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Abstract

Detecting objects in aerial images is challenging for at

least two reasons: (1) target objects like pedestrians are

very small in pixels, making them hardly distinguished from

surrounding background; and (2) targets are in general

sparsely and non-uniformly distributed, making the detec-

tion very inefficient. In this paper, we address both issues

inspired by observing that these targets are often clustered.

In particular, we propose a Clustered Detection (ClusDet)

network that unifies object clustering and detection in an

end-to-end framework. The key components in ClusDet in-

clude a cluster proposal sub-network (CPNet), a scale es-

timation sub-network (ScaleNet), and a dedicated detection

network (DetecNet). Given an input image, CPNet produces

object cluster regions and ScaleNet estimates object scales

for these regions. Then, each scale-normalized cluster re-

gion is fed into DetecNet for object detection. ClusDet has

several advantages over previous solutions: (1) it greatly

reduces the number of chips for final object detection and

hence achieves high running time efficiency, (2) the cluster-

based scale estimation is more accurate than previously

used single-object based ones, hence effectively improves

the detection for small objects, and (3) the final DetecNet

is dedicated for clustered regions and implicitly models the

prior context information so as to boost detection accuracy.

The proposed method is tested on three popular aerial im-

age datasets including VisDrone, UAVDT and DOTA. In all

experiments, ClusDet achieves promising performance in

comparison with state-of-the-art detectors.

1. Introduction

With the advance of deep neural networks, object detec-

tion (e.g., Faster R-CNN [27], YOLO [25], SSD [23]) has

witnessed great progress for natural images (e.g., 600×400

images in MS COCO [22]) in recent years. Despite the
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Figure 1: Comparison of grid-based uniform partition and

the proposed cluster-based partition. For the narrative pur-

pose, we intentionally classify a chip into three types:

sparse, common, and clustered. We observe that, for grid-

based uniform partition, more than 73% chips are sparse

(including 23% chips with zero objects), around 25% chips

are common, and about 2% chips are clustered. By contrast,

for cluster-based partition, around 50% chips are sparse,

35% are common, and about 15% belong to clustered chips,

which is 7× more than that of grid-based partition.

promising results for general object detection, the per-

formance of these detectors on the aerial images (e.g.,

2,000×1,500 pixels in VisDrone [37]) are far from satis-

factory in both accuracy and efficiency, which are caused

by two challenges: (1) targets typically have small scales

relative to the images; and (2) targets are generally sparsely

and non-uniformly distributed in the whole image.

Compared with objects in natural images, the scale chal-
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Figure 2: Clustered object Detection (ClusDet) network. The ClusDet network consists of three key components: (1) a cluster

proposal subnet (CPNet); (2) a scale estimation subnet (ScaleNet); and (3) a dedicated detection network (DetecNet). CPNet

serves to predict the cluster regions. ScaleNet is to estimate the object scale in the clusters. DetecNet performs detection

on cluster chips. The final detections are generated by fusing detections from cluster chips and global image. The details of

ICM (iterative cluster merging) and PP (partition and padding) are given in Section 3.

lenge causes less effective feature representation of deep

networks for objects in aerial images. Therefore, it is diffi-

cult for the modern detectors to effectively leverage appear-

ance information to distinguish the objects from surround-

ing background or similar objects. In order to deal with the

scale issue, a natural solution is to partition an aerial image

into several uniform small chips, and then perform detection

on each of them [10, 24]. Although these approaches alle-

viate the resolution challenge to some extent, they are inef-

ficient in performing detection due to the ignorance of the

target sparsity. Consequently, a lot computation resources

are inefficiently applied on regions with sparse or even no

objects (see Fig. 1). We observe from Fig. 1 that, in an aerial

image objects are not only sparse and non-uniform but also

tend to be highly clustered in certain regions. For example,

pedestrians are usually concentrated in squares and vehicles

on highways. Hence, an intuitive way to improve detection

efficiency is to focus the detector on these clustered regions

where there are a large amount of objects.

Inspired by this motivation, this paper proposes a novel

clustered detection (ClusDet) network for addressing both

challenges aforementioned by integrating object and cluster

detection in a uniform framework. As illustrated in Fig. 2,

ClusDet consists of three key components including a clus-

ter proposal sub-network (CPNet), a scale estimation sub-

network (ScaleNet) and a baseline detection network (De-

tecNet). According to the initial detection of an aerial im-

age, CPNet generates a set of regions of object clusters. Af-

ter obtaining the clustered regions, they are cropped out for

subsequent fine detection. To such end, these regions have

to be firstly resized to fit the detector, which may result in

extremely large or small objects in the clustered regions and

thus deteriorate the detection performance [30]. To handle

this issue, we present the ScaleNet to estimate an appropri-

ate scale for the objects in each cluster chip and then rescale

the chip accordingly before feeding it to a detector, which

is different from [10, 24, 18] by directly resizing cropped

chips. Afterwards, each clustered chip is fed to the dedi-

cated detector, DetecNet, for fine detection. The final de-

tection is achieved by fusing the detection results on both

cluster chips and the global image.

Compared to previous approaches, the proposed Clus-

Det shows several advantages: (i) Owing to the CPNet, we

only need to deal with the clustered regions with plenty of

objects, which significantly reduces the computation cost

and improves detection efficiency; (ii) With the help of the

ScaleNet, each clustered chip is refined for better subse-

quent fine detection, leading to improvement in accuracy;

and (iii) The DetecNet is specially designated for clustered

region detection and implicitly models the prior context in-

formation to further boost detection accuracy. In exten-

sive experiments on three aerial image datasets, ClusDet

achieves the best performance using a single mode while

with less computation cost.

In summary, the paper has the following contributions:

1) Proposes a novel ClusDet network to simultaneously ad-

dress the scale and sparsity challenges for object detec-

tion in aerial images.

2) Presents an effective ScaleNet to alleviate nonuniform

scale issue in clustered chips for better fine detection.

3) Achieves state-of-the-art performance on three repre-

sentative aerial image datasets including VisDrone [37],

UAVDT [8], DOTA [33] with less computation.

The rest of this paper is organized as follows. Section 2

briefly reviews the related works. In Section 3, we describe

the proposed approach in details. Experimental results are

shown in Section 4, followed by the conclusion in Section 5.
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2. Related work

Object detection has been extensively explored in recent

decades with a huge amount of literature. In the following,

we first review three lines of works that are the most relevant

to ours, and then highlight the differences of CLusDet with

existing approaches.

Generic Object Detection. Inspired by the success in im-

age recognition [17], deep convolutional neural networks

(CNNs) have been dominated in object detection. Accord-

ing to the detection pipeline, existing detectors can roughly

be categorized into two types: region-based detectors and

region-free detectors. The region-based detectors separate

detection into two steps including proposal extraction and

object detection. In the first stage, the search space for de-

tection is significantly reduced through extracting candidate

regions (i.e., proposals). In the second stage, these pro-

posals are further classified into specific categories. Rep-

resentatives of region-based detectors include R-CNN [12],

Fast/er R-CNN [11, 27], Mask R-CNN [14] and Cascade R-

CNN [3]. On the contrary, the region-free detectors, such as

SSD [23] YOLO [25], YOLO9000 [26], RetinaNet [21] and

RefineDet [36], perform detection without region proposal,

which leads to high efficiency at the sacrifice of accuracy.

Despite excellent performance on natural images (e.g.,

500×400 images in PASCAL VOC [9] and 600×400 im-

ages in MS COCO [22]), these generic detectors are degen-

erated when applied on high-resolution aerial images (e.g.,

2,000×1,500 images in VisDrone [37], and even larger

in UAV captured imagery [19]). Note that detection in

high resolution imagery recently has gained an increasing

amount of research attention [32].

Aerial Image Detection. Compared to detection in nat-

ural images, detection in aerial image is more challeng-

ing because (1) objects have small scales relative to the

high-resolution aerial images and (2) targets are sparse and

nonuniform and concentrated in certain regions. Since this

work is focused on deep learning, we only review some rel-

evant works using deep neural networks for aerial image

detection. In [28], a simple CNNs based approach is pre-

sented for automatic detection in aerial images. The method

in [2] integrates detection in aerial images with semantic

segmentation to improve performance. In [31], the authors

directly extend the Fast/er R-CNN [11, 27] for vehicle de-

tection in aerial images. The work of [6] proposes a cou-

pled region-based CNNs for aerial vehicle detection. The

approach of [7] investigates the problem of misalignment

between Region of Interests (RoI) and objects in aerial im-

age detection, and introduces a ROI transformer to address

this issue. The algorithm in [35] presents a scale adaptive

proposal network for object detection in aerial images.

Region Search in Detection. The strategy of region search

is commonly adopted in detection to handle small objects.

The approach of [24] proposes to adaptively direct compu-

tational resources to sub-regions where objects are sparse

and small. The work of [1] introduces a context driven

search method to efficiently localize the regions containing

a specific class of object. In [4], the authors propose to

dynamically explore the search space in proposal-based ob-

ject detection by learning contextual relations. The method

in [10] proposes to leverage reinforcement learning to se-

quentially select regions for detection at higher resolution

scale. In a more specific domain, vehicle detection in wide

aerial motion imagery (WAMI), the work of [18] suggests

a two-stage spatial-temporal convolutional neural networks

to detect vehicles from a sequence of WAMI.

Our Approach. In this paper, we aim at solving two

aforementioned challenges for aerial image detection. Our

approach is related to but different from the previous re-

gion search based detectors (e.g., [24, 10]), which partitions

high-resolution images into small uniforms chips for detec-

tion. In contrast, our solution first predicts cluster regions in

the images, and then extract these clustered regions for fine

detection, leading to significant reduction of the computa-

tion cost. Although the method in [18] also performs detec-

tion on chips that potentially contain objects, our approach

significantly differs from it. In [18], the obtained chips are

directly resized to fit the detector for subsequent detection.

On the contrary, inspired by the observation in [30] that

objects with extreme scales may deteriorate the detection

performance, we propose a ScaleNet to alleviate this issue,

resulting in improvement in fine detection on each chip.

3. Clustered Detection (ClusDet) Network

3.1. Overview

As shown in Fig. 2, detection of an aerial image con-

sists of three stages: cluster region extraction, fine detec-

tion on cluster chips and fusion of detection results. In spe-

cific, after the feature extraction of an aerial image, CPNet

takes as input the feature maps and outputs the clustered re-

gions. In order to avoid processing too many cluster chips,

we propose an iterative cluster merging (ICM) module to

reduce the noisy cluster chips. Afterwards, the cluster chips

as well as the initial detection results on global image are

fed into the ScaleNet to estimate an appropriate scale for

the objects in cluster chips. With the scale information, the

cluster chips are rescaled for fine detection with DetecNet.

The final detection is obtained by fusing the detection re-

sults of each cluster chip and global image with standard

non-maximum suppression (NMS).

3.2. Cluster Region Extraction

Cluster region extraction consists of two steps: initial

cluster generation using cluster proposal sub-network (CP-

Net) and cluster reduction with iterative cluster merging

(ICM).
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(a) cluster detections (b) cluster detections + ICM

Figure 3: Illustration of merging of cluster detections. The

red boxes are the cluster detections from CPNet. The blue

boxes represent clusters after iterative cluster merge (ICM).

3.2.1 Cluster Proposal Sub-network (CPNet)

The core of the cluster region extraction is the cluster pro-

posal sub-network (CPNet). CPNet works on the high-level

feature maps of an aerial image, and aims at predicting the

locations and scales of clusters1. Motivated by the region

proposal networks (RPN) [27], we formulate CPNet as a

block of fully convolutional networks. In specific, CPNet

takes as input the high-level feature maps from feature ex-

traction backbone, and utilizes two subnets for regression

and classification, respectively. Although our CPNet shares

the similar idea with RPN, they are different. RPN is used to

propose the candidate regions of objects, while CPNet aims

at proposing the candidate regions of clusters. Compared to

the object proposal, the size of cluster is much larger, and

thus CPNet needs a larger receptive field than that of RPN.

For this reason, we attach CPNet on the top of the feature

extraction backbone.

It is worth noting that the learning of CPNet is a super-

vised process. However, none of existing public datasets

provide groundtruth for clusters. In this work, we adopt a

simple strategy to generate the required groundtruth of clus-

ters for training CPNet. We refer the readers to supplemen-

tary material for details in generating cluster groundtruth.

3.2.2 Iterative Cluster Merging (ICM)

As shown in Fig. 3 (a), we observe that the initial clusters

produced by CPNet are dense and messy. These dense and

messy cluster regions are difficult to be directly leveraged

for fine detection because of their high overlap and large

size, resulting in extremely heavy computation burden in

practice. To solve this problem, we present a simple yet ef-

fective iterative cluster merging (ICM) module to clean up

clusters. Let B = {Bi}
NB

i=1 represent the set of NB clus-

ter bounding boxes detected by CPNet, and R = {Ri}
NB

i=1

denote the corresponding cluster classification scores. With

a pre-defined overlap threshold ⌧op and maximum number

Nmax of clusters after merging, we can obtain the merged

1In this work, a cluster in aerial images is defined by a rectangle region

containing at least three objects.

Algorithm 1: Iterative Cluster Merging (ICM)

Input: Initial cluster bounding boxes B = {Bi}
NB

i=1,

initial cluster scores R = {Ri}
NB

i=1, threshold ⌧op and

maximum number of merged clusters Nmax;

Output: Merged clusters B0 = {B0

i
}
N

B0

i=1 ;

begin

B0 ← B;

while |B0| > Nmax do
B0, R0 ← NMM(B,R, ⌧op)

if |N 0

B
| = |NB| then

break;

else

B ← B0; R ← R0 ;

end

end

B00 ← {};

for i ≤ min(Nmax, |B
0|) do

B00 ← B00 ∪ {B0

i
};

end

B0 ← B00;

end

cluster set B0 = {B0

i
}
N

B0

i=1 with N 0

B
clusters with Alg. 1.

Briefly speaking, we first find the Bi with highest score,

then select the clusters whose overlaps with Bi are larger

than the threshold ⌧op to merge with Bi. All the merged

clusters are removed. Afterwards, we repeat the aforemen-

tioned process until B is empty. All the processes men-

tioned above correspond to the non-max merging (NMM)

in Alg. 1. We conduct the NMM several times until the

preset Nmax is reached. For the details of the NMM, the

readers are referred to supplementary material. Fig. 3 (b)

demonstrates the final merged clusters, showing that the

proposed ICM module is able to effectively merge the dense

and messy clusters.

3.3. Fine Detection on Cluster Chip

After obtaining the cluster chips, a dedicated detector

is utilized to perform fine detection on these chips. Un-

like in existing approaches [24, 18, 10] that directly re-

size these chips for detection, we present a scale estimation

sub-network (ScaleNet) to estimate the scales of objects in

chips, which avoids extreme scales of objects degrading de-

tection performance. Based on the estimated scales, Clus-

Det performs partition and padding (PP) operations on each

chip for detection.

3.3.1 Scale Estimation Sub-network (ScaleNet)

We regard scale estimation as a regression problem and for-

mulate ScaleNet using a bunch of fully connected networks.
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Figure 4: The architecture of the scale estimation network

(ScaleNet). The cluster detections are projected to feature

map space. Each cluster is pooled into a fixed-size feature

map and mapped into a feature vector by fully connected

layers (FCs). The network has an output per cluster, i.e., the

scale regression offset.

As shown in Fig. 4, ScaleNet receives three inputs including

the feature maps extracted from network backbone, cluster

bounding boxes and initial detection results on global im-

age, and outputs a relative scale offset for objects in the

cluster chip. Here, the initial detection results are obtained

from the detection subnet.

Let t⇤
i
= (pi−s⇤

i
)/pi be the relative scale offset for clus-

ter i, where pi and s⇤
i

represent the reference scale of the

detected objects and the average scale of the groundtruth

boxes in cluster i, respectively. Thus, the loss of the

ScaleNet can be mathematically defined as

L({ti}) =
1

M

MX

i

`reg(ti, t
⇤

i ) (1)

where ti = (pi−si)/pi is the estimated relative scale offset,

si is the estimated scale, and M is the number of cluster

boxes. The `reg is a smoothly `1 loss function [11].

3.3.2 Partition and Padding (PP)

The partition and padding (PP) operations are utilized to en-

sure that the scales of objects are within a reasonable range.

Given the cluster bounding box Bi, the corresponding esti-

mated object scale Si and the input size Sin of a detector,

we can estimate the object scale in the input space of the de-

tector Sin
i

= Si ×
Sin

Si

. If the scale Sin
i

is larger than a cer-

tain range, the cluster is padded proportionally, otherwise it

is partitioned into two equal chips. Note that detections in

the padded region are ignored in final detection. The visu-

alization of the process is in Fig. 5. The specific scale range

setting is discussed in Section 4.

After rescaling the cluster chip, a dedicated baseline de-

tection network (DetecNet) performs fine object detection.

The architecture of the DetecNet can be any state-of-the-

art detectors. The backbone of the detector can be any

Input clusters

Padding

Partition
Refined chipsRaw chips

Figure 5: Illustration of the partition and padding (PP) pro-

cess. The raw chips and refined chips are the input of detec-

tor without and with using PP, respectively.

NMS

Figure 6: The illustration of fusing detections from whole

images and cluster chips.The object detections in orange re-

gion from whole image are eliminated when applying fu-

sion operation.

standard backbone networks, e.g., VGG [29], ResNet [15],

ResNeXt [34].

3.4. Final Detection with Local-Global Fusion

The final detection of an aerial image is obtained by fus-

ing the local detection results of cluster chips and global de-

tection results of the whole image with the standard NMS

post-processing (see Fig. 6). The local detection results are

obtained through the proposed approach mentioned above,

and the global detection results are derived from detection

subnet (Fig. 2). It is worth noting that any existing modern

detectors can be used for global detection.

4. Experiments

4.1. Implementation Details

We implement ClusDet based on the publicly avail-

able Detectron [13] and Caffe2. The Faster R-CNN (FR-

CNN) [27] with Feature Pyramid Network (FPN) [20] are

adopted as the baseline detection network (DetecNet). The

architecture of the CPNet is implemented with a 5× 5 con-

volutional layer followed by two sibling 1×1 convolutional

layers (for regression and classification, respectively). In

ScaleNet, the FC layers to convert feature map into feature

vector are with size of 1024; The size of FC layers in the

scale offset regressor are 1024 and 1 respectively. The IoU
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Table 1: The ablation study on VisDrone dataset. The ‘c’ denotes EIP cropped images. The ’ca’ indicates cluster-aware

cropped images. The ‘o’ indicates the original validation data. The #img is the number of images forwarded to detector.

The ‘s’, ‘m’, and ‘l’ represent small, medium, and large, respectively. The inference time is measured on a GTX 1080 Ti.

Methods backbone test data #img AP AP50 AP75 APs APm APl s/img (GPU)

FRCNN[27]+FPN[20] ResNet50 o 548 21.4 40.7 19.9 11.7 33.9 54.7 0.055

FRCNN[27]+FPN[20] ResNet101 o 548 21.4 40.7 20.3 11.6 33.9 54.9 0.074

FRCNN[27]+FPN[20] ResNeXt101 o 548 21.8 41.8 20.1 11.9 34.8 55.5 0.156

FRCNN[27]+FPN[20]+EIP ResNet50 c 3,288 21.1 44.0 18.1 14.4 30.9 30.0 0.330

FRCNN[27]+FPN[20]+EIP ResNet101 c 3,288 23.5 46.1 21.1 17.1 33.9 29.1 0.444

FRCNN[27]+FPN[20]+EIP ResNeXt101 c 3,288 24.4 47.8 21.8 17.8 34.8 34.3 0.936

DetecNet+CPNet ResNet50 o+ca 1,945 25.6 47.9 24.3 16.2 38.4 53.7 0.195

DetecNet+CPNet ResNet101 o+ca 1,945 25.3 47.4 23.8 15.6 38.1 54.6 0.262

DetecNet+CPNet ResNeXt101 o+ca 1,945 27.6 51.2 26.2 17.5 41.0 54.2 0.554

DetecNet+CPNet+ScaleNet ResNet50 o+ca 2,716 26.7 50.6 24.7 17.6 38.9 51.4 0.273

DetecNet+CPNet+ScaleNet ResNet101 o+ca 2,716 26.7 50.4 25.2 17.2 39.3 54.9 0.366

DetecNet+CPNet+ScaleNet ResNeXt101 o+ca 2,716 28.4 53.2 26.4 19.1 40.8 54.4 0.773

threshold for merging clusters in NMM process is set to 0.7.

Following the definition in the COCO[22] dataset, the ob-

ject scale range in cluster chip partition and padding is set

to [70, 280] pixels.

Training phase. The input size of the detector is

set to 600 × 1, 000 pixels on the VisDrone [37] and

UAVDT [8] datasets and 1, 000 × 1, 000 pixels on the

DOTA [33] dataset. On the three datasets, the training data

is augmented by dividing images into chips. On the Vis-

Drone [37] and UAVDT [8] datasets, each image is uni-

formly divided into 6 and 4 chips without overlap. The rea-

son of setting a specific number of chips is that the size of

cropped chip can be similar with that in COCO [22] dataset.

On the DOTA [33] dataset, we use the tool provided by the

authors to divide the images. When training model on the

VisDrone [37] and UAVDT [8] datasets by using 2 GPUs,

we set the base learning rate to 0.005 and total iteration to

140k. After the first 120k iterations, the learning rate de-

creases to 0.0005. Then, we train the model for 100k iter-

ations before lowering the learning rate to 0.00005. A mo-

mentum of 0.9 and parameter decay of 0.0005 (on weights

and biases) are used. On the DOTA [33] dataset, the base

learning and the total iterations are set to 0.005 and 40k, re-

spectively. The learning rate is deceased by a factor of 0.1

after 30k and 35k iterations.

Test phase. The input size of detector is the same with

that in training phase whenever not specified. The maxi-

mum number of clusters (TopN) in cluster chip generation

is empirically set to 3 on VisDrone [37], 2 on UAVDT [8],

and 5 on the DOTA [33]. In fusing detection, the threshold

of the standard non-max suppression (NMS) is set to 0.5 in

all datasets. The final detection number is set to 500.

4.2. Datasets

To validate the effectiveness of the proposed method, we

conduct extensive experiments on three publicly accessible
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Figure 7: The AP and number of forwarded images over

different settings of TopN in ClusDet.

datasets: VisDrone [37], UAVDT [8], and DOTA [33].

VisDrone. The dataset consists of 10, 209 images (6,471

for training, 548 for validation, 3,190 for testing) with rich

annotations on ten categories of objects. The image scale of

the dataset is about 2, 000×1, 500 pixels. Since the evalua-

tion server is closed now, we cannot test our method on the

test dataset. Therefore, the validation dataset is used as test

dataset to evaluate our method.

UAVDT. The UAVDT [8]] dataset contains 23,258 im-

ages of training data and 15,069 images of test data. The

resolution of the image is about 1, 080 × 540 pixels. The

dataset is acquired with an UAV platform at a number of

locations in urban areas. The categories of the annotated

objects are car, bus, and truck.

DOTA. The dataset is collected from multiple sensors

and platforms (e.g. Google Earth) with multiple resolutions

(800×800 through 4,000×4,000 pixels) at multiple cities.

Fifteen categories are chosen and annotated. Considering

that ClusDet is based on the cluster characteristic of the ob-

jects in aerial image, some categories in the dataset are not
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Table 2: The detection performance on VisDrone validation

dataset. The ? denotes the multi-scale inference and bound-

ing box voting are utilized in test phase.

Methods backbone AP AP50 AP75

RetinaNet[21]+FPN[20] ResNet50 13.9 23.0 14.9

RetinaNet[21]+FPN[20] ResNet101 14.1 23.4 14.9

RetinaNet[21]+FPN[20] ResNeXt101 14.4 24.1 15.5

FRCNN[27]+FPN[20] ResNet50 21.4 40.7 19.9

FRCNN[27]+FPN[20] ResNet101 21.4 40.7 20.3

FRCNN[27]+FPN[20] ResNeXt101 21.8 41.8 20.1

FRCNN[27]+FPN[20] ? ResNeXt101 28.7 51.8 27.7

FRCNN[27]+FPN[20]+EIP ResNet50 21.1 44.0 18.1

FRCNN[27]+FPN[20]+EIP ResNet101 23.5 46.1 21.1

FRCNN[27]+FPN[20]+EIP ResNeXt101 24.4 47.8 21.8

FRCNN[27]+FPN[20]+EIP? ResNeXt101 25.7 48.4 24.1

ClusDet ResNet50 26.7 50.6 24.7

ClusDet ResNet101 26.7 50.4 25.2

ClusDet ResNeXt101 28.4 53.2 26.4

ClusDet ? ResNeXt101 32.4 56.2 31.6

suitable for ClusDet, e.g., roundabout, bridge. Thus, we

only choose the images with movable objects in the dataset

to evaluate our method, i.e., plane, ship, large vehicle, small

vehicle, and helicopter, Thus, the training and validation

data contain 920 images and 285 images, respectively.

4.3. Compared Methods

We compare our ClusDet with evenly image partition

(EIP) method on all datasets. On some datasets if the EIP is

not provided, we implement it according to the property of

the datasets. In addition, we also compare our method with

representative state-of-the-art methods on all datasets.

4.4. Evaluation Metric

Following the evaluation protocol on the COCO [22]

dataset, we use AP , AP50, and AP75 as the metrics to mea-

sure the precision. Specifically, AP is computed by averag-

ing over all categories. AP50 and AP75 are computed at the

single IoU threshold 0.5 and 0.75 over all categories. The

efficiency is measured by the number of images needed to

be processed by the detector and the average time to process

a global image and its chips in inference stage. In specific,

the number of images refer to the summation of global im-

ages and cropped chips. In the subsequent experiments, the

number of images is denoted as #img.

4.5. Ablation Study

To validate the contributions of the cluster detection and

scale estimation to detection improvement, we conduct ex-

tensive experiments on VisDrone [37].

In the following experiments, the input size of detector

in the test phase is set to 600 × 1, 000 pixels. To validate

if the proposed method can gain consistent improvement in

performance under different backbone networks, we con-

duct experiments with three backbone networks: ResNet-

50 [15], ResNet-101 [15], and ResNeXt-101 [34].

Effect of EIP. The experimental results are listed in Ta-

ble 1. We note that FRCNN [27] performs inferior com-

pared to that in COCO [22] (AP=36.7). This is because the

relative scale of object to image in VisDrone [37] is much

smaller than that in COCO [22]. By applying EIP to the

image, the performance of detectors are increased signif-

icantly, especially on small objects (APs). However, the

number of images needed to be processed increases 6 times

(3,288 vs 548). In addition, we note that although the over-

all performance AP is improved by applying EIP, the per-

formance of large scale objects (APl) is decreased. This

is because the EIP truncates the large objects into pieces,

which results in many false positives.

Effect of Cluster Detection. From Table 1, we note that

the DetecNet+CPNet processes much less amount of im-

ages (1,945 vs 3,288) but achieves better performance than

FRCNN [27] plus EIP. This demonstrates that the CPNet

not only selects the clustered regions to save computation

resource but also implicitly encodes the prior context infor-

mation to improve the performance. In addition, we note

that compared to EIP, the CPNet dose not reduce the per-

formance of large objects (APl), this can be attributed to

the CPNet, which introduces the spatial distribution infor-

mation of the object into the ClusDet network so as to avoid

truncating the large object.

Effect of Scale Estimation. After integrating ScaleNet

into CPNet and DetecNet, we note that the number of pro-

cessed image increases to 2,716, this is because the PP

module partitions some cluster chips into pieces. This

mitigates the small scale problem when performing de-

tection, such that the performance (AP ) is improved to

26.7 on ResNet50 [15] backbone network. In addition, we

see that the ScaleNet improves the detection performance

on all types of backbone networks. Particularly, the met-

ric AP50 is boosted by 2-3 points. In addition, the APs

is increased by 1.6 points even on very strong backbone,

ResNeXt101 [15]. This demonstrate that the ScaleNet does

alleviate the scale problem to certain extent.

The Effect of Hyperparameter TopN. To fairly inves-

tigate the effect of TopN, we only change the setting in test

phase, which avoids the influence by the amount of training

data. From Fig. 7, we see that after TopN = 4, the number

of processed images gradually increases, yet the AP dose

not change too much and just fluctuates around AP = 27.

This means that a lot of cluster regions are repetitively com-

puted when TopN is set to a high value. This observation

also indicates that the cluster merge operation is critical to

decrease the computation cost.
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Table 3: The detection performance of the baselines and proposed method on the UAVDT [8] dataset.

Methods backbone #img AP AP50 AP75 APs APm APl

R-FCN[5] ResNet50 15,069 7.0 17.5 3.9 4.4 14.7 12.1

SSD[23] N/A 15,069 9.3 21.4 6.7 7.1 17.1 12.0

RON[16] N/A 15,069 5.0 15.9 1.7 2.9 12.7 11.2

FRCNN[27] VGG 15,069 5.8 17.4 2.5 3.8 12.3 9.4

FRCNN[27]+FPN[20] ResNet50 15,069 11.0 23.4 8.4 8.1 20.2 26.5

FRCNN[27]+FPN[20]+EIP ResNet50 60,276 6.6 16.8 3.4 5.2 13.0 17.2

ClusDet ResNet50 25,427 13.7 26.5 12.5 9.1 25.1 31.2

Table 4: The detection performance of the baselines and proposed method on DOTA [33] dataset.

Methods backbone #img AP AP50 AP75 APs APm APl

RetinaNet[21]+FPN[20]+EIP ResNet50 2,838 24.9 41.5 27.4 9.9 32.7 30.1

RetinaNet[21]+FPN[20]+EIP ResNet101 2,838 27.1 44.4 30.1 10.6 34.8 33.7

RetinaNet[21]+FPN[20]+EIP ResNeXt101 2,838 27.4 44.7 29.8 10.5 35.8 32.8

FRCNN[27]+FPN[20]+EIP ResNet50 2,838 31.0 50.7 32.9 16.2 37.9 37.2

FRCNN[27]+FPN[20]+EIP ResNet101 2,838 31.5 50.4 36.6 16.0 38.5 38.1

ClusDet ResNet50 1,055 32.2 47.6 39.2 16.6 32.0 50.0

ClusDet ResNet101 1,055 31.6 47.8 38.2 15.9 31.7 49.3

ClusDet ResNeXt101 1,055 31.4 47.1 37.4 17.3 32.0 45.4

4.6. Quantitative Results

VisDrone The detection performance of the proposed

method and representative detectors, i.e., Faster RCNN [27]

and RetinaNet [21], is shown in Table 2. We note that our

method outperforms the state-of-the-art methods by a large

margin over various backbone settings. Besides, we ob-

serve that when testing the model using multi-scale setting

(denoted by ?), the performance is significantly boosted,

except for the methods using EIP. This is because in multi-

scale test, the cropped chips are resized to extremely large

scale such that detectors output many false positives on

background or local regions of objects.

UAVDT The experimental results on the UAVDT [8]

dataset are displayed in Table 3. The performance of the

compared methods, except for FRCNN [27]+FPN [20], is

computed using the experimental results provided in [8].

From the Table 3, we observe that applying EIP on test data

dose not improve the performance. On the contrary, it dra-

matically decreases the performance (11.0 vs 6.1). The rea-

son of this phenomenon is that the objects, i.e. vehicles,

in the UAVDT always appear in the center of the image,

while the EIP operation divides the objects into pieces such

that the detector cannot correctly estimate the objects scale.

Compared to FRCNN [27]+FPN [20] (FFPN), our ClusDet

is superior to the FFPN and FFPN+EIP. The performance

improvement mainly benefits from the different image crop

operation. In our method, the image is cropped based on the

clusters information, which is less likely to truncate numer-

ous objects. The performance of detectors on UAVDT [8]

is much lower than that on VisDrone [38], which is caused

by the extremely unbalanced data.

DOTA On the DOTA[33] dataset, our ClusDet achieves

similar performance with state-of-the-art methods but pro-

cesses dramatically less image chips. This is because the

CPNet significantly reduces the number of chips for fine

detection. Although our method does not outperform the

state-of-the-art methods in term of the overall performance

at low IoU (AP50), it obtains higher AP75 value, which in-

dicates that our method can more precisely estimate the ob-

ject scale. Besides, we observe that the performance does

not change too much when more complex backbone net-

works are adopted. This can be attributed to the limited

training images. Without a large amount of data, the com-

plex model cannot achieve its superiority.

5. Conclusion

We present a Clustered object Detection (ClusDet) net-

work to unify object clustering and detection in an end-to-

end framework. We show that ClusDet can successfully

predict the clustered regions in images to significantly re-

duce the number of chips for detection so as to improve

the efficiency. Moreover, we propose a cluster-based object

scale estimation network to effectively detect the small ob-

ject. In addition, we experimentally demonstrate that the

proposed ClusDet network implicitly models the prior con-

text information to improve the detection precision. By ex-

tensive experiments, we show that our method obtains state-

of-the-art performance on three public datasets.
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