpo’10 [29] dataset.

UCF CC 50 contains 50 images of diverse scenes. The

head count per image varies drastically (from 94 to 4,543).

Following [7], we split the dataset into five subsets and per-

form a 5-fold cross-validation. Since the perspective map
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annotation is unavailable, we conduct the two comparison

experiments Ours A and Ours B described at the beginning

of this section. The results are shown in Table 4, where

our method achieves the optimal performance with large

margins. Compared with the baseline CSRNet*, Ours A

achieves significant gain on both MAE and MSE.

We further note that Ours B achieves 244.6 MAE, with

another 14.8 gain over Ours A, which shows the feasibility

of our end-to-end training strategy described in Sec. 3.2.

Method MAE MSE

Idrees et al. [7] 419.5 541.6

Zhang et al. [29] 467.0 498.5

MCNN [30] 377.6 509.1

Cascaded-MTL [1] 322.8 341.4

Switching-CNN [23] 318.1 439.2

CP-CNN [26] 295.8 320.9

PACNN [17] 304.9 411.7

SANet [2] 258.4 334.9

CSRNet [11] 266.1 397.5

CSRNet* 264.0 398.1

Ours A 259.4 317.6

Ours B 244.6 361.2

Table 4: Comparisons on UCF CC 50 [7] dataset.

Crowd Surveillance is our newly proposed dataset with

10,880 and 3,065 images for training / testing, as illus-

trated in Sec. 4. Similar to WorldExpo’10, we also pro-

vide ROI annotations that are used in the preprocessing. Ta-

ble 5 demonstrates the comparisons of our method against

MCNN [30], Switching-CNN [23] and CSRNet [11], and

our method achieves the best results. Moreover, when we

directly adopt the perspective map estimated by the PENet

pre-trained on ShanghaiTech A (Ours A), we achieve 2.1

MAE gain over the baseline; and when we train the model

end-to-end (Ours B), another 0.5 MAE gain over Ours A

is achieved. We also provide visualization results of a test

example in Fig. 6. It is seen that even perspective annota-

tion is completely absent in Crowd Surveillance, the PENet

is still able to provide reasonable perspective estimations,

which supports its generalization ability. Such observations

further validates our end-to-end training strategy described

in Sec. 3.2.

Method MAE MSE

MCNN [30] 23.8 49.9

Switching-CNN [23] 16.9 33.2

CSRNet* 9.8 21.6

Ours A 7.7 16.4

Ours B 7.2 15.6

Table 5: Comparisons on Crowd Surveillance.

(a) (b) (c)

(d) (e) (f)
Count:42.6 Count:50.1 Count:52.0

Figure 6: Visualization of a test example from Crowd Surveil-

lance. (a) is the input; (b)(c) / (d)(f) are estimated perspective /

density maps of Ours A and Ours B; and (f) is the ground truth.

5.3. Ablation Study

The evaluations against the state-of-the-arts above

demonstrate the superiority of our PGC block and the end-

to-end training strategy. We first conduct the experiment

on choosing the appropriate value of K. Then we show

the influence of the number of PGC blocks stacked in our

network. Moreover, we demonstrate the feasibility of PGC

block being an insertable component for existing network

to improve performance. Finally, we also verify the impor-

tance of the pre-training of PENet in our method.

5.3.1 Influence of K

Table 6 lists the results of our method with a single

PGC block but different K, i.e. the Gaussian filter size of

Sec. 3.1. When K is small (e.g. ≤ 5), the PGC module is

computationally light (∼6ms for a 576 × 720 image, simi-

larly hereinafter) but has poor performance; when K grows

too large (e.g. ≥ 9), the performance starts to degrade with

heavier computational burden (∼16ms); when K = 7, it

performs optimally with affordable efficiency (∼10ms). We

therefore adopt K = 7 in our following experiments.

K MAE MSE K MAE MSE

K = 1 67.3 100.0 K = 7 65.8 98.0

K = 3 66.2 97.7 K = 9 66.3 98.8

K = 5 66.4 98.3 K = 11 66.4 97.4

Table 6: Influence of K on a single PGC block on ShanghaiTech

Part A.

5.3.2 Influence of the Number of PGC Blocks

Table 7 shows the performance of our network when

stacking different numbers of PGC blocks, as Fig. 2 shows.

The performance increases with the number of PGC blocks

stacked until reaching peak values (57.0 and 8.8 MAE on
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Count:364.9

Count:345.3Count:338.6

Count:361.0 Count:353.4

(a) Input

(d) Ground-truth (d) #PGC blocks=6

(b) CSRNet (c) #PGC block=1

(e) #PGC blocks=5

Figure 7: Density maps predicted by stacking of different number

of PGC blocks.

# of blocks
Part A Part B

MAE MSE MAE MSE

1 65.8 98.0 9.8 15.8

2 64.5 96.6 9.6 15.4

3 60.9 95.2 9.2 14.9

4 58.5 89.5 9.1 14.4

5 57.0 86.0 8.8 13.7

6 58.3 90.2 9.0 14.2

Table 7: Influence of the number of stacked PGC blocks in our

method on ShanghaiTech.

Part A and Part B, respectively) with 5 blocks, and de-

grades afterwards. Fig. 7 demonstrates the predicted density

maps when stacking serveral PGC blocks. It is seen that

PGC gradually refines the density map till 5 PGC blocks.

Too many PGC blocks(e.g., 6) may lead to over-smoothing

of features, resulting in worse estimation of density maps.

We hence determine our final network architecture with 5

PGC blocks stacked, resulting in 100ms total time cost per

576×720 image in testing.

5.3.3 Extensibility to Another Backbone

In order to verify the extensibility of our PGC block

to another backbone instead of VGG-16 [25] in CSRNet*,

we adopt a truncated ResNet-101 [5] with the first 10

convolutional layers. It then appends PGC blocks (three

in our experiment) and three extra convolutional layers

are added afterwards to reduce the channel dimension to

1, making it compatible with the density map. Table 8

shows the comparison results on ShanghaiTech Part A /

B, where ResNet-101(backbone) is the backbone itself, and

ResNet-101(PGC) appends three PGC blocks. All mod-

els are trained for 500 epochs with the first 10 convo-

lutional layers initialized by pre-trained weights on Ima-

geNet [4]. For ResNet-101(backbone), we get 109.6/26.2

MAE and 187.6/40.5 MSE. It is seen that when we

stack three PGC blocks (ResNet-101(PGC)), we obtain the

most performance gain of 19.9/7.6 MAE against ResNet-

101(backbone), reaching 89.7/18.6 MAE. Such observa-

tions validate the effectiveness and extensibility of the PGC

block on another backbone.

Method
Part A Part B

MAE MSE MAE MSE

ResNet-101(backbone) 109.6 187.6 26.2 40.5

ResNet-101(PGC) 89.7 148.4 18.6 30.9

Table 8: Comparisons on the ResNet-101 backbone.

5.3.4 Importance of the pre-training of PENet

Although the end-to-end training strategy has been pro-

posed, we still note that the PENet requires fair pre-training

for accurate perspective estimation. To validate the neces-

sity, we conduct two experiments without pre-training of

PENet on UCF CC 50 [7] and Crowd Surveillance, and

compare the results in Table. 4 and Table. 5. As shown

in Table 9, the results with PENet pre-training significantly

outperform those without pre-training. Such performance

margin is attributed to the confusing guidance of PENet on

the spatially variant Gaussian smoothing of Sec. 3.1, since

without pre-training, we observe that the output of PENet is

still messy even after considerable epochs of training.

Method
UCF CC 50 Crowd Surveillance

MAE MSE MAE MSE

PENet(w/ pre-training) 244.6 361.2 7.2 15.6

PENet(w/o pre-training) 278.6 403.5 10.3 24.7

Table 9: The performances with / without pre-training of PENet

on UCF CC 50 [7] and Crowd Surveillance.

6. Conclusion

In this paper, we present a perspective-guided convolu-

tion network (PGCNet) for crowd counting. The key idea of

PGCNet is the perspective-guided convolution, which func-

tions as an insertable module that successfully handles the

continuous intra-scene scale variation issue. We also pro-

pose a perspective estimation branch as well as its learning

strategy, which is incorporated into our method to form an

end-to-end trainable network, even without perspective map

annotations. A new large scale dataset Crowd Surveillance

is introduced as well to promote the researches in crowd

counting. Experiments on four benchmark datasets show

the superiority of our PGCNet against the state-of-the-arts.
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perspective-free object counting with deep learning. In Eu-

ropean Conference on Computer Vision, pages 615–629.

Springer, 2016.

[20] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. In NIPS-W, 2017.

[21] Viresh Ranjan, Hieu Le, and Minh Hoai. Iterative crowd

counting. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 270–285, 2018.

[22] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015.

[23] Deepak Babu Sam, Shiv Surya, and R Venkatesh Babu.

Switching convolutional neural network for crowd counting.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, volume 1, page 6, 2017.

[24] Zan Shen, Yi Xu, Bingbing Ni, Minsi Wang, Jianguo Hu, and

Xiaokang Yang. Crowd counting via adversarial cross-scale

consistency pursuit. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5245–

5254, 2018.

[25] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[26] Vishwanath A Sindagi and Vishal M Patel. Generating high-

quality crowd density maps using contextual pyramid cnns.

In 2017 IEEE International Conference on Computer Vision

(ICCV), pages 1879–1888. IEEE, 2017.

[27] Chuan Wang, Hua Zhang, Liang Yang, Si Liu, and Xiaochun

Cao. Deep people counting in extremely dense crowds. In

Proceedings of the 23rd ACM international conference on

Multimedia, pages 1299–1302. ACM, 2015.

[28] Beibei Zhan, Dorothy N Monekosso, Paolo Remagnino, Ser-

gio A Velastin, and Li-Qun Xu. Crowd analysis: a survey.

Machine Vision and Applications, 19(5-6):345–357, 2008.

[29] Cong Zhang, Hongsheng Li, Xiaogang Wang, and Xiaokang

Yang. Cross-scene crowd counting via deep convolutional

neural networks. In Proceedings of the IEEE Conference on

960



Computer Vision and Pattern Recognition, pages 833–841,

2015.

[30] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao,

and Yi Ma. Single-image crowd counting via multi-column

convolutional neural network. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pages 589–597, 2016.

961


