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Abstract

Deep learning-based video salient object detection has

recently achieved great success with its performance sig-

nificantly outperforming any other unsupervised methods.

However, existing data-driven approaches heavily rely on a

large quantity of pixel-wise annotated video frames to de-

liver such promising results. In this paper, we address the

semi-supervised video salient object detection task using

pseudo-labels. Specifically, we present an effective video

saliency detector that consists of a spatial refinement net-

work and a spatiotemporal module. Based on the same re-

finement network and motion information in terms of opti-

cal flow, we further propose a novel method for generating

pixel-level pseudo-labels from sparsely annotated frames.

By utilizing the generated pseudo-labels together with a

part of manual annotations, our video saliency detector

learns spatial and temporal cues for both contrast infer-

ence and coherence enhancement, thus producing accurate

saliency maps. Experimental results demonstrate that our

proposed semi-supervised method even greatly outperforms

all the state-of-the-art fully supervised methods across three

public benchmarks of VOS, DAVIS, and FBMS.

1. Introduction

Salient object detection aims at identifying the most vi-

sually distinctive objects in an image or video that attract

human attention. In contrast to the other type of saliency

detection, i.e., eye fixation prediction [20, 41] which is de-

signed to locate the focus of human attention, salient object

detection focuses on segmenting the most salient objects

with precise contours. This topic has drawn widespread in-

terest as it can be applied to a wide range of vision applica-

tions, such as object segmentation [46], visual tracking [47],

video compression [14], and video summarization [32].

∗Corresponding author is Guanbin Li.
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Figure 1. Example ground truth masks (orange mask) vs. our gen-

erated pseudo-labels (blue mask) from the VOS [27] dataset.

Recently, video salient object detection has achieved sig-

nificant progress [24, 36, 44] due to the development of

deep convolutional neural networks (CNNs). However, the

performance of these deep learning-based methods comes

at the cost of a large quantity of densely annotated frames.

It is arduous and time consuming to manually annotate a

large number of pixel-level video frames since even an ex-

perienced annotator needs several minutes to label a single

frame. Moreover, a video clip usually contains hundreds of

video frames with similar content. To reduce the impact of

label noise on model training, the annotators need to spend

considerable time checking the consistency of the label be-

fore and after. Considering that visual saliency is subjec-

tive, the annotation work becomes even more difficult, and

the quality of the labeling is hard to guarantee.

Although there are many unsupervised video salient ob-

ject detection methods [42, 43, 27] that are free of numerous

training samples, these methods suffer from low prediction

accuracy and efficiency. Since most of these methods ex-

ploit hand-crafted low-level features, e.g., color, gradient

or contrast, they work well in some considered cases while

failing in other challenging cases. Recent research by Li et

al. [22] noticed the weakness of unsupervised methods and

the lack of annotations for deep learning-based methods.

They attempted to use the combination of coarse activation

maps and saliency maps, which were generated by learning-

based classification networks and unsupervised methods

respectively, as pixel-wise training annotations for image

salient object detection. However, this method is not suit-
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able for the video-based salient object detection task, where

object motion and changes in appearance contrast are more

attractive to human attention [15] than object categories.

Moreover, it is also challenging to train deep learning-based

video salient object detection models for temporally consis-

tent saliency map generation, due to the lack of temporal

cues in sparsely annotated frames.

By carefully observing the training samples of existing

video salient object detection benchmarks [27, 35, 3], we

found that the adjacent frames in a video share small differ-

ences due to the high video sampling rate (e.g., 24 fps in the

DAVIS [35] dataset). Thus, we conjecture that it is not nec-

essary to densely annotate all the frames since some of the

annotations can be estimated by exploiting motion informa-

tion. Moreover, recent work has shown that a well-trained

CNN can also correct some manual annotation errors that

exist in the training samples [22].

Inspired by these observations, in this paper, we ad-

dress the semi-supervised video salient object detection task

using unannotated frames with pseudo-labels as well as

a few sparsely annotated frames. We develop a frame-

work that exploits pixel-wise pseudo-labels generated from

a few ground truth labels to train a video-based convolu-

tional network for saliency maps with spatiotemporal co-

herence. Specifically, we first propose a refinement net-

work with residual connections (RCRNet) to extract spa-

tial saliency information and generate saliency maps with

high-resolution through a series of upsampling based re-

fine operations. Then, the RCRNet equipped with a non-

locally enhanced recurrent (NER) module is proposed to en-

hance the spatiotemporal coherence of the resulting saliency

maps. For the pseudo-label generation, we adopt a pre-

trained FlowNet 2.0 [13] for motion estimation between la-

beled and unlabeled frames and propagate adjacent labels to

unlabeled frames. Meanwhile, another RCRNet is modified

to accept multiple channels as input, including RGB chan-

nels, propagated adjacent ground truth annotations, and mo-

tion estimations, to generate consecutive pixel-wise pseudo-

labels, which make up for the temporal information defi-

ciency that exists in sparse annotations. As shown in Fig. 1,

our model can produce reasonable and consistent pseudo-

labels, which can even improve the boundary details (Exam-

ple a) and overcome the labeling ambiguity between frames

(Example b). Learning under the supervision of generated

pseudo-labels together with a few ground truth labels, our

proposed RCRNet with NER module (RCRNet+NER) can

generate more accurate saliency maps which even outper-

forms the results of top-performing fully supervised video

salient object detection methods.

In summary, this paper has the following contributions:

• We introduce a refinement network equipped with a non-

locally enhanced recurrent module to generate saliency

maps with spatiotemporal coherence.

• We further propose a flow-guided pseudo-label genera-

tor, which captures the interframe continuity of video and

generates pseudo-labels of intervals based on sparse anno-

tations.

• Under the joint supervision of the generated pseudo-

labels and the manually labeled sparse annotations (e.g.,

20% ground truth labels), our semi-supervised model can

be trained to outperform existing state-of-the-art fully su-

pervised video salient object detection methods.

2. Related Work

2.1. Salient Object Detection

Benefiting from the development of deep convolutional

networks, salient object detection has recently achieved

significant progress. In particular, these methods based

on the fully convolutional network (FCN) and its vari-

ants [23, 12, 26] have become the dominant methods in

this field, due to their powerful end-to-end feature learn-

ing nature and high computational efficiency. Nevertheless,

these methods are inapplicable to video salient object de-

tection without considering spatiotemporal information and

contrast information within both motion and appearance in

videos. Recently, attempts to apply deep CNNs to video

salient object detection have attracted considerable research

interest. Wang et al. [44] introduced FCN to this problem

by taking adjacent pairs of frames as input. However, this

method fails to learn sufficient spatiotemporal information

with a limited number of input frames. To overcome this

deficiency, Li et al. [24] proposed to enhance the tempo-

ral coherence at the feature level by exploiting both mo-

tion information and sequential feature evolution encoding.

Fan et al. [10] proposed to captures video dynamics with

a saliency-shift-aware module that learns human attention-

shift. However, all the above methods rely on densely anno-

tated video datasets, and none of them have ever attempted

to reduce the dependence on dense labeling.

To the best of our knowledge, we are the first to explore

the video salient object detection task by reducing the de-

pendence on dense labeling. Moreover, we verify that the

generated pseudo-labels can overcome the ambiguity in the

labeling process to some extent, thus facilitating our model

to achieve better performance.

2.2. Video Object Segmentation

Video object segmentation tasks can be divided into

two categories, including semi-supervised video object seg-

mentation [16, 7] and unsupervised video object segmenta-

tion [38, 17]. Semi-supervised video object segmentation

aims at tracking a target mask given from the first anno-

tated frame in the subsequent frames, while unsupervised

video object segmentation aims at detecting the primary

objects through the whole video sequence automatically.
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It should be noted that the supervised or semi-supervised

video segmentation methods mentioned here are all for the

test phase, and the training process of both tasks is fully

supervised. The semi-supervised video salient object de-

tection considered in this paper is aimed at reducing the la-

beling dependence of training samples during the training

process. Here, unsupervised video object segmentation is

the most related task to ours as both tasks require no an-

notations during the inference phase. It can be achieved

by graph cut [33], saliency detection [42], motion analy-

sis [28], or object proposal ranking [21]. Recently, unsuper-

vised video object segmentation methods have been mainly

based on deep learning networks, such as two-stream archi-

tecture [17], FCN network [5], and recurrent networks [38].

However, most of the deep learning methods rely on a large

quantity of pixel-wise labels for fully supervised training.

In this paper, we address the semi-supervised video

salient object detection task using pseudo-labels with a few

annotated frames. Although our proposed model is trained

with semi-supervision, it is still well applicable to unsuper-

vised video object segmentation.

3. Our Approach

In this section, we elaborate on the details of the pro-

posed framework for semi-supervised video salient object

detection, which consists of three major components. First,

a residual connected refinement network is proposed to pro-

vide a spatial feature extractor and a pixel-wise classifier

for salient object detection, which are respectively used

for extracting spatial saliency features from raw input im-

ages and encoding the features to pixel-wise saliency maps

with low-level cues connected to high-level features. Sec-

ond, a non-locally enhanced recurrent module is designed

to enhance the spatiotemporal coherence of the feature rep-

resentation. Finally, a flow-guided pseudo-label genera-

tion (FGPLG) model, comprised of a modified RCRNet

and an off-the-shelf FlowNet 2.0 model [13], is applied to

generate in-between pseudo-labels from sparsely annotated

video frames. With appropriate numbers of pseudo-labels,

RCRNet with the NER module can be trained to capture the

spatiotemporal information and generate accurate saliency

maps for dense input frames.

3.1. Refinement Network with Residual Connection

Typical deep convolutional neural networks can extract

high-level features from low-level cues of images, such as

colors and textures, using a stack of convolutional layers

and downsampling operations. The downsampling opera-

tion obtains an abstract feature representation by gradually

increasing the receptive field of the convolutional layers.

However, many spatial details are lost in this process. With-

out sufficient spatial details, pixel-wise prediction tasks,

such as salient object detection, cannot precisely predict
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Figure 2. The architecture of our refinement network with residual

connection (RCRNet). Here, ‘⊕’ denotes element-wise addition.

Output stride (OS) explains the ratio of the input image size to the

output feature map size.

on object boundaries or small objects. Inspired by [23],

we adopt a refinement architecture to incorporate low-level

spatial information in the decoding process for pixel-level

saliency inference. As shown in Fig. 2, the proposed RCR-

Net consists of a spatial feature extractor Nfeat and a pixel-

wise classifier Nseg connected by three connection layers

in different stages. The output saliency map S of a given

frame I can be computed as

S = Nseg(Nfeat(I)). (1)

Spatial Feature Extractor: The spatial feature extractor

is based on a ResNet-50 [11] model. Specifically, we use

the first five groups of layers of ResNet-50 and remove the

downsampling operations in conv5 x to reduce the loss of

spatial information. To maintain the same receptive field,

we use dilated convolutions [48] with rate = 2 to replace

the convolutional layers in the last layer. Then we attach

an atrous spatial pyramid pooling (ASPP) [4] module to the

last layer, which captures both the image-level global con-

text and the multiscale spatial context. Finally, the spatial

feature extractor produces features with 256 channels and

1/16 of the original input resolution (OS = 16).

Pixel-wise Classifier: The pixel-wise classifier is com-

posed of three cascaded refinement blocks, each of which

is connected to a layer in the spatial feature extractor via

a connection layer. It is designed to mitigate the impact

of the loss of spatial details during the downsampling pro-

cess. Each refinement block takes as input the previous

bottom-up output feature map and its corresponding fea-

ture map connected from the top-down stream. The reso-

lution of these two feature maps should be consistent, so

the upsampling operation is performed via bilinear interpo-

lation when necessary. The refinement block works by first
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Figure 3. The architecture of our proposed video salient object detection network (RCRNet+NER). We incorporate a non-locally enhanced

temporal module with our proposed RCRNet for spatiotemporal coherence modeling.

concatenating the feature maps and then feeding them to

another 3 × 3 convolutional layer with 128 channels. Mo-

tivated by [11], a residual bottleneck architecture, named

residual skip connection layer, is employed as the connec-

tion layer to connect low-level features to high-level ones. It

downsamples the low-level feature maps from M channels

to N = 96 channels and brings more spatial information

to the refinement block. Residual learning allows us to con-

nect the pixel-wise classifier to the pretrained spatial feature

extractor without breaking its initial state (e.g., if the weight

of the residual bottleneck is initialized as zero).

3.2. Non­locally Enhanced Recurrent Module

Given a sequence of video clip Ii, i = 1, 2, ..., T , video

salient object detection aims at producing the saliency maps

of all frames Si, i = 1, 2, ..., T . Although the proposed

RCRNet specializes in spatial saliency learning, it still lacks

spatiotemporal modeling for video frames. Thus, we fur-

ther propose a non-locally enhanced temporal (NER) mod-

ule, which consists of two non-local blocks [45] and a con-

volutional GRU (ConvGRU) [1] module, to improve spa-

tiotemporal coherence in high-level features. As shown in

Fig. 3, incorporated with the NER module, RCRNet can be

extended to video-based salient object detection.

Specifically, we first combine the features extracted from

input video frames {Ii}
T
i=1 as X = [X1, X2, ..., XT ]. Here,

[,.,] denotes the concatenation operation and the spatial fea-

ture Xi of each frame Ii is computed as Xi = Nfeat(Ii).
Then, the combined feature X is fed into a non-local block.

The non-local block computes the response at a position as

a weighted sum of features at all positions for input fea-

ture maps. It can construct the spatiotemporal connection

between the features of input video frames.

On the other hand, as a video sequence is composed of

a series of scenes that are captured in chronological order,

it is also necessary to characterize the sequential evolution

of appearance contrast in the temporal domain. Based on

this, we propose to exploit ConvGRU [1] modules for se-

quential feature evolution modeling. ConvGRU is an exten-

sion of traditional fully connected GRU [6] that has con-

volutional structures in both input-to-state and state-to-state

connections. Let X1,X2, ...,Xt denote the input to Con-

vGRU and H1,H2, ...,Ht stand for its hidden states. A

ConvGRU module consists of a reset gate Rt and an up-

date gate Zt. With these two gates, ConvGRU can achieve

selective memorization and forgetting. Given the above def-

inition, the overall updating process of ConvGRU unrolled

by time can be listed as follows:

Zt = σ(Wxz ∗ Xt +Whz ∗ Ht−1),

Rt = σ(Wxr ∗ Xt +Whr ∗ Ht−1),

H′

t = tanh(Wxh ∗ Xt +Rt ◦ (Whh ∗ Ht−1)),

Ht = (1−Zt) ◦ H
′

t + Zt ◦ Ht−1,

(2)

where ‘∗’ denotes the convolution operator and ‘◦’ denotes

the Hadamard product. σ(.) represents the sigmoid func-

tion and W represents the learnable weight matrices. For

notational simplicity, the bias terms are omitted.

Motivated by [36], we stack two ConvGRU modules

with forward and backward directions to strengthen the

spatiotemporal information exchanges between two direc-

tions. In this way, deeper bidirectional ConvGRU (DB-

ConvGRU) can memorize not only past sequences but also

future ones. It can be formulated as follows:

Hf
t = ConvGRU(Hf

t−1, Xt),

Hb
t = ConvGRU(Hb

t+1,H
f
t ),

Ht = tanh(Whf ∗ Hf
t +Whb ∗ H

b
t),

(3)

where Hf
t and Hb

t represent the hidden state from forward

and backward ConvGRU units, respectively. Ht represents

the final output of DB-ConvGRU. Xt is the tth output fea-

ture from the non-local block.

As proven in [45], more non-local blocks in general lead

to better results. Thus, we attach another non-local block

to DB-ConvGRU to further enhance spatiotemporal coher-

ence.

7287



Input Frame 𝑰𝒊

Input Frame 𝑰𝒋

Input Frame 𝑰𝒌

Ground Truth 𝑮𝒋

Ground Truth 𝑮𝒊

Optical Flow 𝑶𝒊→𝒌

Optical Flow 𝑶𝒋→𝒌

Warped Ground Truth 𝑾𝑮𝒊→𝒌

Warped Ground Truth 𝑾𝑮𝒋→𝒌

Input frame 𝑘 with 

multiple channels

…
…

RCRNet

Generated Pseudo-Label 𝑷𝐆𝒌

warp

warp

Figure 4. The architecture of our proposed flow-guided pseudo-label generation model (FGPLG).

3.3. Flow­Guided Pseudo­Label Generation Model

Although the proposed RCRNet+NER has a great po-

tential to produce saliency maps with spatiotemporal coher-

ence. With only a few sparsely annotated frames, it can

barely learn enough temporal information, which greatly

reduces the temporal coherence of the resulting saliency

maps. To solve this problem, we attempt to generate denser

pseudo-labels from a few sparse annotations and train our

video saliency model with both types of labels.

Given triplets of input video frames {Ii, Ik, Ij}(i <
k < j), the proposed FGPLG model aims at generating

a pseudo-label for frame Ik with ground truth Gi and Gj

propagated from frame Ii and Ij , respectively. First, it com-

putes the optical flow Oi→k from frame Ii to frame Ik with

the off-the-shelf FlowNet 2.0. The optical flow Oj→k is

obtained in the same way. Then, the label of frame Ik is es-

timated by applying a warping function to adjacent ground

truth Gi and Gj . Nevertheless, as we can see in Fig. 4,

the warped ground truth WGi→k and WGj→k, are still too

noisy to be used as supervisory information for practical

training. Although the magnitude of optical flow ‖Oi→k‖
and ‖Oj→k‖ provide reasonable estimations of the motion

mask of frame ik, they cannot be employed as the esti-

mated ground truth directly since not all the motion masks

are salient. To further refine the estimated pseudo-label of

frame Ik, another RCRNet is modified to accept a frame I+k
with 7 channels including RGB channels of frame Ik, adja-

cent warped ground truth WGi→k and WGj → k and op-

tical flow magnitude ‖Oi→k‖ and ‖Oj→k‖. With the above

settings, a more reasonable and precise pseudo-label PGk

of frame Ik can be generated as:

PGk = Nseg(Nfeat(I
+
k )). (4)

Here, the magnitude of optical flow is calculated by first

normalizing the optical flow into interval [−1, 1] and then

computing its Euclidean norm.

The generation model can be trained with sparsely anno-

tated frames to generate denser pseudo-labels. In our exper-

iments, we use a fixed interval l to select sparse annotations

for training. We take an annotation every l frames, i.e., the

interval between the jth and kth frame, and the interval be-

tween the ith and kth frame are both equal to l. Experimen-

tal results show that the generation model designed in this

way has a strong generalization ability. It can use the model

trained by the triples sampled at larger interframe intervals

to generate dense pseudo-labels of very high quality.

4. Experimental Results

4.1. Datasets and Evaluation

We evaluate the performance of our method on three

public datasets: VOS [27], DAVIS [35] and FBMS [3].

VOS is a large-scale dataset with 200 indoor/outdoor videos

for video-based salient object detection. It contains 116,103

frames including 7,650 pixel-wise annotated keyframes.

The DAVIS dataset contains 50 high-quality videos, with

a total of 3,455 pixel-wise annotated frames. The FBMS

dataset contains 59 videos, totaling 720 sparsely annotated

frames. We evaluate our trained RFCN+NER on the test

sets of VOS, DAVIS, and FBMS for the task of video salient

object detection.

We adopt precision-recall curves (PR), maximum F-

measure and S-measure for evaluation. The F-measure

is defined as Fβ = (1+β2)·Precision·Recall

β2·Precision+Recall
. Here, β2 is

set to 0.3 as done by most existing image-based models

[2, 23, 12]. We report the maximum F-measure computed

from all precision-recall pairs. The S-measure is a new

measure proposed in [9], which can simultaneously evalu-

ate both region-aware and object-aware structural similarity

between a saliency map and its corresponding ground truth.

4.2. Implementation Details

Our proposed method is implemented on PyTorch [34],

a flexible open source deep learning platform. First, we ini-

tialize the weights of the spatial feature extractor in RCR-

Net with an ImageNet [8] pretrained ResNet-50 [11]. Next,

we pretrain the RCRNet using two image saliency datasets,

i.e., MSRA-B [31] and HKU-IS [25], for spatial saliency

learning. For semi-supervised video salient object detec-

tion, we combine the training sets of VOS [27], DAVIS [35],

and FBMS [3] as our training set. The RCRNet pretrained

on image saliency datasets is used as the backbone of the
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Datasets Metric
I+C I+D V+U V+D

MC RBD MB+ RFCN DCL DHS DSS MSR DGRL PiCA SAG GF SSA FCNS FGRN PDB Ours∗

VOS
Fmax
β ↑ 0.558 0.589 0.577 0.680 0.704 0.715 0.703 0.719 0.723 0.734 0.541 0.529 0.669 0.681 0.714 0.741 0.856

S ↑ 0.612 0.652 0.638 0.721 0.728 0.783 0.760 0.764 0.776 0.796 0.597 0.560 0.710 0.727 0.734 0.797 0.872

DAVIS
Fmax
β ↑ 0.488 0.481 0.520 0.732 0.760 0.785 0.775 0.775 0.758 0.809 0.519 0.619 0.697 0.764 0.797 0.849 0.859

S ↑ 0.590 0.620 0.568 0.788 0.803 0.820 0.814 0.789 0.811 0.844 0.663 0.686 0.738 0.757 0.838 0.878 0.884

FBMS
Fmax
β ↑ 0.466 0.488 0.540 0.764 0.760 0.765 0.776 0.809 0.813 0.823 0.545 0.609 0.597 0.752 0.801 0.823 0.861

S ↑ 0.567 0.591 0.586 0.765 0.772 0.793 0.793 0.835 0.832 0.847 0.632 0.642 0.634 0.747 0.818 0.839 0.870

* Note that our model is a semi-supervised learning model using only approximately 20% ground truth labels for training.

Table 1. Comparison of quantitative results using maximum F-measure Fmax
β ↑ (larger is better), S-measure S ↑ (larger is better). The best

three results on each dataset are shown in red, blue, and green, respectively. Symbols of model categories: I+C for image-based classic

unsupervised or non-deep learning methods, I+D for image-based deep learning methods, V+U for video-based unsupervised methods,

V+D for video-based deep learning methods. Refer to the supplemental document for more detailed results.
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Figure 5. Comparison of precision-recall curves of 15 saliency detection methods on the VOS, DAVIS and FBMS datasets. Our proposed

RCRNet+NER consistently outperforms other methods across three testing datasets using only 20% of ground truth labels.

pseudo-label generator. Then the FGPLG fine-tuned with a

subset of the video training set is used to generate pseudo-

labels. By utilizing the pseudo-labels together with the sub-

set, we jointly train the RCRNet+NER, which takes a video

clip of length T as input, to generate saliency maps to all

input frames. Due to the limitation of machine memory, the

default value of T is set to 4 in our experiments.

During the training process, we adopt Adam [19] as the

optimizer. The learning rate is initially set to 1e-4 when

training RCRNet, and is set to 1e-5 when fine-tuning RCR-

Net+NER and FGPLG. The input images or video frames

are resized to 448×448 before being fed into the network in

both training and inference phases. We use sigmoid cross-

entropy loss as the loss function and compute the loss be-

tween each input image/frame and its corresponding label,

even if it is a pseudo-label. In Section 4.4, we explore the

effect of different amount of ground truth (GT) and pseudo-

labels usage. It shows that when we take one GT and gener-

ate one pseudo-label every five frames (column ‘1 / 5’ in Ta-

ble 2) as the new training set, RCRNet+NER can be trained

to outperform the model trained with all ground truth la-

bels on the VOS dataset. We use this setting when per-

forming external comparisons with existing state-of-the-art

methods. In this setting, it takes approximately 10 hours to

finish the whole training process on a workstation with an

NVIDIA GTX 1080 GPU and a 2.4 GHz Intel CPU. In the

inference phase, it takes approximately 37 ms to generate a

saliency map for a 448× 448 input frame, which reaches a

real-time speed of 27 fps.

4.3. Comparison with State­of­the­Art

We compare our video saliency model (RCRNet+NER)

against 16 state-of-the-art image/video saliency methods,

including MC [18], RBD [50], MB+ [49], RFCN [39],

DCL [26], DHS [29], DSS [12], MSR [23], DGRL [40],

PiCA [30], SAG [42], GF [43], SSA [27], FCNS [44],

FGRN [24], and PDB [36]. For a fair comparison, we use

the implementations provided by the authors and fine-tune

all the deep learning-based methods using the same training

set, as mentioned in Section 4.2.

A visual comparison is given in Fig. 6. As shown in the

figure, RCRNet+NER can not only accurately detect salient

objects but also generate precise and consistent saliency

maps in various challenging cases. As a part of the quan-

titative evaluation, we show a comparison of PR curves

in Fig. 5. Moreover, a quantitative comparison of max-

imum F-measure and S-measure is listed in Table 1. As

can be seen, our method can outperform all the state-of-the-

art image-based and video-based saliency detection meth-

ods on VOS, DAVIS, and FBMS. Specifically, our RCR-

Net+NER improves the maximum F-measure achieved by

the existing best-performing algorithms by 15.52%, 1.18%,

and 4.62% respectively on VOS, DAVIS, and FBMS, and

improves the S-measure by 9.41%, 0.68%, 2.72% accord-

ingly. It is worth noting that our proposed method uses

only approximately 20% ground truth maps in the training

process to outperform the best-performing fully supervised

video-based method (PDB), even though both models are

based on the same backbone network (ResNet-50).
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Figure 6. Visual comparison of saliency maps generated by state-of-the-art methods, including our RCRNet+NER. The ground truth (GT)

is shown in the last column. Our model consistently produces saliency maps closest to the ground truth. Zoom in for details.
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Figure 7. Sensitivities analysis on the amount of ground truth la-

bels usage.

Labels m / l 0 / 1 0 / 2 0 / 5 1 / 5 4 / 5 0 / 20 7 / 20 19 / 20

Proportion
GT 100% 50% 20% 20% 20% 5% 5% 5%

Pseudo 0% 0% 0% 20% 80% 0% 35% 95%

Metric
Fmax
β ↑ 0.849 0.850 0.849 0.861 0.850 0.821 0.847 0.845

S ↑ 0.873 0.869 0.867 0.874 0.873 0.832 0.861 0.860

Table 2. Some representative quantitative results on different

amount of ground truth (GT) and pseudo-labels usage. Here, l

refers to the GT label interval, and m denotes the number of

pseudo-labels used in each interval. For example, ‘0 / 5’ means us-

ing one GT every five frames with no pseudo-labels. ‘1 / 5’ means

using one GT and generating one pseudo-label every five frames.

Refer to the supplemental document for more detailed analysis.

4.4. Sensitivities to Different Amount of Ground
Truth and Pseudo­Labels Usage

As described in Section 4.3, RCRNet+NER achieves

state-of-the-art performance using only a few GTs and gen-

erated pseudo-labels for training. To demonstrate the ef-

fectiveness of our proposed semi-supervised framework,

we explore the sensitivities to different amount of GT and

pseudo-labels usage on the VOS dataset. First, we take a

subset of the training set of VOS by a fixed interval and then

fine-tune the RCRNet+NER with it. By repeating the above

experiment with different fixed intervals, we show the per-

formance of RCRNet+NER trained with different number

of GT labels in Fig. 7. As shown in the figure, when the

number of GT labels is severely insufficient (e.g., 5% of the

origin training set), RCRNet+NER can benefit substantially

from the increase in GT label usage. An interesting phe-

nomenon is that when the training set is large enough, the

application of denser label data does not necessarily lead to

better performance. Considering that adjacent densely an-

notated frames share small differences, ambiguity is usually

inevitable during the manual labeling procedure, which may

lead to overfitting and affect the generalization performance

of the model.

Then, we further use the proposed FGPLG to generate

different number of pseudo-labels with different number

of GT labels. Some representative quantitative results are

shown in Table 2, where we find that when there are insuffi-

cient GT labels, adding an appropriate number of generated

pseudo-labels for training can effectively improve the per-

formance. Furthermore, when we use 20% of annotations

and 20% of pseudo-labels (column ‘1 / 5’ in the table) to

train RCRNet+NER, it reaches the max Fβ = 0.861 and S-

measure = 0.874 on the test set of VOS, surpassing the one

trained with all GT labels. Even if trained with 5% of an-

notations and 35% of pseudo-labels (column ‘7 / 20’ in the

table), our model can produce comparable results. This in-

teresting phenomenon demonstrates that pseudo-labels can

overcome labeling ambiguity to some extent. Moreover, it

also indicates that it is not necessary to densely annotate all

video frames manually considering redundancies. Under

the premise of the same labeling effort, selecting the sparse

labeling strategy to cover more kinds of video content, and

assisting with the generated pseudo-labels for training, will

bring more performance gain.

4.5. Ablation Studies

To investigate the effectiveness of the proposed modules,

we conduct the ablation studies on the VOS dataset.

The effectiveness of NER. As described in Section 3.2,

our proposed NER module contains three cascaded mod-

ules, including a non-local block, a DB-ConvGRU module,

and another non-local block. To validate the effectiveness

and necessity of each submodule, we compare our RCR-

Net equipped with NER or its four variants on the test set

of VOS. Here, we use one ground truth and one pseudo-

label every five frames as the training set, to fix the im-

pact of different amount of GT and pseudo-labels usage. As

shown in Table 3, Re refers to our proposed RCRNet with

a non-locally enhanced module. By comparing the perfor-
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mance of the first three variants Ra, Rb, and Rc, we find

that adding non-local blocks and DB-ConvGRU can create

a certain level of performance improvement. On the basis

of Rc, adding an extra non-local block (i.e., Re) can fur-

ther increase 0.5% w.r.t max F-measure. When compared

with Rd and Re, we observe that DB-ConvGRU is indeed

superior to ConvGRU as it involves deeper bidirectionally

sequential modeling.

The effectiveness of FGPLG. As mentioned in Section 3.3,

FGPLG model takes multiple channels as input to generate

pseudo-labels, including image RGB channels, warped ad-

jacent ground truth maps, and magnitude of optical flow.

To validate the effectiveness and necessity of each compo-

nent, we train three separate RCRNet+NER with pseudo-

labels generated by our proposed FGPLG including its two

variants, each of which takes different channels as input.

Here, we use one ground truth and seven pseudo-labels ev-

ery 20 frames as the training set for comparison. It also in-

cludes the performance of model Ga, which is trained with-

out pseudo-labels, as a baseline. As shown in Table 4, the

models trained with pseudo-labels (i.e., Gb, Gc, and Gd)

all surpass the baseline model Ga, which further validates

the effectiveness of using pseudo-labels for training. On

the basis of Gb, adding adjacent ground truth as input (i.e.,

Gc) slightly improves the performance, while our proposed

pseudo-label generator Gd outperforms all the other vari-

ants with a significant margin by further exploiting adjacent

ground truth through flow-guided motion estimation.

Methods Ra Rb Rc Rd Re

ConvGRU? X

DB-ConvGRU X X

first non-local block? X X X X

second non-local block? X X

Fmax
β ↑ 0.846 0.853 0.856 0.857 0.861

S ↑ 0.865 0.871 0.871 0.872 0.874

Table 3. Effectiveness of non-locally enhanced recurrent module.

Methods Ga Gb Gc Gd

without label generation? X

RGB channels? X X X

adjacent ground truth? X X

optical flow and GT warping? X

Fmax
β ↑ 0.821 0.832 0.838 0.847

S ↑ 0.832 0.854 0.860 0.861

Table 4. Effectiveness of flow-guided label generation model.

Dataset Metric
Methods

PDB LVO FSEG LMP SFL FST Ours∗

DAVIS
J ↑ 74.3 70.1 70.7 70.0 67.4 55.8 74.7

F ↑ 72.8 72.1 65.3 65.9 66.7 51.1 73.3

FBMS J ↑ 72.3 65.1 68.4 35.7 35.7 47.7 75.9

* Note that our model is a semi-supervised learning model using only ap-

proximately 20% ground truth labels for training.

Table 5. Performance comparison with 6 representative unsu-

pervised video object segmentation methods on the DAVIS and

FBMS datasets. The best scores are marked in bold.

5. Performance on Unsupervised Video Object

Segmentation

Unsupervised video object segmentation aims at auto-

matically separating primary objects from input video se-

quences. As described, its problem setting is quite similar

to video salient object detection, except that it seeks to per-

form a binary classification instead of computing a saliency

probability for each pixel. To demonstrate the advantages

and generalization ability of our proposed semi-supervised

model, we test the pretrained RCRNet+NER (mentioned

in Section 4) on the DAVIS and FBMS dataset with-

out any pre-/post-processing and make a fair comparison

with other 6 representative state-of-the-art unsupervised

video segmentation methods, including FST [33], SFL [5],

LMP [37], FSEG [17], LVO [38] and PDB [36]. We adopt

the mean Jaccard index J (intersection-over-union) and

mean contour accuracy F as metrics for quantitative com-

parison on the DAVIS dataset according to its settings. For

the FBMS dataset, we employ the mean Jaccard index J ,

as done by previous works [36, 24]. As shown in Table 5,

our proposed method outperforms the above methods on

both the DAVIS and FBMS datasets, which implies that our

method has a strong ability to capture spatiotemporal infor-

mation from video frames and is applicable to unsupervised

video segmentation.

6. Conclusion

In this paper, we propose an accurate and cost-effective

framework for video salient object detection. Our proposed

RCRNet equipped with a non-locally enhanced recurrent

module can learn to effectively capture spatiotemporal in-

formation with only a few ground truths and an appropri-

ate number of pseudo-labels generated by our proposed

flow-guided pseudo-label generation model. We believe

this will bring insights to future work on the manual an-

notation for video segmentation tasks. Experimental results

demonstrate that our proposed method can achieve state-of-

the-art performance on video salient object detection and is

also applicable to unsupervised video segmentation. In fu-

ture work, we will further explore the impact of the use of

keyframe selection instead of interval sampling of GT labels

on the performance of the proposed method.
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