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Abstract

Unsupervised video object segmentation has often been

tackled by methods based on recurrent neural networks and

optical flow. Despite their complexity, these kinds of ap-

proach tend to favour short-term temporal dependencies

and are thus prone to accumulating inaccuracies, which

cause drift over time. Moreover, simple (static) image seg-

mentation models, alone, can perform competitively against

these methods, which further suggests that the way temporal

dependencies are modelled should be reconsidered. Moti-

vated by these observations, in this paper we explore simple

yet effective strategies to model long-term temporal depen-

dencies. Inspired by the non-local operators of [63], we

introduce a technique to establish dense correspondences

between pixel embeddings of a reference “anchor” frame

and the current one. This allows the learning of pairwise

dependencies at arbitrarily long distances without condi-

tioning on intermediate frames. Without online supervision,

our approach can suppress the background and precisely

segment the foreground object even in challenging scenar-

ios, while maintaining consistent performance over time.

With a mean IoU of 81.7%, our method ranks first on the

DAVIS-2016 leaderboard of unsupervised methods, while

still being competitive against state-of-the-art online semi-

supervised approaches. We further evaluate our method

on the FBMS dataset and the video saliency dataset ViSal,

showing results competitive with the state of the art.

1. Introduction

Video object segmentation (VOS) is a fundamental task

in many important areas such as autonomous driving [11,

37, 15], robotic manipulation [23], video surveillance [54]

and video editing [43]. Contemporary literature typically

∗Equal contribution.

considers this problem in either the semi-supervised or the

unsupervised setting. In both cases, the objective is to pre-

dict in every frame pixel-level masks delineating certain ob-

jects of interest.

Under the semi-supervised setting, at test time methods

can rely on a mask that specifies the object to segment. In

contrast, the unsupervised setting does not provide any ini-

tialisation. Without online supervision, the task might be

considered ambiguous, as different objects could be consid-

ered of interest for different reasons, according to the ap-

plication. Among researchers, the current consensus is to

segment foreground objects where a human gaze is more

likely to focus [4]. In more practical terms, an object is

generally considered as foreground if it is sufficiently large,

in motion and centred in the scene. In certain datasets

(e.g., FBMS [39] and ViSal [61]), in the same video, mul-

tiple foreground objects are considered, while in DAVIS-

2016 [45] only a single object is considered.

With the aim of tracking temporal changes in target ob-

jects, current state-of-the-art unsupervised approaches gen-

erally model motion cues in a video sequence via optical

flow [29, 28, 47, 22, 52, 51, 20, 9] or recurrent neural net-

works (RNNs) [16, 28, 52]. Typically, these methods se-

quentially propagate features from the previous steps to the

current one, making the current prediction dependent on the

entire history of the video. Though having the potential of

exploiting informative temporal cues, these approaches suf-

fer from several limitations. RNNs often rely on training

techniques such as truncated backpropagation through time

to reduce the cost of parameter updates, which limits their

long-term modelling capability [49]. Moreover, while the

gating mechanism in LSTMs alleviates the issue of vanish-

ing gradients [1, 42], these can still have exploding gradi-

ents, which often requires clipping or rescaling the norm

of the gradients during training [50]. Optical flow vectors

only predict one-step motion cues at each frame in a video,

which can accumulate errors over time. What is more, mod-
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Anchor Frame Current Frame Similarities

Figure 1. Visualisation of the learned similarities between embeddings of pixels belonging to pairs of frames. Specifically, the three

heatmaps on the right-hand side represent the similarities between pixel embeddings from the anchor frame and the pixel from the current

frame outlined by the cross of the same colour of the frame’s border. Notice how the pixel on the foreground car (in green) produces a

neat heatmap that well identifies the object, while both the background pixel from the asphalt (in purple) and the distractor pixel from a

background car (in red) generate much less clear results.

els relying on optical flow are typically trained on synthetic

videos due to the high cost of per-frame and per-pixel la-

belling. Therefore, when applying these systems to real

videos, the domain gap can cause the flow fields to con-

tain several inaccuracies, especially when the foreground is

nearly static [52].

In the video object segmentation community, the dete-

rioration of performance over time in unsupervised VOS

methods based on optical flow or RNNs is well known and

has been widely discussed [28, 55, 40, 7]. For instance,

Li et al. [28] demonstrate that as a regular optical flow-

based model progresses through frames, foreground embed-

dings become increasingly closer in feature space to the first

frame’s background as opposed to the foreground. Further-

more, Voigtlaender et al. [55] observed that a simple static

segmentation model can achieve competitive results in the

unsupervised VOS setting, which further corroborates the

case for steering away from the sequential modelling strate-

gies used by established methods.

Motivated by the above observations, in this work we

opt for a much simpler solution, which is based on learning

the similarity of pixels between frames that can be arbitrar-

ily far apart. To ensure representation consistency and re-

duce long-term drift, we propagate the features of the first

frame (the “anchor”) to the current frame via an aggregation

technique inspired by the non-local operation introduced by

Wang et al. [63]. This approach allows us to forgo of se-

quential modelling, while at the same time enabling us to

deal with long-term dependencies and achieve high robust-

ness over time, as shown in our experiments.

Despite its simplicity and online operability, our method,

which we name anchor diffusion network (AD-Net), out-

performs the current state of the art [47] on the DAVIS-

2016 leaderboard by a margin of (absolute) 2.2% in

terms of intersection-over-union, without resorting to aux-

iliary training data or post-processing. Moreover, it also

achieves state-of-the-art results on FBMS [39] and the

ViSal [61] video saliency benchmark. Code and pre-trained

models are available at https://github.com/yz93/

anchor-diff-VOS.

2. Related work

The problem of video object segmentation (VOS) is

tackled by the computer vision community in the unsuper-

vised or semi-supervised settings, which are defined by the

level of supervision provided at test time.

Semi-supervised VOS methods are provided with a pixel-

wise mask identifying the target object in the first frame

of a video. When aiming at very high segmentation accu-

racy, methods [3, 38, 55, 44, 35, 21, 30] generally perform

online fine-tuning on the basis of this supervision, some-

times exploiting data-augmentation techniques [3, 21] or

self-supervision [55]. As online fine-tuning can take up to

several minutes per video, many recently proposed meth-

ods renounce to it and instead aim at a faster online speed

(e.g., [57, 8, 7]). These faster semi-supervised approaches

come in many flavours. For instance, Chen et al. [7] learn

a metric space for pixel embeddings, which is then used to

establish associations between pixels across frames, while

Cheng et al. [8] suggest to individually track object parts

from the first frame with a visual object tracker [2] and then

aggregate them according to their similarity with the initial-

isation mask.

Unsupervised VOS methods, instead, cannot rely on any

supervision at test time and are often based on optical

flow and RNNs. The purely optical flow-based MP-

Net [51] discards appearance modelling and casts seg-

mentation as foreground motion prediction, an approach

which poorly deals with static foreground objects. To

address this problem, several methods (e.g., LVO [52],

SegFlow [9], MotAdapt [47] and MBN [29]) suggest to

integrate appearance-based and optical flow-based features

together, leading to variations of the “two-stream model”

presenting two dedicated parallel branches. The drawbacks

of such methods are threefold. First, flow estimation net-

works are typically trained on synthetic datasets and can

thus result in poor performance when deployed in the real

world. Second, while modelling long-term temporal depen-

dencies is critical for adapting to significant online changes,

the vector fields can only model short-term one-step de-
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pendencies. Targeting this issue, Tokmakow et al. [52]

proposed to extend the horizon spanned by optical flow-

based features by employing a convolutional gated recurrent

unit [10]. Third, vector fields cannot distinguish foreground

and background objects when they move in a synchronised

fashion (e.g., the cars in a traffic jam). Li et al. [29] attempt

to address this issue by employing a bilateral network for

detecting the motion of background objects. Our investiga-

tions with a much simpler appearance-based approach show

that optical flow may not be an essential component of un-

supervised VOS systems.

RNN-based models are often challenged by the problems

of exploding and vanishing gradients [1, 42], which limit

their long-term modelling capability. Among the methods

that make use of recurrent connections, Song et al. [48] pro-

pose a novel convolutional long short-term memory [16] ar-

chitecture, in which two atrous convolution [5] layers are

stacked along the forward axis and propagate features in

opposite directions.

Recently, it has been shown [28, 40, 55] that both re-

current and optical flow-based methods significantly suffer

from a deterioration in the quality of their prediction over

time. This has motivated the several approaches (includ-

ing ours) that tackle video object segmentation by simply

learning similarities between pixel embeddings (e.g., [13,

7, 28, 29]). These methods first select a set of seed pix-

els that are most likely to belong to the foreground object

and then classify all other pixels based on their similarities

to these seeds, for instance by thresholding or by propagat-

ing labels between neighbours. Fathi et al. [13] adopt this

approach for semantic instance segmentation, in which the

pairwise pixel similarity function measures the likelihood

of two pixels belonging to the same instance. IET [28] ex-

tends this concept to video sequences. Similarly, it selects

a set of foreground and background seeds for each frame

and organises them into tracks. It then segments each frame

individually based on pixel similarities with the foreground

and background seeds. Note that IET utilises pre-trained

instance embeddings. MBN [29] extends IET with a bilat-

eral filtering network that filters false-positive foreground

predictions using optical flow features and an energy min-

imisation procedure on a graph of seeds sampled from a few

consecutive frames. When segmenting frame t, MBN clas-

sifies each pixel by assigning it the label of the seed (sam-

pled from frames t−1, t, and t+1) with which it has the

smallest embedding distance.

The main drawback of these methods is in the complex-

ity involved in the procedures of seed selection, ranking

and classification, critical for achieving good performance.

Moreover, these algorithms also depend on multiple scores

such as motion saliency and objectness that need to be care-

fully calibrated and combined into one final metric.

Albeit our proposal is related to this last class of ap-

proaches, is considerably simpler. Instead of separately

learning individual components from image datasets and

classifying pixels based on similarities with seeds, our

method performs similarity learning, feature propagation

and binary segmentation in a single classification network.

3. Method

We are interested in the task of binary segmentation of

a sequence of video frames, where the final performance

is measured by the average segmentation quality of indi-

vidual frames. Therefore, our method should perform well

under two aspects. First, similarly to what is expected from

static segmentation models, it should be able to provide ac-

curate segmentation masks of foreground objects in indi-

vidual frames. Second, it should be able to well adapt to the

changes in appearance of the foreground objects throughout

the whole video.

In the proposed anchor diffusion network (AD-Net)

(schematised in Figure 2), we address both requirements in

a single end-to-end model by leveraging the recently pro-

posed non-local operations [63]. Closely related to the con-

cept of self-attention [53], a non-local operation is a neu-

ral network building block that captures the dependencies

within a set of input feature vectors.

To achieve our first goal, a non-local operation is ap-

plied to the encoding of the target frame, in a similar way

it is applied for semantic image segmentation [14], forming

the intra-frame branch of our overall model. To achieve

our second goal, we propagate information between two

frames: a fixed anchor frame and the current frame, forming

the anchor-diffusion branch of our overall model. We name

the branch this way to give relevance to its functionality of

“diffusing” information from the anchor to the large number

of target frames at test time, which encourages foreground

embeddings of each target frame to be consistent over time.

In the following, we describe our pipeline in more detail.

Pipeline. The input of our model consists of a pair of im-

ages: an anchor frame I0, which is fixed for any specific

video, and the frame to segment It. The overall pipeline

is schematically illustrated in Figure 2. First, a feature en-

coder (the fully-convolutional DeepLabv3 [5]) encodes I0
and It into the corresponding embeddings X0 ∈ R

hw×c

and Xt ∈ R
hw×c, where c denotes the number of channels

and h, w denote the height and width of the frame. We re-

fer to the c-dimensional feature vector at each location as a

pixel embedding. The output of this first stage is then fed

to three parallel branches: a skip connection with an iden-

tity mapping [18], the intra-frame branch, and the anchor-

diffusion branch. Xt is fed to all branches, while X0 only to

the anchor-diffusion branch. Finally, the resulting features

from the three branches are concatenated together along the

channel dimension before the classification layer.
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Figure 2. Overall pipeline of the proposed method. In the anchor-diffusion branch, pixel embeddings in the current frame are linearly

transformed by similarity scores with pixel embeddings in the anchor frame, and concatenated with outputs from the intra-frame branch

and the skip connection for prediction.

The entire network is trained end-to-end with a binary

cross-entropy loss. Though any frame could be selected

as the anchor frame, in practice we always choose the

first frame for computational convenience and because, in

benchmarks, the first frame is guaranteed to contain the

foreground objects. During training, the first frame and a

random frame are sampled from the video.

3.1. Anchor diffusion

As described earlier, X0 and Xt represent the embed-

dings of the anchor and the current frame respectively. In

order to reinforce the foreground signal, it is important

to know which pixel embeddings in Xt correspond to the

background introduced throughout a video. To achieve this,

in the anchor-diffusion branch we compute a transition ma-

trix P ∈ R
hw×hw which establishes dense correspondences

between each pair of pixels from X0 and Xt and use it

to map Xt to a new encoding X̃t, in which the pixel em-

beddings are weighted according to their similarity with the

foreground:

X̃t = PXt. (1)

As qualitatively illustrated in Figure 1 and in the supple-

mentary material, this procedure significantly strengthens

the foreground while weakening the background. It is worth

noting that one can also simply use the concatenation of X0

and Xt to achieve this goal. However, we find in our exper-

iments that the correspondence learning in Equation (1) can

better localise the foreground objects.

Similarly to [63], the transition matrix is defined as

P = softmax(
1

z
X0X

T
t ), (2)

where X0X
T
t is a pairwise dot product similarity between

each pair of pixel embeddings in X0 and Xt. Follow-

ing [53, 31], we scale the dot product with a factor z =
√
c,

where c is the number of channels of X0 and Xt. The ra-

tionale being that, for embeddings with high dimensional-

ity, dot products can be very large and thus push the output

of the softmax to regions where gradients are small [53].

The softmax function normalises each row of 1

z
X0X

T
t to

sum to one, thereby preserving scale invariance of the pixel

embeddings. Without normalisation, multiplying 1

z
X0X

T
t

with Xt can entirely change the scale of the pixel embed-

dings.

In the case of the intra-frame branch, each output pixel

embedding can be considered as a global aggregation of

all input pixel embeddings weighted by pairwise appear-

ance similarity. It has been shown that such use of non-

local operations [63] can harness long-range spatial infor-

mation, which is beneficial for semantic segmentation [14].

Empirically, as detailed in the ablation studies of Table 1,

we found that incorporating this branch in addition to the

anchor-diffusion branch further improves the performance

of the model.

The intra-frame branch improves segmentation accuracy,

but does not address the temporal changes in a video se-

quence. Conversely, the anchor-diffusion branch models

pairwise dependencies between frames, with the result of

enhancing the consistency of pixel embeddings and reduc-

ing drift.

Qualitative analysis. As shown in Figure 1, as desir-

able, the foreground pixel (green) results in high similar-

ity scores in correspondence to the anchor pixels belonging

to the foreground object and low everywhere else, which

highlights the temporal consistency of the foreground rep-

resentation over time. Conversely, the background car (red)

and asphalt (purple) exhibit dispersed similarity correspon-

dences over different regions in the anchor. As these re-

sponses span large areas that contain objects of different

appearance and semantic classes, an aggregation of features

from these locations average out discriminative information
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Figure 3. Temporal consistency of pixel embeddings over time.

from the background that may lead to false-positive pre-

dictions, effectively suppressing signals from the original

background pixel embeddings.

In Figure 3, instead, we report how foreground em-

beddings change over time by computing the average co-

sine distance between the foreground embeddings of a later

frame and those of the first frame. The embeddings of our

proposal are significantly stabler, while those of the base-

line quickly grow apart. This suggests that AD-Net is capa-

ble of preserving foreground information in the first frame

over long periods of time in a video.

4. Experiments

In the following, after discussing important implemen-

tation details regarding our architecture and training proce-

dure, in Section 4.1 we illustrate the three benchmarks we

adopted, in Section 4.2 we describe several ablation studies

and finally, in Section 4.3, we provide an extensive compar-

ison with the state of the art.

Implementation details. We employ the fully-

convolutional DeepLabv3 [5] as the feature encoder,

and initialise its ResNet101 [18] backbone with weights

pre-trained on ImageNet. The other layers in DeepLabv3

are randomly initialised. The configuration of the dilation

rates follows the original model [5] and presents a total

stride of 8. We modify the number of output channels in

the last layer to 128, which corresponds to c in Section 3.

In the anchor-diffusion step, the spatial dimensions of

each image encoding are flattened and transposed where ap-

propriate in order to perform batched matrix multiplication.

The outputs of the three branches are concatenated along

the channel axis and reduced to dimension 128 via a 1×1
convolution with LeakyReLU non-linearity and a dropout

with rate 0.1. The final classification layer is implemented

as a 1×1 convolution with output channel 1 followed by a

sigmoid layer.

Training. Each training example consists of a pair of im-

ages: We randomly sample a video and use the first frame

and a randomly sampled frame (not including the first) from

this video as the training example. We experimented with

randomly sampling both frames instead of fixing the first

and observed slightly worse performance. Each input frame

is cropped to a randomly sized region which encloses the

ground-truth foreground. Random rotations are performed

at 45-degree increments, with a probability of 51% not ro-

tating and equal probabilities rotating to any of the remain-

ing angles.

The model is trained with binary cross-entropy loss. Net-

work parameters are optimised via stochastic gradient de-

scent with weight decay 0.0005. The initial learning rate

is set to 0.005 and follows a “poly” adjustment policy [5],

where the initial learning rate is multiplied by (1− iter
40,000

)0.9

at each iteration. The model is trained for 30,000 iterations

and the batch size is 8. Raw predictions are upsampled via

bilinear interpolation to the size of the ground-truth masks.

Inference. At test time, the features of the anchor frame

are computed once and reused throughout the video. Multi-

scale and mirrored inputs are employed to enhance the final

performance. Each input image is scaled by factors of 0.75,

1.00 and 1.50 and horizontally flipped. The final heatmap

is the mean of all output heatmaps. Thresholding at 0.5
produces the final binary labels.

Instance pruning. Since semantic segmentation ap-

proaches like the one we use lack the notion of in-

stance, and some videos from the DAVIS-2016 dataset [45]

present multiple objects that can be deemed as foreground

(a rather ill-defined scenario for UVOS), we experiment

with a simple set of post-processing steps that prune non-

foreground objects. As instance trajectories measure the

spatial changes of an instance, they can be used to detect

background instances which have distinct trajectory pat-

terns than the foreground instance. First, we establish on-

line temporal correspondences by using a pre-trained ob-

ject detection model [66] to predict the locations of all ob-

jects and track the trajectory of each detection across the

entire video using an intersection-over-union criterion be-

tween consecutive bounding boxes. Once object tracks have

been established, we use the cumulative area of instance

masks across frames as a proxy to identify foreground ob-

jects, thus pruning small objects or objects that are only

present in a fraction of the video. This process produces a

filtering mask, which is multiplied element-wise with AD-

Net predictions to obtain the final predictions. More details

and hyper-parameters related to this process (which we re-

fer to as instance pruning) are provided in the supplemen-

tary material.

4.1. Benchmarks

Datasets. DAVIS [45] is a benchmark and yearly challenge

for video object segmentation. Unsupervised methods are

trained and evaluated with the DAVIS-2016 dataset, which

annotates a single foreground entity. There are 30 videos

for training (2,079 training frames) and 20 videos for vali-

dation. We train our method on the training set and evaluate

on the validation set. The FBMS [39] dataset is another
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Model J (%) △J F (%) △F

Baseline [5] 75.41 0.00 75.58 0.00

Baseline + intra-frame 76.17 +0.76 75.38 -0.20

Baseline + anchor 76.84 +1.43 75.76 +0.18

Baseline + anchor-diffusion 77.43 +2.02 76.78 +1.20

AD-Net (single scale) 78.26 +2.85 77.11 +1.53

Table 1. Ablation study on the DAVIS validation set. △J and △F

denote, respectively, absolute improvements in region similarity

and contour accuracy.

challenging benchmark for unsupervised video object seg-

mentation. It contains 29 training videos and 30 test videos

with annotations on 720 frames. Following conventions

in [47, 48, 52, 28, 29], we evaluate on the test set. The

ViSal [61] dataset is a video salient object detection bench-

mark. It contains 17 video sequences with annotations on

193 frames. We report saliency evaluations of our method

on ViSal for demonstrating the robustness and wide appli-

cability of our method.

Evaluation metrics. For DAVIS, we adopt the official eval-

uation metrics of mean region similarity J , which is the

intersection-over-union of the prediction and ground truth,

and mean contour accuracy F , which is the F-measure de-

fined on contour points in the prediction and ground truth.

To provide more insights and for fair comparisons, we plot

precision-recall (PR) curves on all three benchmark datasets

with the corresponding F-measure. On the FBMS dataset,

the main evaluation metric is the F-measure. On the ViSal

dataset, we report the mean absolute error (MAE) and the

F-measure. For definitions of MAE and the F-measure, we

refer interested readers to [19].

4.2. Ablation studies

We conduct several ablations to precisely evaluate the

effectiveness of the anchor-diffusion procedure. First, we

evaluate DeepLabv3 [6] as-is, simply fine-tuning it on the

DAVIS training set. This semantic segmentation baseline

(designed for static images) performs on par with some

state-of-the-art unsupervised VOS methods (see Table 2).

This is in line with what described by Voigtlaender et

al. [55], but it is rather curious that it still applies after

two years of progress. Clearly, the competitive perfor-

mance can be partially attributed to the high performance of

DeepLabv3 for the similar task of semantic segmentation of

static images. However, this result also shows that existing

unsupervised VOS techniques are not able to successfully

model and leverage temporal dependencies and that differ-

ent approaches should be sought.

Starting from this baseline, we evaluate four variants that

differ in the embeddings they consider at the terminal con-

catenation layer (see Figure 2). Each corresponds to a row

below Baseline in Table 1. The first variant (“intra-frame”)

DAVIS FBMS

Method FF OF CRF J F F-measure

S
em

i.

PReMVOS [35] X X X 84.9 88.6 -

OSVOS [3] X 79.8 80.6 -

MSK [44] X X X 79.7 75.4 -

PML [7] X 75.5 79.3 -

SFL [9] X X 76.1 76.0 -

VPN [46] X X 70.2 65.5 -

U
n
su

p
er

v
is

ed

FST [41] X 55.8 51.1 69.2

ELM [24] X 61.8 61.2 -

SFL [9] X 67.4 66.7 -

LMP [51] X X 70.0 65.9 77.5

FSEG [20] X 70.7 65.3 -

LVO [52] X X 75.9 72.1 77.8

ARP [22] X 76.2 70.6

PDB [48] X 77.2 74.5 81.5

MotAdapt [47] X X 77.2 77.4 79.0

AD-Net (multiple scales) 79.4 78.2 81.2

AD-Net + I.Prun. (ours) 81.7 80.5 -

Table 2. Performance on DAVIS-2016 validation set. FF: first-

frame annotations; OF: optical flow; CRF: random conditional

field.

computes non-local features within the same frame Xt and

without the anchor-diffusion branch. The second (“an-

chor”) simply concatenates X0 to Xt. The third performs

anchor diffusion on X0 and Xt, and concatenates with Xt,

without features from the intra-frame branch. The fourth

(our final model, AD-Net) concatenates both the output

of the intra-frame branch and that of the anchor-diffusion

branch with Xt.

The “intra-frame” variant improves over the baseline,

which shows the potential of utilising context information

within the current frame. The “anchor” variant demon-

strates the general usefulness of an anchor frame, despite

the apparent limitation that the fixed representation of the

anchor frame does not adapt to changes in the current frame.

The solid performance gains validate our motivation to fur-

ther develop the anchor-diffusion mechanism. The “anchor-

diffusion” variant illustrates the efficacy of the proposed

feature diffusion mechanism across the anchor and current

frames. It brings a performance boost of 2.02 (absolute)

points over the baseline, larger than the contribution brought

by the “intra-frame” and “anchor” variants.

4.3. Comparison with the state of the art

In Table 2, we evaluate AD-Net against state-of-the-art

unsupervised VOS methods on the DAVIS public leader-

board and also provide the performance of several popu-

lar semi-supervised methods as a term of reference. AD-

Net attains the highest performance among all unsupervised

methods on the DAVIS validation set, while also perform-

ing very competitively on the FBMS test set. In particu-

lar, on DAVIS we outperform the second-best method (Mo-

tAdapt [47]) by an absolute margin of 2.2% in J and 0.8%
in F before applying the post-processing step of instance

pruning. After applying instance pruning as described ear-

lier, AD-Net achieves the final performance of 81.7 in J
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and 80.5 in F , leading the second-best method by 4.5 and

3.1 absolute points respectively. In addition, despite being

unsupervised at inference time, AD-Net outperforms many

semi-supervised methods which instead require to be ini-

tialised with a mask in the first frame.

After our proposed AD-Net, the second and third-best

ranking methods are MotAdapt [47] and PDB [48], which

are particularly representative of two classes of methods.

PDB is representative of top-performing RNN-based

methods. Although, in theory, RNNs could model long-

range time dependencies, in practice they are constrained

to model relatively short sequences. First, as the compu-

tational graph of an (unrolled) RNN grows in depth with

the length of a video sequence, backpropagation is typi-

cally limited to a few time steps (e.g., 5 in RGMP [40]).

Such backpropagation cannot guarantee long-term depen-

dency modelling [49]. Second, despite the gating and mem-

ory mechanisms adopted by LSTMs and GRUs, long prop-

agation paths of gradients still cause exploding or vanishing

gradients [1, 42].

Conversely, MotAdapt is representative of top-

performing methods that employ optical flow. It consists

of a two-stream architecture, which dedicates two network

branches (trained jointly but with different parameters)

to process RGB images and pre-computed optical flow

fields. The two-branch network is further fine-tuned at

inference time, with pseudo-labels generated by a teacher

network. Although optical flow is an intuitive way to model

inter-frame dependencies and aid segmentation, results in

Tables 1 and 2 demonstrate that simply developing a better

appearance-based model can overshadow the benefits of

a dedicated optical flow branch. Moreover, the strategy

of fine-tuning at inference time adopted by MotAdapt

and many semi-supervised methods is a time-consuming

process, taking many seconds up to minutes per video. In

contrast, AD-Net leverages a simpler architecture, which

makes it fast at inference time. Without instance pruning, it

runs online and at 4 frames per second on an NVIDIA TI-

TAN X GPU, with frames at the original DAVIS resolution

of 854×480. Clearly, speed can be easily traded off at a

small cost in performance, by using lower resolution and/or

lighter baseline architectures.

The precision-recall analysis of AD-Net is presented in

Figure 4, where we demonstrate that our approach generally

outperforms also existing salient object detection methods.

AD-Net achieves superior performance in all regions of the

PR curve on the DAVIS validation set, maintaining signifi-

cantly higher precision at all recall thresholds. On the chal-

lenging FBMS test set, AD-Net maintains a clear advan-

tage below the 90% recall threshold. On the ViSal dataset,

it is noteworthy that nearly perfect precision is maintained

up until the 60% recall rate, which is higher than the other

methods.

Saliency

Methods

DAVIS FBMS ViSal

MAE ↓ F ↑ MAE ↓ F ↑ MAE ↓ F ↑

Im
ag

e

Amulet [64] 0.082 69.9 0.110 72.5 0.032 89.4

SRM [58] 0.039 77.9 0.071 77.6 0.028 89.0

UCF [65] 0.107 71.6 0.147 67.9 0.068 87.0

DSS [19] 0.062 71.7 0.083 76.4 0.028 90.6

MSR [17] 0.057 74.6 0.064 78.7 0.031 90.1

NLDF [36] 0.056 72.3 0.092 73.6 0.023 91.6

DCL [27] 0.070 63.1 0.089 72.6 0.035 86.9

DHS [32] 0.039 75.8 0.083 74.3 0.025 91.1

ELD [25] 0.070 68.8 0.103 71.9 0.038 89.0

KSR [59] 0.077 60.1 0.101 64.9 0.063 82.6

RFCN [56] 0.065 71.0 0.105 73.6 0.043 88.8

V
id

eo

FGRNE [26] 0.043 78.6 0.083 77.9 0.040 85.0

FCNS [62] 0.053 72.9 0.100 73.5 0.041 87.7

SGSP [33] 0.128 67.7 0.171 57.1 0.172 64.8

GAFL [61] 0.091 57.8 0.150 55.1 0.099 72.6

SAGE [60] 0.105 47.9 0.142 58.1 0.096 73.4

STUW [12] 0.098 69.2 0.143 52.8 0.132 67.1

SP [34] 0.130 60.1 0.161 53.8 0.126 73.1

AD-Net (ours) 0.044 80.8 0.064 81.2 0.030 90.4

Table 3. Salient object detection performance of AD-Net, com-

pared against 18 popular saliency prediction methods.

Evaluation as video saliency. The definition of salient ob-

jects in a video for benchmarks like ViSal [61] is very re-

lated to the one of “foreground objects” for benchmarks like

DAVIS or FBMS (see Section 1). Annotations in salient

object detection datasets can vary from coarse annotations

such as bounding boxes to fine-grained pixel-level real-

valued scores, and sometimes even take the form of hu-

man eye fixations. ViSal provides pixel-level annotations

as binary labels, annotating large, moving objects as the

foreground and everything else as the background. Despite

the many types of annotations, evaluation metrics are fairly

standard and use pixel-level annotations either in binarised

form (PR curve and F-measure) or as normalised saliency

scores between 0 and 1 (MAE), which are directly applica-

ble to the scores produced by AD-Net.

As shown in Table 3, the proposed AD-Net improves the

state of the art for both DAVIS and FBMS also for standard

saliency scores, showing consistency with Table 2. The

largest improvements lie in FBMS, where both MAE and

F-measure significantly outperform previous records. On

DAVIS, F-measure is the highest among all methods with

a significant leading margin. On the ViSal dataset, AD-

Net achieves best MAE (lower is better) among all video

saliency models and obtains F-measure close to the overall

best method. Remarkably, despite not having trained for the

task of saliency prediction, we outperform previous saliency

methods under saliency metrics on DAVIS and FBMS, and

achieve very competitive results on ViSal.

5. Conclusion

In this paper, we proposed Anchor Diffusion Network

(AD-Net), a method for unsupervised video object segmen-

tation based on non-local operations. Instead of modelling
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Figure 4. AD-Net results with PR curves on the DAVIS, FBMS, and ViSal datasets.
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Figure 5. Segmentation results on DAVIS-2016 validation set videos, obtained using our model without any online fine-tuning.

temporal dependencies with recurrent connections or adopt-

ing pre-computed optical flow like contemporary work, we

argue for a significantly simpler and more effective ap-

proach, which consists in establishing correspondences of

pixel embeddings between a reference frame and the current

one. With this strategy, we can easily model long-term tem-

poral dependencies at a low computational cost. We show

how, during inference, this procedure is able to suppress

the background while preserving the foreground even when

abrupt changes in appearance occur. Quantitative evalua-

tions across three standard benchmarks demonstrate the ad-

vantage of our proposed method on the task of unsupervised

video object segmentation with respect to the state of the

art. Moreover, our method is also surprisingly competitive

against the state of the art in semi-supervised video object

segmentation and video saliency.
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